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Abstract 

The growth of credit card debt in the twenty-first century has garnered much attention for researchers to focus 

attention on various aspects of this unique instrument. This has led to testing the stability of models that forecast 

personal default and credit risk models more generally. This paper used a real-life data of credit card clients to 

investigate the predictive accuracy of some data mining techniques on the probability of default, a two-class 

classification problem. The misclassification rate and area under the receiver operating characteristic curves are 

the two performance measures used to determine the accuracy of these ten techniques studied. Support vector 

machines, an advanced predictive modeling technique, and the widely known logistic regression are two main 

methods that proved to have high objective accuracies for both performance measures. Some variables proved 

more important than others and using the most significant predictors for the data mining techniques gave 

comparably close prediction results; a few accuracies improved after variable selection. The logistic regression 

produced the same error rate and AUC before and after variable selection. 
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1. Introduction 

The health of the credit card industry is best measured not by the number of people with credit cards, but 

rather the number who pay their bills. Credit card debt statistics speak to the financial health of American 

households and can foretell some serious bubbles that may trigger constriction across lending markets. From 

that perspective, the fact that the U.S consumers racked up $60.4 billion in credit debt during the fourth 

quarter of 2016 represents a serious cause for concern.[1] The number of credit card users increase as the 

population ages into adulthood and the risk of default becomes increasingly worrisome to the banks and 

financial companies that issue credit cards. Per a 2014 report by the Urban Institute, roughly 1 out of 20 

Americans with credit files are at least 30 days late on a credit card or other non-mortgage account (Ratcliff 

et. al. 2014). Bad payment habits can lead to more fees, lower credit scores and, in some cases, bankruptcy. 

Personal bankruptcy filings have increased substantially over the last two decades from 0.35% to 1.4% per 

year, and such high levels in bankruptcy rates, according to Lopes (2008), may put the credit market stability 

at risk.  

Credit card delinquency and charge-off rates have to be assessed in order to get an accurate sense of the 

consumer debt situation. Dunn and Kim (1999) point out how banks and financial planners have taken the 

issue of credit card default seriously after default and personal bankruptcy began to increase sharply post 

1995 despite the lull in credit activity in the early 1990s. The growth of the credit card debt in the U.S. economy 

in the twenty-first century has garnered much attention for researchers to focus attention on various aspects 

of this unique instrument which has led to testing the stability of models that forecast personal default and 

credit risk models more generally. According to Gross and Souleles (2002) a risk effect and a demand effect 

account for the explanation of these trends. With the risk effect, they explain that additional credit was 

advanced to less creditworthy borrowers because based on their observations, the most important factors 

behind the rise in credit default can be attributed to the growth in the number of credit card offers and the 

credit limit size. In that paper, they cite the increased willingness over the years of cardholders to default as 

the demand effect. Unlike the risk effect, the demand effect represents a change in the relationship between 

default and the variables that lenders typically use to predict default.  Lopes (2008) proved that the probability 

of default is decreasing as the number and level of education increases, ceteris paribus.  

Risk management propounds several techniques to manage an efficient system against market risk in today’s 

fast-changing financial markets. Understanding the various ways in which lenders mitigate the default risk is 

the key to explaining some of the main features of credit markets. Risk prediction is of great importance and 

in the credit world comes with the prediction of the probability of default which is an essential part of business 

intelligence in the financial institutions. Recent studies indicate that underestimating this important 

component might threaten the stability and smooth running of the markets (Titan and Tudor, 2011). To do 
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this requires analytical processes and prediction models that feed on financial statements, customer 

transactions and repayment records, among others in order to predict business performance through 

minimizing credit risk deficiencies to decrease default.  In their paper, Titan and Tudor state that the result of 

predictive accuracy of the estimated probability of default is more valuable than the standard binary 

classification: good or bad clients. General modeling methods for optimal probability predictions over future 

observations have been studied and simulation results on both artificial and practical datasets have proved 

supportive in helping to predict whether or not one would default on the payment of his credit card balance 

when it is due. Over the years, researchers in the field have supplemented credit scoring algorithms with linear 

modeling methods to enhance the accuracy of prediction. A relatively newer concept to solve the problem of 

default prediction with far greater degree of accuracy is data mining and visualization. Data mining can be 

defined as the process of finding previously unknown patterns and trends in databases and using that 

information to build predictive models. According to Koh and Tan (2011), data mining is not a new concept 

because it has hitherto been used by manufacturers, for quality control and maintenance scheduling; retailers, 

for market segmentation and store layout; and financial institutions, for fraud detection. The most common 

and important applications in data mining probably involve predictive modeling, a concept which in recent 

years seem to get more interesting as new and exciting challenges spring up which require efforts to closely 

equate theoretical applications with real world experiences. Much of these can be seen in healthcare where 

data mining is becoming increasingly popular, if not increasingly essential, a motivation of this coming from 

the upsurge in medical insurance fraud and abuse. Healthcare insurers in a bid to cut down their losses resort 

to data mining tools to enable them find, track, and penalize culprits.  

There have been significant applications of supervised learning methods in coming out with very good 

predictive models. Albashrawi (2016) summarizes the work by researchers over a decade from 2004 to 2015 

in which they used various data mining techniques to detect financial fraud. He made mention of methods 

such as K-Nearest Neighbors, Discriminant Analysis, Naïve Bayes, Neural Networks, Logistic regressions, 

Decision trees, CART, Support Vector Machines, among a host of others. Of the financial fraud data analyzed, 

Albashrawi mentions credit card default being analyzed by different researchers using at least one of these 

methods. It is worthy to note that no two of the researchers had the same data mining technique being the 

best performing one.  

