ALM - Managing Interest Rate Risk

Wei Hao FSA, MAAA September 2010

Outline

Background
Duration and convexity
Duration management

Liability Duration
Assumptions
Summary of results

Asset Duration Target
Effect of interest rate changes
Surplus protection

Background

Variations of Duration
Macaulay Duration
Modified Duration
Effective Duration (option-adjusted)
Key Rate Duration

Interpretations of Duration
Weighted average time where CFs from a FIS are received (Macaulay D)
First derivative of P-Y relationship of FIS (Modified D)
Measure of sensitivity of bond price to small changes in parallel yield curve shift (Effective D)

Variations on Duration (I)

- Macaulay Duration: weighted average time-to-maturity of the cash flows of a bond. (the weight of each cash flow is based on its discounted present value)

$$
\begin{aligned}
& \text { Mac } D=\sum_{t=1}^{n} w_{t} * t=\sum_{t=1}^{n} \frac{P V_{t}}{\operatorname{Price}} * t \\
& \% \Delta P=\frac{\Delta P}{P} \approx-\text { Mac } D * \frac{\Delta r}{1+r}
\end{aligned}
$$

Variations on Duration (II)

- Modified Duration: an adjusted measure of Macaulay duration that produces a more accurate estimate of bond price sensitivity

Modified Duration (MD) $=\frac{M a c D}{\left(1+\frac{r}{m}\right)}$
m is the \# of compounding period per year

$$
\frac{\Delta P}{P}=\Delta \% P \approx-M D * \Delta r
$$

Variations of Duration (III)

- A duration/convexity measure that includes the effect of embedded options on a bond's price behavior
- Effective Duration $D_{E}=\frac{P_{-}-P_{+}}{2 P_{0} \Delta r}$
- Effective Convexity $C_{E}=\frac{P_{-}+P_{+}-2 P_{0}}{2 P_{0} \Delta r^{2}}$
- Bond price to interest rate change:

$$
\% \Delta P=\frac{\Delta P}{P} \approx-D_{E} \Delta r+\frac{1}{2} C_{E} \Delta r^{2}
$$

Effective Duration and Convexity

- Duration calculation is valid for small changes in interest rate. It is less accurate for large changes.
- The duration approximation - a straight line relating change in bond price to change in interest rate - always understates the price of the bond; it underestimates the increase in bond price when rates fall, and overestimates the fall in price when rates rise.

Convexity Adjustment

Price

Duration Management

introduction

- An immunized portfolio is largely protected from fluctuations in market interest rates.
- seldom possible to eliminate interest rate risk completely
- a portfolio's immunization can wear out, requiring managerial action to reinstate
- continually immunizing a portfolio can be timeconsuming and costly

Duration Management (cont’d)

duration matching

- Duration matching selects a level of duration that minimizes the combined effects of reinvestment rate and interest rate risk
- Two versions of duration matching
- bullet immunization (target date immunization)
- bank immunization (surplus immunization)

Duration Management (cont’d)

bullet immunization

- Seeks to ensure that a predetermined sum of money is available at a specific time in the future regardless of interest rate movement
- Objective is to get the effects of interest rate and reinvestment rate risk to offset
- If interest rates rise, coupon proceeds can be reinvested at a higher rate
- If interest rates fall, coupon proceeds can be reinvested at a lower rate

Duration Management (cont’d)

surplus immunization

- Addresses the problem that occurs if interestsensitive liabilities are included in the portfolio
- Interest rate changes cause changes in both assets and liabilities and hence in surplus. Can we eliminate this effect?
- Yes: match dollar duration of assets and liabilities!

Duration Management (cont’d)

surplus immunization

- To immunize surplus, must reorganize balance sheet such that:

$$
\begin{gathered}
\$_{A} \times D_{A}=\$_{L} \times D_{L} \\
\text { where }
\end{gathered}
$$

$\$_{A, L}=$ dollar value of assets or liabilities
$D_{A L}=$ dollar-weighted duration of assets or liabilities

Duration Management (cont’d) surplus immunization

Duration Management (cont'd)

surplus immunization

Assets $\quad \Delta A=-D_{A} \cdot A \cdot \Delta y+\frac{1}{2} C_{A} \cdot A \cdot(\Delta y)^{2}$
Liabilities $\Delta L=-D_{L} \cdot L \cdot \Delta y+\frac{1}{2} C_{L} \cdot L \cdot(\Delta y)^{2}$
Surplus change (assuming asset convexity $C_{A} \approx 0$)
$\Delta S=\Delta A-\Delta L=-D_{A} \cdot A \cdot \Delta y+D_{L} \cdot L \cdot \Delta y-\frac{1}{2} C_{L} \cdot L \cdot(\Delta y)^{2}$

Duration Management (cont’d)

surplus immunization

Surplus percentage change recognizing $A-S=L$
$\frac{\Delta S}{S}=\left(D_{L}-D_{A}\right) \cdot \frac{A}{S} \cdot \Delta y-D_{L} \cdot \Delta y-\frac{1}{2} C_{L} \cdot \frac{L}{S} \cdot(\Delta y)^{2}$
For a given surplus percentage change $\frac{\Delta S}{S}$

$$
D_{A}-D_{L}=\frac{-\frac{\Delta S}{S}-D_{L} \cdot \Delta y-\frac{1}{2} C_{L} \cdot \frac{L}{S} \cdot(\Delta y)^{2}}{\frac{A}{S} \cdot \Delta y}
$$

Liability Duration Calculation

assumptions

- Corporate model used as the baseline.
- Due to low interest rate environment, a shift of 10bp is used.
- Durations are calculated for each line of business and they are dollar-weighted.

Liability Duration Calculation summary of results

Left Blank Intentionally

Interest Rate Risk on Surplus

$$
\frac{\Delta S}{S}=\left(D_{L}-D_{A}\right) \cdot \frac{A}{S} \cdot \Delta y-D_{L} \cdot \Delta y-\frac{1}{2} C_{L} \cdot \frac{L}{S} \cdot(\Delta y)^{2}
$$

Given currently $\quad D_{A}=5 \quad, D_{L}=5.5$

rate change	Surplus \% change
0.25%	-1.7%
0.50%	-4.1%
0.75%	-7.3%
1.00%	-11.2%
1.25%	-15.9%
1.50%	-21.4%
1.75%	-27.6%
2.00%	-34.5%

Asset Duration Target

For a given surplus percentage change $\frac{\Delta S}{S}$, and interest rate change Δy

$$
D_{A}-D_{L}=\frac{-\frac{\Delta S}{S}-D_{L} \cdot \Delta y-\frac{1}{2} C_{L} \cdot \frac{L}{S} \cdot(\Delta y)^{2}}{\frac{A}{S} \cdot \Delta y}
$$

