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1. Abstract 

This paper focuses on improving the state of the art in credit scoring, by predicting the 

probability that somebody will experience financial distress in the next two years. This 

was motivated by the shortfall of the credit scoring algorithm, which guesses the 

probability of default, the methods banks use to determine whether or not a loan should 

be granted. Classification techniques, namely, the linear discriminant analysis, the 

quadratic discriminant analysis, logistic regression, random forest and sector vector 

machine. Principal component analysis is adopted as data reduction technique to analyze 

its effect on the models. The models were assessed using ROC curve which is a graphical 

plot that illustrates the performance of the models. The ROC curve was constructed for 

both training data and test data. The results indicates that the random forest was the best 

model.  

2. Introduction 

Banks play a crucial role in market economies. They decide who to fund and who not to 

and the terms of funding. This is very crucial to the implementation of investment 

decisions. This is because individuals and firms need access to credit to enable them carry 

out their investment decisions. Credit scoring algorithms, which guesses the probability 

of default, are the methods banks use to determine whether or not a loan should be 

granted. The goal of this paper is to build a model that banks can use to help make the 

best financial decisions. Predicting the probability that somebody will experience 

financial distress in the next two years has many benefits that accrue not only to the 

lenders but also to the borrowers. One main problem with the credit scoring algorithm is 

the change of patterns over time. The key assumption for any predictive modeling is that 

the past can predict the future (Berry & Linoff, 2000). In credit scoring, this means that 

the characteristics of past applicants who are subsequently classified as “good” or “bad” 

creditors can be used to predict the credit status of new applicants. Sometimes, the 

tendency for the distribution of the characteristics to change over time is so fast that it 

requires constant refreshing of the credit scoring model to stay relevant. Therefore 

predicting the probability that somebody will experience financial distress based on 

other financial information is the right way to go since this will help banks and financial 

institutions make the best financial decisions.  

I obtained the data from an ended competition on Kaggle website “[Give me some credit 

challenge]   (http://www.kaggle.com/c/GiveMeSomeCredit)”. In this competition, the 

goal is to predict whether a borrower will experience financial distress in the next two 

years. Therefore, one could treat this as a classification problem with two classes. For the 

competition, historical data are provided on 146,076 borrowers. The historical data 

http://www.kaggle.com/c/GiveMeSomeCredit
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contain eleven variables with “Del” treated as the response variable and all other 

variables used as predictors. The data description is below: 

 Del(Y/N): Person experienced 90 days past due delinquency or worse. 

 Util(percentage): Total balance on credit cards and personal lines of credit except 

real estate and no installment debt like car loans divided by the sum of credit 

limits. 

 Age (integer): Age of borrower in years. 

 Del3059 (integer): Number of times borrower has been 30-59 days past due but 

no worse in the last 2 years. 

 Debt_Ratio (percentage): Monthly debt payments, alimony, living costs divided by 

monthly gross income. 

 Income (real): Monthly income. Transformed by cube root. 

 Credit_Lines (integer): Number of Open loans (installment like car loan or 

mortgage) and Lines of credit (e.g. credit cards). 

 Del90 (integer): Number of times borrower has been 90 days or more past due. 

 RealEstate (integer): Number of mortgage and real estate loans including home 

equity lines of credit. 

 Del6089 (integer): Number of times borrower has been 60-89 days past due but 

no worse in the last 2 years. 

 Dep (integer): Number of dependents in family excluding themselves (spouse, 

children etc.) 

3. Data Exploration 

3.1. Missing Values 

Income was NA 17.2% of the historical data set provided. As a predictor that I 

considered potentially useful, I decided to compute the Income for those customers 

using a regression technique based on other customer characteristics. The remaining 

82.8% of the historical data was divided in training (2/3) and test data (1/3). The 

regression techniques considered.  

a. Reduced Linear Regression Model 

After building a linear regression model with all the variables using the training data, 

I realized some of the variables were not significant (Del, Util, Del90). I decided to run 

another regression model using the significant variables and from the F-test below 

the reduced model is equivalent to the full model. Using the test data to make 

predictions, 50.04386MSE   
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b. Forward and Backward Stepwise Selection 

Forward stepwise selection begins with a model containing no predictors, and then 

adds predictors to the model, one-at-a-time, until all of the predictors are in the 

model. In particular, at each step the variable that gives the greatest additional 

improvement to the fit is added to the model. The Backward Stepwise selection 

backward stepwise selection begins with the full least squares model containing all p 

predictors, and then iteratively removes the least useful predictor, one-at-a-time. The 

forward and backward stepwise algorithm gave the same model selecting all the 10 

predictor variables for the model. 50.0186MSE   

c. Ridge Regression 

The ridge regression minimizes the quantity below, where 0  is a tuning 

parameter to be determined seperately and the term 2

1

p

j

j

 


 is called the shrinkage 

penalty. The graph below shows that the best lambda to use is = 0.6067512 . The 

51.21711MSE  . 
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d. Lasso Regression 