This research, aimed at the case of customers’ default payments in Taiwan, also attempts to use multiple 

predictive modeling techniques to assess the predictive accuracy of the probability of credit card default, and 

in doing so will seek to answer questions such as:  

a. Which, of the ten predictive modeling techniques discussed in this paper, works best to accurately 

predict the probability of credit card default?  
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b. What major factors would help detect whether one would default in payment? And how would 

theses impact the issuance of future credit cards to new users?  

 

The remainder of the paper is structured as follows: Section 2 looks at some related studies on data mining, 

their applications to financial data and the probability of credit default prediction. A discussion is made on the 

statistical concepts employed to analyze the data used for this paper. The next section discusses the data set, 

primary attributes and the methodology for assessing the performance of the data mining techniques 

discussed. The results of applying the techniques to the data set are presented and analyzed after. These and 

other empirical findings are explored in section 4. The final section contains a brief conclusion on the findings 

and provides some remarks for exploring the topic further. 

 

2. Related Studies and Data Mining Techniques 

Data mining is defined by Turban and Aronson (2007) as “the process that uses statistical, mathematical, 

artificial intelligence and machine-learning techniques to extract and identify useful information and 

subsequently gain knowledge from large databases”. So practically, data mining is used to extract information 

from available data. Despite the host of data mining techniques and applications in our days, studies into 

credit card default detection looks pristine but for a few reported studies into credit card fraud detection. A 

possible reason for this is the dearth in data for research. Yeh and Lien (2009) employ six data mining 

techniques to examine the predictive accuracy of default of credit card clients from 25000 payment 

observations. Using the Sorting Smoothing technique as a basis to select the best method, Yeh and Lien 

conclude on the artificial neural network as the best performing technique for predicting what they call the 

“real” probability of default with reference to performance measures such as the R-squared, regression 

intercept and coefficient, and based on that they make a bold claim that the artificial neural network should 

be employed to score clients instead of logistic. Most other papers that have dealt into credit fraud detection 

have also examined artificial neural networks; which is not surprising given its vast popularity in the 1990s 

(Bhattacharyya, Jha, Tharakunnel and Westland, 2011; Aleskerov, Freisleben and Rao 1998; Brause and Hepp, 

1999).  Support vector machines and random forests have been observed in recent years to show superior 

performance across different applications (Statnikov, Wang, Aliferis, 2008; Whitrow, Hand, Juszczak, Weston, 

Adams, 2009) and according to Titan and Tudor (2011) artificial neural networks, discriminant analysis, K-

nearest neighbors and logistic regression are the most important techniques used for predictive default 

probability. Kou, Chang-Tien, Sirwongwattana and Huang (2004) survey some analytical techniques used for 

fraud detection and they go head to review some research done into credit card fraud detection using data 
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mining techniques. It is worthy to note that no two of the previous research done into credit card default 

prediction or fraud detection yielded the same best performing data mining technique. Artificial immune 

systems, random forests, support vector machines, K-means clustering, neural networks, and Bayesian 

learning were among the few best performing techniques (Albashrawi, 2016; Chen, Chen and Lin, 2006; Gadi, 

Wand, and do Lago, 2008; Bhattacharyya, Jha, Tharakunnel and Westland, 2011; Wu, Xiong and Cheng 2010; 

Yeh and Lien, 2009; Panigrahi, Kundu, Sural, Majumdar, 2009). Also, it is surprising none of them consider the 

importance of variables in the accuracy of their techniques.  

In addition to combining several of the techniques used in all these papers reviewed in the literature for the 

analysis, this paper fills an important void of considering the importance of variable selection in influencing 

the predictive accuracy of probability of default. The paper evaluates ten data mining approaches for assessing 

the optimal prediction of the credit card default problem. Among the techniques used is the most popularly 

used in the literature for classification data, logistic regression, together with four advanced approaches: 

random forests, generalized boosted models, support vector machines and artificial neural networks.  

2.1   Logistic Regression 

Classification models are used for categorical response variables and since “Default or Not” is a qualitative 

binary response variable, let us study some of the classification models used to explore accuracy in this paper. 

Logistic regression measures the relationship between the categorical dependent variable and one or more 

independent variables by estimating probabilities using a logistic function, which is a cumulative logistic 

distribution. The conditional distribution of 𝑦 given x is a Bernoulli distribution because the dependent 

variable is binary. Logistic regression, a special case of linear regression models, is an alternative to Fisher’s 

1936 method, linear discriminant analysis, but does not require the multivariate normal assumption of the 

latter. It is well-understood, easy to use, and remains one of the most commonly used for data-mining in 

practice and therefore provides a useful baseline for comparing performance of newer methods 

(Bhattacharyya, Jha, Tharakunnel and Westland, 2011). The major advantage of this approach is that it can 

produce a simple probabilistic formula of classification.  

 
2.2   Discriminant Analysis 

Discriminant Analysis, also known as Fisher’s rule is a classification technique which projects onto a line an n-

dimensional data by maximizing between-class mean and minimizing within-class variance, and performs 

classification in this one-dimensional space. We have two common forms of Discriminant Analysis used in data 

mining: Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA). According to James, 

Witten, Hastie and Tibshirani (2013), the Linear Discriminant Analysis (LDA) assumes the predictor 𝑿 =
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(𝑋1, 𝑋2, … , 𝑋𝑝) is drawn from a multivariate Gaussian distribution with class-specific mean vector and a 

common covariance matrix. Formally, the multivariate Gaussian density is defined as  

 

We need this model because when the classes are well-separated, the parameter estimates for the logistic 

regression model, the most used traditional classification technique, are surprisingly unstable. LDA does not 

suffer this problem and is even more popular with more than two response classes. Like the LDA, the 

Quadratic Discriminant Analysis (QDA) classifier results from assuming the observations from each class are 

drawn from a Gaussian distribution. However, unlike LDA, QDA assumes that each class has its own covariance 

matrix. 

