Twin Edge Colorings of Trees

Daniel Johnston*, Omid Khormali, Nhan Nguyen, Cory Palmer

Department of Mathematical Sciences, University of Montana, Missoula, MT 59812
daniel1.johnston@umontana.edu

For a connected graph G of order at least 3 and an integer $k \geq 2$, a twin edge k-coloring of G is a proper edge coloring of G using elements of \mathbb{Z}_k so that the induced vertex coloring in which the color of a vertex v in G is the sum (in \mathbb{Z}_k) of the colors of the edges incident with v is a proper vertex coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. It has been conjectured that the twin chromatic index of every connected graph G of order at least 3 (except C_5) lies between the maximum degree of G and 2 plus the maximum degree of G. In this talk, we present recent progress on this conjecture for trees as well as other new results in this area of research.