The Lasso regression minimizes the quantity below where, 
1

p

j

j

 


 is the penaltly 

term. One diffrence between the lasso and ridge regression is that for the lasso model, 

the penalty has the effect of forcing some of the coefficients estimates to be exactly 

equal to zero. From the graph below, the best lamda to use is = 0.04381235 . The 
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lasso regression forced four coefficients estimates to be exactly zero (Del, Util, 

Del3059, and Del90). 50.75989MSE  . 
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Figure 1: Left: best lambda graph for ridge regression. Right: best lambda graph for 

lasso regression. 

e. Principal Component Regression 

Let 1 2Z , ,..., MZ Z represent M p  linear combinations of our original linear 

combination p predictors. That is, 
1

p

M jm j

j

Z X


 . The key idea of PCR is that often a 

small number of principal components suffice to explain most of the variability in the 

data, as well as the relationship with the response. If the assumption underlying PCR 

holds, then fitting a least squares model to 1 2Z , ,..., MZ Z  will lead to better results 

than fitting a least squares model to 1 2, ,..., MX X X , since most or all of the information 

in the data that relates to the response is contained in 1 2Z , ,..., MZ Z  and by estimating 

only M p coefficients we can mitigate over fitting. From the graph below, after the 

8th principal component the MSEP hits its minimum indicating that the best number 

of components to use is eight. Using the eight principal components for regression, 

the 50.00511MSE   on the test data. 
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Figure 2: Number of components for PCR 

f. Summary 

From the table below, the best mean squared error from the test data comes from 

the principal component regression model. To predict the missing data I used the 

PCR model. 

 

3.2. Correlation 

The table below shows the correlation values between the predictor variables. Most 

of the correlation values are not significant with the exception of three, the 

correlation coefficient between Del3059, Del90 and Del6089. 

 

                  Table 1: Correlation between predictor variables. 

0 2 4 6 8 10

10
.5

11
.0

11
.5

12
.0

Income

number of components

M
SE

P

Models OLS Forward/Backward Ridge Lasso PCR

MSE 50.04386 50.0186 51.21711 50.75989 50.00511

Util age Del3059 Debt_Ratio Income Credit_Lines Del90 RealEstate Del6089 Dep

Util 1.00 -0.01 0.00 0.00 0.01 -0.01 0.00 0.01 0.00 0.00

age -0.01 1.00 -0.06 0.03 0.06 0.16 -0.06 0.04 -0.05 -0.21

Del3059 0.00 -0.06 1.00 -0.01 -0.03 -0.05 0.98 -0.03 0.99 0.00

Debt_Ratio 0.00 0.03 -0.01 1.00 -0.31 0.05 -0.01 0.12 -0.01 -0.04

Income 0.01 0.06 -0.03 -0.31 1.00 0.20 -0.04 0.21 -0.03 0.21

Credit_Lines -0.01 0.16 -0.05 0.05 0.20 1.00 -0.08 0.43 -0.07 0.07

Del90 0.00 -0.06 0.98 -0.01 -0.04 -0.08 1.00 -0.04 0.99 -0.01

RealEstate 0.01 0.04 -0.03 0.12 0.21 0.43 -0.04 1.00 -0.04 0.12

Del6089 0.00 -0.05 0.99 -0.01 -0.03 -0.07 0.99 -0.04 1.00 -0.01

Dep 0.00 -0.21 0.00 -0.04 0.21 0.07 -0.01 0.12 -0.01 1.00



7 
 

3.3. Challenges with the data 

There are two classes (0- No serious delinquency in two years and 1-Serious 

delinquency in two years) in the data set. The biggest challenge with the data was 

that almost 90% of the training data set are 0’s which means there is a huge risk that 

the models are more likely to predict 0’s for 1’s.  To address this problem, I used just 

29,542 of the historical data which contains all the 1’s. I then randomly selected 

19,694 as the training data and 9,847 as the test data. 

4. Classification with original data. 

Classification is a multivariate technique concerned with separating distinct sets of 

objects (or observations) and with allocating new objects (observations) to 

previously defined groups. The immediate goal of classification is to sort objects 

(observations) into two or more labeled classes. The emphasis is on deriving a rule 

that can be used to optimally assign new objects to the labeled classes. (Johnson & 

Wichern, 2014). I used five classification techniques and evaluates which give the best 

prediction results on the test data.  