2.3   Ridge and Lasso Regression 

Shrinkage methods involve fitting a model containing all p predictors but the estimated coefficients are 

shrunken toward zero relative to their least squares estimates. Hence, shrinkage methods can also perform 

variable selection.  The shrinkage has the effect of reducing variance. The two best-known techniques for 

shrinking the regression coefficients towards zero are Ridge regression and the Lasso. 

Ridge regression is very similar to least squares, except that the coefficients are estimated by minimizing a 

slightly different quantity. The Ridge coefficient estimates are the values that minimize  

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2

+ 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

𝑛

𝑖=1

  

where 𝜆 ≥ 0 is a tuning parameter to be determined. As with least squares, Ridge regression seeks coefficient 

estimates that fit the data well, by making the first term small. However, the second term,  𝜆 ∑ 𝛽𝑗
2
  𝑝

𝑗=1 , called 

a shrinkage penalty is small when the values of 𝛽𝑗 , 𝑗 = 1, … , 𝑝 are close to zero, and so it has the effect of 

shrinking the estimates of 𝛽𝑗 towards zero. When 𝜆 = 0 the penalty term has no effect, and Ridge regression 

will produce the least squares estimates.  

In some models, only a few important variables help to predict the response. However, Ridge regression will 

always generate a model involving all predictors, including redundant ones. Increasing the values of 𝜆 will 

tend to reduce the magnitudes of the coefficients, but will not result in exclusion of any of the variables. The 

Lasso is a relatively recent alternative to Ridge regression that overcomes this disadvantage. It has the same 

first term as the ridge formula above. But, in the case of the lasso the penalty term is   𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1    and this 



  Statistical Competition      Illinois State University 
   

6 
 

penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning 

parameter 𝜆 is sufficiently large. Hence, much like best subset selection, the Lasso performs variable selection. 

As a result, models generated from the Lasso are generally much easier to interpret than those produced by 

Ridge. The Lasso regression yields sparse models – models that involve only a subset of the variables. (James, 

Witten, Hastie, and Tibshirani, 2013) 

2.4   K – Nearest Neighbors 

The k-Nearest Neighbors (KNN) algorithm is a non-parametric lazy learning method for supervised learning, 

where an object is classified by a majority vote of its neighbors, with the object being assigned to the class 

most common among its k nearest neighbors (Wikipedia, 2017). In learning systems, generalization 

performance is affected by a trade-off between the number of training examples and the capacity (e.g. the 

number of parameters) of the learning machine. The major advantage is that it is not required to establish 

predictive model before classification. 

2.5   Random Forests  

The popularity of decision tree models in data mining arises from their ease of use, flexibility in terms of 

handling various data attribute types, and interpretability. Single tree models, however, can be unstable and 

overly sensitive to specific training data. Ensemble methods seek to address this problem by developing a set 

of models and aggregating their predictions in determining the class label for a data point. Random decision 

forests (RF) are an ensemble learning method of classification (or regression) trees operated by constructing 

a multitude of decision trees at training time and outputting the class that is the mode of the classes 

(classification) or mean prediction (regression) of the individual trees (Wikipedia, 2017). Random forests 

correct decision trees’ habit of overfitting to their training set. The training algorithm for random forests 

applies to the general technique of bootstrap aggregating, or bagging to tree learners, by using a modified 

tree learning algorithm that selects, at each candidate split in the learning process, a random subset of the 

features. Random forests combine the concepts of bagging, where individual models in an ensemble are 

developed through sampling with replacement from the training data, and the random subspace method, 

where each tree in an ensemble is built from a random subset of attributes (Bhattachcharya, Jha, Tharakunnel 

and Westland, 2011). Random forests are computationally efficient since each tree is built independently of 

the others. With large number of trees in the ensemble, they are also noted to be robust to overfitting and 

noise in the data. The number of attributes, p, used at a node and total number of trees T in the ensemble are 

user-defined parameters. The error rate for a random forest has been noted to depend on the correlation 

between trees and the strength of each tree in the ensemble, with lower correlation and higher strength 

giving lower error. Lower values of p correspond to lower correlation, but also lead to lower strength of 

individual trees. An optimal value for p can be experimentally determined. The number of random variables 
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randomly sampled as candidates at each node split for classification is √𝑝. Attribute selection at a node is 

based on the Gini index, though other selection measures may also be used. Breiman (2001) proved random 

forests to have comparable performance to the other modern sophisticated techniques like support vector 

machines, boosting and artificial neural networks. 

2.6   Generalized Boosted Models (Boosting) 

Boosting is a machine learning ensemble meta-algorithm for regression and classification problems, which 

produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees 

(Breiman, 1996). When first introduced, the hypothesis boosting problem simply referred to the process of 

tuning a weak learner to a strong learner. While boosting is not algorithmically constrained, most boosting 

algorithms consist of iteratively learning weak classifiers with respect to a distribution and adding them to a 

final strong classifier. When they are added, they are typically weighted in some way that is usually related to 

the weak learners' accuracy. After a weak learner is added, the data are reweighted: examples that are 

misclassified gain weight and examples that are classified correctly lose weight (some boosting algorithms 

actually decrease the weight of repeatedly misclassified examples. Thus, future weak learners focus more on 

the examples that previous weak learners misclassified. In this research, a type of boosting called Adaptive 

Boosting (Adaboost) is employed as it has been proven to improve performance and is very popular. It is 

perhaps the most significant historically as it was the first algorithm that could adapt to the weak learners. 

With Adaboost the output of the other learning algorithms ('weak learners') is combined into a weighted sum 

that represents the final output of the boosted classifier. Adaboost, with decision trees as weak learners, is 

often referred to as the best out-of-the-box classifier. It is sensitive to noisy data and outliers. 

