Two graphs G_1 and G_2, each on n vertices, pack if there exists a bijection f from $V(G_1)$ onto $V(G_2)$ such that $uv \in E(G_1)$ only if $f(u)f(v) \notin E(G_2)$. In 2014, Alon and Yuster proved that, for sufficiently large n, if $|E(G_1)| < n - \delta(G_2)$ and $\Delta(G_2) \leq \sqrt{n}/200$, then G_1 and G_2 pack. Recently, we characterized the pairs of graphs for which the theorem of Alon and Yuster is sharp. We also prove the stronger result that for sufficiently large n, if $|E(G_1)| \leq n$, and $\Delta(G_2) \leq \sqrt{n}/60$, and $\Delta(G_1) + \delta(G_2) \leq n - 1$, then G_1 and G_2 pack whenever there is a vertex $v_1 \in V(G_1)$ such that $d(v_1) = \Delta(G_1)$ and $\alpha(G_1 - N[v_1]) \geq \delta(G_2)$.