Graphs without independent cycles and chorded cycles

Theodore Molla, Michael Santana*, Elyse Yeager

Department of Mathematics, Grand Valley State University, Allendale, MI 49519
santanmi@gvsu.edu

In 1963, Corrădi and Hajnal proved a conjecture of Erdős showing that every graph G on at least $3k$ vertices with $\delta(G) \geq 2k$ contains k disjoint cycles. A chorded cycle analogue was proven by Finkel in 2008, who showed that every graph G on at least $4k$ vertices with $\delta(G) \geq 3k$ contains k disjoint chorded cycles. Both results are best possible, leading Kierstead, Kostochka, and Yeager to characterize the sharpness examples to Corrádi-Hajnal, and Molla, Santana, and Yeager to characterize the sharpness examples to Finkel’s result.

In 2010, Chiba, Fujita, Gao, and Li proved a mixed version of the aforementioned results. In particular, they show that for integers r and s with $r + s \geq 1$, every graph G on at least $3r + 4s$ vertices with $\delta(G) \geq 2r + 3s$ contains r disjoint cycles and s disjoint chorded cycles. In this talk we present a characterization of the sharpness examples to this statement, which provides a transition between the results of Kierstead et al. and Molla et al.