 

2.6   Support Vector Machines  

Denoted by SVM in the literature, an SVM model is the representation of the points in space, mapped so that 

the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples 

are then mapped into that same space and predicted to belong to a category based on which side of the gap 

they fall on. It is a non-probabilistic binary linear classifier. Bhattacharyya (2011) states that SVMs are 

statistical learning techniques that have been found to be very successful in a variety of classification tasks 

and that several unique features of these algorithms make them especially suitable for binary classification 

problems like predicting the probability of credit default. SVMs are linear classifiers that work in a high-

dimensional feature space that is a non-linear mapping of the input space of the problem at hand. An 

advantage of working in a high-dimensional feature space is that, in many problems the non-linear 

classification task in the original input space becomes a linear classification task in the high-dimensional 

feature space. SVMs work in the high dimensional feature space without incorporating any additional 
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computational complexity. The simplicity of a linear classifier and the capability to work in a feature-rich space 

make SVMs attractive for fraud detection tasks where highly unbalanced nature of the data (fraud and non-

fraud cases) make extraction of meaningful features critical to the detection of fraudulent transactions is 

difficult to achieve. The strength of SVMs comes from two important properties they possess — kernel 

representation and margin optimization. In SVMs, mapping to a high-dimensional feature space and learning 

the classification task in that space without any additional computational complexity are achieved by the use 

of a kernel function. A kernel function can represent the dot product of projections of two data points in a 

high-dimensional feature space. The high-dimensional space used depends on the selection of a specific kernel 

function. Radial kernel is used for running the analysis to compare the performance of the techniques in this 

paper as this was the optimal tuning parameter suggested by cross validation in R software. The second 

property of SVMs is the way the best classification function is arrived at. SVMs minimize the risk of overfitting 

the training data by determining the classification function (a hyper-plane) with maximal margin of separation 

between the two classes. This property provides SVMs very powerful generalization capability in classification. 

2.7 Artificial Neural Networks 

The goal of the neural network is to solve problems in the same way that the human brain would, although 

several neural networks are more abstract. Yang and Zheng (2009) explain artificial neural network (commonly 

called just neural network) as “an interconnected assemblage of artificial neurons that uses a mathematical 

or computational model of theorized mind and brain activity, attempting to parallel and simulate the powerful 

capabilities for knowledge acquisition, recall, synthesis, and problem solving”. Theoretically, artificial neural 

networks are highly robust in data distribution, and can handle incomplete, noisy and ambiguous data. They 

are well suited for modeling complex, nonlinear phenomena ranging from financial management, hydrological 

modeling to natural hazard prediction. For any neural computing, training time is always the biggest 

bottleneck and thus, every effort is needed to make training effective and affordable. Training time is a 

function of the complexity of the network topology which is ultimately determined by the combination of 

hidden layers and neurons. A trade-off is needed to balance the processing purpose of the hidden layers and 

the training time needed. One of the major developments in neural networks over the last decade is the model 

combining or ensemble modelling. A network without a hidden layer is only able to solve a linear problem. To 

tackle a nonlinear problem, a reasonable number of hidden layers is needed. A network with one hidden layer 

has the power to approximate any function provided that the number of neurons and the training time are 

not constrained (Hornik, 1993). But in practice, many functions are difficult to approximate with one hidden 

layer and thus, Flood and Kartam (1994) suggested using two hidden layers as a starting point. As a standard, 

two hidden layers were adopted in the analysis of this data. The artificial neural network plot for the complete 

data with two hidden layers is found in the Appendix. The plot shows the network interconnectedness and 

how the model activity functions to predict the probability of default in this case.  
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3. Data Set and Methodology 

There is no standard definition of what ‘default’ means. By the terms of the credit card contract, a card user 

is technically in default if a minimum required payment is missed. To forecast probability of default is a major 

challenge and it needs intense study. To do this, this section describes the data used for training and testing 

the models and performance measures used. Data is collected from the UCI Machine Learning Repository 

website to carry out this research. The dataset contains 24 variables including a binary response variable, 

default payment next month, having a 0 for ‘No Default’ and a 1 for ‘Yes Default’. Table 1 below has a summary 

of all the variables and their mathematical representation used for the analysis in Microsoft Excel and R 

software. A random sample of the 30,000 observations (half) is used for training the data and the remaining 

for testing it to detect the misclassification (test error) rates. 

  

Table 1. Description of Variables used in Data Set 

VARIABLE DESCRIPTION 

Default payment next month (Y) 0 for “No”, 1 for “Yes” 

Limit_bal (X1) Credit Limit accessible – Amount of the given credit 

Gender (X2) 1 for male, 2 for female 

Education (X3) Education level (1=graduate school, 2=bachelors, 3=high school, 

4=others) 

Marital status (X4) 1 for married, 2 for single, 3 for others 

Age (X5) Ranges from 21 years to 79 years 

Pay_0 to Pay_6  

(X6, X7, …, X11) 

History of past monthly payment from September 2005 (X6) down to 

April 2005 (X11) where the measurement scale for the repayment 

status is: -1=pay duly; 1=payment delay for one month,…,  9=payment 

delay for 9 months and above  

Bill_amt1 to Bill_amt6   

(X12, X13, …, X17) 

Amount of bill statement from September 2005 (X12) down to April 

2005 (X17)  

Pay_amt1 to pay_amt6  

(X18, X19, …, X23) 

Amount paid in September 2005 (X18) down to April 2005 (X23) 

Input variables are denoted by X and Y for the response 

Note. For variables X6 to X11 -1 denotes that payment was made duly prior to the month of interest, 0 denotes a payment 
in that same month bill was due, 1 denotes payment was made one month after it was due, up to 9 which denotes 9 
months payment delay and above. Default of not results in the data were recorded for the month of October 2005; where 
a 0 implies client paid and a 1 implies client defaulted in payment for the amount due in October.  
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Classification Performance Measures 

The two main measures of classification performance commonly noted in data mining literature are 

considered as performance measures in this research: the misclassification rate and the area under the 

receiver operating characteristic curve (AUC). The misclassification (error) rate is the primary classification 

performance measure. Using a format known as the “confusion matrix” in machine learning, Figure 1 

summarizes the four possible outcomes for the two-class classification problem in this study. Positive 

connotes a Default because the defaulting class is the object of interest in this research. Classifiers that 

correctly predict the actual Defaults and No Defaults are labeled true positives (TP) and true negatives (TN), 

respectively; those that incorrectly predict the actual Defaults and No Defaults are denoted false negatives 

(FN) and false positives (FP), respectively. The sensitivity is also known as the true positive rate (TPR) and the 

specificity is equally true negative rate (1 –FPR) (Lucas et al, 2013). A cut-off threshold value of probability 

above 50% is used to denote ‘Default’. Accuracy, using the confusion matrix, is calculated as [(TP+TN) / 

(TP+FN+FP+TN)] and from that we get the misclassification rate by subtracting calculated Accuracy from one. 

Overall accuracy (minimum error rate) is not a sufficient performance indicator where there is significant class 

imbalance in the data since a default prediction of all cases into the majority class will show a high 

performance value (Bhattacharyya, Jha, Tharakunnel and Westland, 2011).  To supplement this, the area 

under the receiver operating characteristic (ROC) curve (AUC) is also used as classification performance 

metric.  Ling, Huang and Zhang (2003) argue that the AUC is a better measure than accuracy in comparing 

learning algorithms. 
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Figure. 1. The confusion matrix showing the four possible 

outcomes for a two-class classification problem 
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4. Results and Discussion 

Of the 30,000 client observations, 6,636 missed the payment due on their credit card the current month under 

consideration. This represents a high default rate of 22.12%, as can be seen in Table 2. A card issuing 

organization may want to find means to efficiently minimize the losses from issuing to less creditworthy 

customers and the techniques discussed in this section may be a starting point for detecting the models to 

use and most important factors to consider in their decision making. A preliminary analysis of the whole data 

set begins the discussion. 

Table 2. Distribution of Data 

 Percent of Training Percent of Testing Percent of Total 

Defaulters (1)   3,343 (22.29%)   3,293 (21.95%)   6,636 (22.12%) 

Non-defaulters (0) 11,657 (77.71%) 11,707 (78.05%) 23,364 (77.88%) 

TOTAL 15,000 (50.00%) 15,000 (50.00%) 30,000 (100.00%) 

 

Regressing the response variable on all the predictors, gave a significant overall model based on the p-value 

of approximately zero but with low a residual standard error of 0.3886 and a low R-squared of 12.4% (mainly 

because of the large observation size). Since the data has a categorical response the R-squared value cannot 

be used as a measure of goodness of fit. From the full model in Figure 2 only 10 (excluding the intercept) of 

the coefficients are significant at even significantly low alpha levels. The p-values for these selected variables 

are approximately zero showing they are significant at all levels of alpha. This is supported by the reduced 

model regression containing only the ten selected predictors. Deleting the non-significant variables, the R-

squared and residual standard error become 12.32% and 0.3887 respectively, almost the same as that of the 

full model. The adjusted R-squared adjusts for the number of variables used in a model, unlike the usual R-

squared which increases as the number of variables increases. The model with the largest adjusted R-squared 

is preferred. Removing the redundant variables and rerunning the code gave an adjusted R-squared of 12.29% 

for the reduced model comparable to 12.33% suggested by the full model with all 23 variables. This means 

that taking out the non-significant variables does not have much impact on explaining the variation in the 

response, even though in the case of categorical variables the R-squared is not a useful determinant of 

goodness of fit. The Analysis of Variance table (Figure 2) suggests we fail to reject the reduced model at 

significant levels below the p-value of 10.29%. The hypothesis for the reduced model selection is as below:  

Null:          𝐻0: 𝛽1 = 𝛽2 = ⋯ =  𝛽𝑝−1 = 0 

Alternate:    𝐻1: 𝛽𝑖 ≠ 0,   for all values of i =1, 2… p – 1, where p = 23 predictors + intercept 
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 Further tests are conducted to determine if truly we can predict the accuracy of the data mining techniques 

discussed based on only the ten important variables and get equally good results. 

Figure 2. Preliminary Analysis for Full Model and Corresponding Reduced Model 

 

 

4.1 Measuring the accuracy of the Full Model 

The Logistic model produced a prediction accuracy of 81.16% corresponding to a misclassification rate of 

18.84%. It has a sensitivity of 71.88% and a specificity of 81.87%. This means it can correctly classify the default 

class 71.88% of the time and the probability of correctly classifying the negative (no default) class is 81.87%. 

Given the fact that only a small percentage of clients default in payment compared to the non-default class, 

the specificity values will almost always be higher than the sensitivity values. The LDA technique gave an 

Note. *** denotes significance at all levels of alpha. ** denotes significance at 0.001 level of alpha. Variables 

with three stars (***) are important at all levels of alpha. From the full model figure, these are X1, X2, X3, X4, 

X5, X6, X7, X12, X18, and the intercept. Variable X8 is significant at alpha levels above 0.001. 
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accuracy of 81.3%, a misclassification rate of 18.7%, and sensitivity and specificity values of 70.89% and 

82.18% respectively. QDA results have a discouragingly high error rate of 54.9%. Based on this data set this 

method can correctly classify clients with a low accuracy below probability of chance, 50%. Even with this bad 

performance it produces a better specificity rate of 89.03% as compared to LDA, and not surprisingly, 26.58% 

rate for specificity worse than LDA. These values can be inferred from Table 3 below.  

K=100 nearest neighbors are suggested from cross validation. With this parameter, KNN gives 78.13% 

predictive accuracy, 21.83% misclassification rate, a low sensitivity of 53.63% and the least specificity of 

78.58%. Since the data set contains just 22.12% positive class (default) values, sampling 100 nearest neighbors 

will yield a higher probability of getting non-default values than default values in a sample, thereby giving a 

low sensitivity as compared to specificity for the KNN algorithm. As discussed in literature review under 

section 2, tuning the parameter required for computing the Ridge regression yields an error-minimizing log 𝜆 

value of –4.204615 implying 𝜆 ≅ 0.01493 for Ridge. This value is not big enough for the penalty term to have 

a significant impact of shrinking some of the coefficients towards zero. Using this best lambda value for the 

analysis gives an accuracy of 79.83%, a misclassification rate of 20.17%, sensitivity 72.19% and specificity 

80.15%. Similarly, the Lasso also produced an error-minimizing log 𝜆 of –6.739785 implying 𝜆 ≅ 0.00118, also 

too small for lasso to have an impactful penalty. The Lasso regression, with this 𝜆 value shrinks variables X13, 

X13, X14, X15, X16, and X17 to zero and produces a prediction accuracy of 79.93%, a lower misclassification 

rate of 20.07% compared to that for ridge, with a correct positive (default) prediction of 72.6% and correct 

negative (no default) prediction of 80.24%.  

 

Figure 3. The plots for optimal log lambda for both Ridge and Lasso Regression  

  1. Ridge Regression         2.  Lasso Regression   

Note. The best log(Lambda) value on the x value can be found from the left of the two vertically-dotted lines in 

each plot. These values are chosen automatically based on the least mean squared error criteria in R software 
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A cross-validation of the parameters for random forest yields T=7000 trees for use in training the model and 

3 best variables randomly sampled as candidates at each split instead of approximately 5 (= √23) variables 

used as a standard for classification problem. The 7000 trees and 3 each-node-split variables gave better 

overall accuracy for the random forest algorithm of 81.85%, an error rate of 18.15% with respective sensitivity 

and specificity of 66.05% and 83.98%.  Node purity of the variable importance plot from random forest (Figure 

4) suggests X6 as the most important variable, followed by X12 with X2 and X4 being the least important 

variables. Using the Adaptive Boosting (Adaboost) algorithm with fine-tuned parameters of 7500 trees and 

interaction depth of 3 from cross validation, we get an accuracy of 79.47% implying a misclassification rate of 

20.53%. The sensitivity for Adaboost is also not encouraging (54.82%) but with a better specificity value of 

83.75%. The relative influence plot, also in Figure 4, shows that variable X12 and X6 are the most important 

variables the boosting algorithm recognizes with X2 and X4 being the least important just like the random 

forest predicted. Unsurprisingly, from the variable description one can find that X6 (the most recent amount 

paid from the immediate past month under consideration) and X12 (bill statement for the immediate past 

month) are great influences, in real life, of what we would expect to pay in the current month and whether or 

not we would make that payment. As to whether X2 (one’s gender) and X4 (marital status) do not have any 

influence on predicting default is another topic for discussion.  

 

 

Figure 4.      Relative Influence Plot from Adaboost        and   Variable Importance Plot of Random Forest             

Note. The plot on the left is the relative influence plot for boosting and that on the right is the VarImp plot of RF 
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For Support Vector Machines (SVMs), a general-purpose kernel with good performance results, Gaussian 

radial basis function, is used. After experimenting with different combinations of the cost parameter C and 

the gamma, these were set to be C=1, gamma=0.0435. The results from the SVM technique showed that the 

algorithm used a maximum of 6675 support vectors to produce an accuracy of 81.99%, a misclassification rate 

of 18.01%, with 70.22% sensitivity and 83.27% specificity. Based on the commonly used hidden layer of 2 in 

data mining literature, the artificial neural network produced low accuracy and sensitivity of 68.43% and 

30.73% respectively with a high specificity of 80.96%. The neural interconnectedness of the artificial neural 

network is shown in Figure 7 found in the Appendix. 

Table 3. Summary of the Performance Accuracy of the Full model 

FULL MODEL 

TECHNIQUE MISCLASSIFICATION RATE SENSITIVTY SPECIFICITY 

Logistic 18.84% 71.88% 81.87% 

LDA 18.70% 70.89% 82.18% 

QDA 54.90% 26.58% 89.03% 

Ridge 20.17% 72.19% 80.15% 

Lasso 20.07% 72.60% 80.24% 

KNN 21.83% 53.63% 78.58% 

Random Forest 18.15% 66.05% 83.98% 

Boosting 20.53% 54.82% 83.75% 

SVM 18.01% 70.22% 83.27% 

Neural network 31.57% 30.73% 80.96% 

 

From Table 3 and the discussion so far, SVM had the least misclassification rate of 18.01% (a predictive 

accuracy of 81.99%), followed closely by Random Forest, LDA, and Logistic with error rates of 18.15%, 18.70%, 

and 18.84% respectively. The error rate of 31.57% for neural network is one of the worst but QDA had an 

unrealistically high misclassification rate which may possibly suggest the predictors in this data set have 

nothing to do with the “quadratic” nature of a QDA. Even though it had the highest specificity of 89.03%, it 

also had the worst sensitivity of 26.58% meaning it can only predict with about 27% accuracy the positive class 

(default). Random Forest, Boosting and SVM have the highest specificities after QDA; these three techniques 

can correctly classify the negative class (non-default) with at least 83% certainty. For correctly classifying the 

default class, SVM, LDA and Logistic have comparable results and follow Ridge and Lasso regression values of 

72.19% and 72.60% respectively. Lasso and Ridge have approximately same values for misclassification rates, 

sensitivities and specificities because the Lasso, by definition, is a recent alternative to Ridge and the only 
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difference between these two techniques is seen most when the lambda is high enough for the penalty term 

to have a considerable impact on the coefficients: in this analysis, it has already been established that this is 

not so because of very small values of lambda. The Lasso has slightly better figures because the algorithm is 

able to use the variables that it needs for prediction. Next, let us consider the subset of variables that may 

help give similar classification performance.   

 

4.2 Subset selection algorithm 

Based on the preliminary analysis, we notice that certain variables are not needed in order to make decisions 

regarding predictive accuracy. This was confirmed by the analysis of variance table in Figure 2. Lasso 

regression shrunk variables X13 to X17 to zero, random forest and boosting suggest X6 and X12 as the two 

most important variables, and accordingly X4 and X2 are the worst. This section employs three variable 

reduction techniques to detect the subset of variables that best describe the data and to confirm these 

conclusions reached so far.  

Forward stepwise selection is a subset selection method that starts with a model containing only the intercept 

(and no predictors), and then adds predictors to the model, one-at-a-time, until all the predictors are in the 

model. At each step the variable that gives the greatest additional improvement to the fit is added to the 

model. The iteration stops when it has sufficient predictors that give the lowest AIC, BIC or RSS, or the highest 

adjusted R-squared. The backward stepwise selection algorithm begins with the full least squares model 

containing all p=23 predictors, and then iteratively removes the least useful predictor one at a time until the 

optimal AIC is reached for the sufficient variables. Finally, under best subset selection algorithm, we fit a 

separate least squares regression for each possible combination of 23 predictors and select the best model 

from among all the 2𝑝 combinations, in our case 223 = 8388608 possibilities.  

Conclusively, all three methods chose the 15 predictors as the number of variable maximum with the least 

AIC. Interestingly, for the first best 10 performing variables, all three algorithms selected the same predictors 

as the reduced model: X1 to X8, X12 and X18. X6 was always chosen to enter the model first by all three 

selection methods, followed by X12, implying those two are the most important variables for this credit 

default data set. In order not to overfit the model any further and for the sake of parsimony, we test the ten 

data mining techniques on the reduced model with the ten most important variables (circled in Figure 5). The 

plots for subset selection based on adjusted R-squared for all the three methods discussed here is located in 

the Appendix under Figure 8. 
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4.3 Measuring the accuracy of the Reduced Model 

Table 4 provides a summary of the classification performance for the reduced model with the ten important 

predictors. SVM had the least misclassification rate of 17.88% (a predictive accuracy of 82.12%), followed 

closely by LDA, and Logistic with error rates of 18.75%, and 18.84% respectively. The error rates for all the 

classifiers this time around were well below 30% with random forest having the highest misclassification rate 

Figure 5. Three Subset Selection Algorithms  

Note. For all three procedures, the best 1 variable model is the model that contains only X6 and the intercept. The best 

two variable technique contains, with the intercept, variables X6 and X12. The best three variable model adds X7 to the 

previous two. The best ten variable model is the same as the reduced model in Figure 1. The subset selections chose the 

variables to enter the model based on the least RSS, AIC, or BIC, or the Mallow Cp and the highest Adjusted R-squared. 

Figure 8 in the Appendix displays the adjusted R-squared plots associated with this design for selecting variables to enter 

the model.  
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of 27.24%. Neural network and QDA performed far better with the omission of redundant variables. Even 

though it still had the highest specificity of 87.36%, QDA also produced a not-so-good sensitivity of 48.35% 

which was a big improvement in the previous 26.58%. Boosting and SVM have the highest specificities after 

QDA; these three techniques can correctly classify the negative class (non-default) with at least 83% certainty. 

Comparing Tables 3 and 4, our best performing technique for both full and reduced, SVM showed an 

improvement in misclassification rate as it reduced from 18.01% to 17.88%. Its values for sensitivity and 

specificity also increased after variable reduction. SVM was the only technique to have seen an increase in 

specificity after the change; but for logistic regression which showed no change, the rest decreased in 

specificity. Logistic regression values for all three performance measures in the table remain unchanged 

suggesting the easiest and most widely known and used technique for categorical variable is indifferent to the 

independent variables that do not aid prediction. The biggest improvements in misclassification rate can be 

seen with QDA error rate declining from 54.9% to 22.81% and artificial neural network error rate also 

decreasing from 31.57% to 22.27%. Their sensitivities also show a similar improvement pattern.  

 

Table 4. Summary of the performance accuracy of the reduced model 

REDUCED MODEL 

TECHNIQUE MISCLASSIFICATION RATE SENSITIVTY SPECIFICITY 

Logistic 18.84% 71.88% 81.87% 

LDA 18.75% 70.80% 82.12% 

QDA 22.81% 48.35% 87.36% 

Ridge 20.28% 71.45% 80.06% 

Lasso 20.13% 71.70% 80.22% 

KNN 22.01% 27.78% 78.05% 

Random Forest 27.24% 22.94% 78.15% 

Boosting 20.85% 53.79% 83.48% 

SVM 17.88% 71.08% 83.30% 

Neural network 22.27% 44.81% 78.77% 

 

4.4 The Area under the ROC Curve (AUC) 

The Receiver Operating Characteristic (ROC) curve is a popular graphic for simultaneously displaying the two 

types of errors (FPR – False Positive rate and FNR – False Negative Rate) for all possible thresholds. The overall 

performance of a classifier summarized over all possible thresholds, is given by the area under the (ROC) curve 
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(AUC). An ideal ROC curve will hug the top left corner, so the larger the AUC the better the classifier. An AUC 

value of 1 represents a perfect classifier and we expect a classifier that performs no better than chance to 

have an AUC of 0.5 (when evaluated on an independent test set not used in model training). ROC curves are 

useful for comparing different classifiers, since they take into account all possible thresholds. According to 

Ling, Huang and Zhang (2003) the AUC is a better measure than accuracy in comparing learning algorithms 

based on formal definitions of discriminancy and consistency. 

Table 5. Comparing the AUC for Full and Reduced Models 

Area Under the ROC Curve for Both Models 

MODEL Lg.R LDA QDA Ridge Lasso KNN Ran.F Boost SVM NNet 

Full Model 

(%) 

72.41 71.95 72.24 71.97 71.92 65.02 65.26 64.18 72.12 56.39 

Reduced 

Model (%) 

72.41 72.11 73.23 72.19 72.11 62.99 50.28 63.55 71.78 52.05 

 

For the full model, Logistic regression has the highest AUC value of 72.41%, followed by QDA and SVM with 

72.24% and 72.12% respectively; not much difference between these three. Ridge and Lasso regressions have 

comparable areas of around 72% for the full model as can be seen in Table56.  Neural network had the least 

area: its AUC value of 56.39% is almost a “classification by chance” – it is indifferent between true positives 

and true negatives. Referring to Figure 6, the ROC curve for neural network for the full model (marked with 

Gold) is closer to the 45-degree line which represents the “no information” classifier; this is what we would 

expect if predictors and default status are not associated with probability of default. Since most of the 

classifiers have AUC values around 72%, this makes it difficult to see the beauty of the ROC curve but in 

generally a preferred ROC curve will hug the top left of the curve and have the highest AUC. 

The Reduced model, produced similar results. The Logistic AUC did not change, just like the values for its 

performance measures discussed previously. The AUC for SVM decreased slightly to 71.78%, but the AUCs for 

QDA, Ridge and Lasso improved. Neural network was still not good. 

 

 

 

Note. Lg.R = Logistic, Ran.F = Random Forest, NNet = Artificial Neural Network, the others have previously been 

defined. The values displayed in the table are all in percentages. 
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Figure 6. Receiver Operating Characteristic Curves 

 

 

  

Note. The true positive rate is the sensitivity: the fraction of defaulters that are correctly identified, using a given 
threshold value. The false positive rate is 1-specificity: the fraction of non-defaulters that we classify incorrectly as 
defaulters, using that same threshold value. The ideal ROC curve hugs the top left corner, indicating a high true 
positive rate and a low false positive rate. The 45𝑜 line represents the “no information” classifier; this is what we 
would expect if predictors and default status are not associated with probability of default. The legend displays the 
AUCs for the various data mining techniques considered. 
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5. Conclusion  

This paper used a real-life data of credit card clients to investigate the predictive accuracy of some data mining 

techniques on the probability of default, a two-class classification problem. The data contains some basic 

underwriting information required for credit card approval to a new applicant aside some payment history for 

monthly balances due. The misclassification rate and the area under the curve were the two main 

performance metrics used to measure the precision of ten data mining techniques to predicting default. These 

techniques include: Logistic regression, Ridge and Lasso regression, K-nearest neighbors, Linear and Quadratic 

discriminant analysis, and these four advanced predictive modeling approaches – support vector machines, 

random forest, generalized boosted models and artificial neural networks.  

Preliminary analysis supported by subset selection methods reveal ten important variables may give the same 

information and comparably competitive accuracy to the twenty-three predictors. Random forest and 

boosting algorithms reveal variable X6, the immediate past monthly payment, and variable X12, the 

immediate past bill amount, are the two most important predictors. This conclusion is further supported by 

subset selection and reality as what amount we pay this month depends more or less on these two recent 

amounts. Random forest and boosting also suggested the least important variable was X2, the gender of a 

client. Support vector machines had the least error rate for both the full model with twenty-three predictors 

and the reduced model with ten predictors. Linear discriminant analysis and logistic regression follow this 

value closely for both full and reduced models. Dealing with the ROC curves, the area for logistic was the 

highest followed by support vector machines and quadratic discriminant analysis which had the worst 

misclassification rate for the full model. It was found that the performance measures for logistic does not 

change with the reduction in variables, making logistic a very good robust model for default prediction. To 

conclude, both support vector machines, an advanced predictive model, and logistic regression, the easiest 

and most used model for classification, should be good predictive models for optimal prediction of the 

probability of credit card default.  

The credit market has been saddled with increasing levels of credit default in spite of the strength of the U.S. 

economy. Clearly, credit card default is a complex phenomenon involving many factors beyond the scope of 

the present research. The variables together with techniques and performance measures which have been 

examined here capture some key behaviors which have not been studied previously and hopefully shed new 

light on this default problem. Such new conclusions will be very useful for machine learning and its 

applications. Yeh and Lien (2009) employ six data mining techniques to investigate credit card default 

prediction using the novel Sorting Smoothing technique. Further research into other data mining techniques 

not considered in this paper can be done on the performance measures to improve prediction. As discussed, 

artificial neural networks have been used widely in the health industry but may have spilling applications for 
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credit markets in the finance world. A critical look at the reason for the underperformance of the neural 

network in predicting probability of credit default is an interesting topic for further study. Likewise, using very 

advanced statistical knowledge in machine learning like the popularly known artificial intelligence (AI) 

available only on commercial basis to large organizations can be utilized to improve accuracy considerably. AI, 

based on heuristics as opposed to statistics, is used to apply human-thought like processing to statistical 

problems like the one encountered in this paper.  
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APPENDIX 

Figure 7. Artificial neural network plot used in training the models 

  
 

 

FULL MODEL   REDUCED MODEL 

Note. With two hidden layers, the neural interconnectedness of the full model and reduced model are 

displayed above. As discussed, artificial neural networks have been used widely in the health industry 

but may have spilling applications for credit markets in the finance world. The algorithm, based on this 

‘brain network’ procedure produced competing results when applied to this data set. More research and 

better parameter tuning might yield better results. 
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Figure 8. Subset Selection plots based on the Adjusted R-squared 

 

 

 