4.1. Linear Discriminant Analysis (LDA) 

The Linear Discriminant Analysis models the distribution of the predictors X 

separately in each of the response classes (i.e. given Y), and then use Bayes’ theorem 

to flip these around into estimates for  Pr Y k X x  . LDA is based on the 

assumption that the data follows a normal population and the covariance matrices 

of the two groups are equal. In general, for the LDA assigns an observation X x to 

the class to which ( )k x  from below is the largest.  

1 11
( ) log

2

T T

k k k k kx x           

I used the training data in building the linear discriminant model. Prediction results 

from the training and test data and defining positive as “Serious delinquency in two 

years” are summarized below. The accuracy rate and true positive rate increase for 

the test data which is good. 

   

Data True Pos Rate False  Pos Rate True Neg Rate False Neg Rate Accuracy Rate Error Rate

Training 0.76 0.01 0.99 0.24 0.91 0.09

Test 0.83 0.01 0.99 0.17 0.94 0.06
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4.2. Quadratic Discriminant Analysis (QDA) 

Like LDA, the QDA classifier results from assuming that the observations from each 

class are drawn from a Gaussian distribution, and plugging estimates for the 

parameters into Bayes’ theorem in order to perform prediction. However, unlike 

LDA, QDA assumes that each class has its own covariance matrix. Under this 

assumption, QDA assigns an observation X x to the class to which ( )k x  from 

below is the largest. 

     11 1
log log

2 2

T

k k k k k kx x x          
 

I used the training data in building the quadratic discriminant model. Prediction 

results from the training and test data and defining positive as “Serious delinquency 

in two years”, are summarized below. The total positive rate for the QDA is low and 

the error rate is high, which means the QDA is worse than the LDA. 

 

4.3. Logistic Regression  

In its simplest setting, the response variable in the logistic regression is restricted to 

two values. Let the response variable be 1 if the observational unit belongs to 

population 1and 0 if it belongs to population 2. Assign z to population 1 if the 

estimated odds ratio is greater than 1 or 

 

 
 0 1 1

ˆ
ˆ ˆexp . 1

1 ˆ
. ˆ. r r

p z
z z

p z
      


 

I used the training data in building the logistic regression model. Prediction results 

from the training and test data and defining positive as “Serious delinquency in two 

years” are summarized below. The results from the logistic regression is better 

than the LDA. 

 

Data True Pos Rate False  Pos Rate True Neg Rate False Neg Rate Accuracy Rate Error Rate

Training 0.44 0.01 0.99 0.56 0.81 0.19

Test 0.42 0.00 1.00 0.58 0.80 0.20

Data True Pos Rate False  Pos Rate True Neg Rate False Neg Rate Accuracy Rate Error Rate

Training 0.88 0.01 0.99 0.12 0.95 0.05

Test 0.89 0.00 1.00 0.11 0.96 0.04
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4.4. Random Forest  

Random forests builds a number forest of decision trees on bootstrapped training 

samples. But when building these decision trees, each time a split in a tree is 

considered, a random sample of m predictors is chosen as split candidates from the 

full set of p predictors. The split is allowed to use only one of those m predictors. A 

fresh sample of m predictors is taken at each split, and typically we choose m p . 

From the decision tree and variable importance plot below, Income is the most 

important variable in predicting probability of serious delinquency and when 

income is less than 21.37 the customer will be delinquent in 2 years. 

  

Figure 3: decision tree(left) and variable importance plot (right) 

I used the training data in building the random forest model with 5m  . Prediction 

results from the training and test data and defining positive as “Serious delinquency 

in two years” are summarized below. The random forest has the best result in terms 

of true positive rates and overall accuracy rate.   

 

4.5. Sector Vector Machine. 

A Support Vector Machine provides a binary classification mechanism based on 

finding a hyper plane between a set of samples with +ve and -ve outputs. It assumes 

the data is linearly separable. If the data is not linearly separable due to noise (the 

majority is still linearly separable), then an error term will be added to penalize the 

optimization. If the data distribution is fundamentally non-linear, the trick is to 

transform the data to a higher dimension so the data will be linearly separable or 

|
Income < 21.37

Util < 0.506883

Yes No No

Data True Pos Rate False  Pos Rate True Neg Rate False Neg Rate Accuracy Rate Error Rate

Training 0.91 0.01 0.99 0.09 0.97 0.03

Test 0.93 0.00 1.00 0.07 0.97 0.03
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performing a kernel function in the original. SVM predicts the output based on the 

distance to the dividing hyper plane. This doesn’t directly estimate the probability of 

the prediction. We therefore use the calibration technique to find a logistic 

regression model between the distance of the hyper plane and the binary output. 

Using that regression model, we then get our estimation.  

The prediction results from the training and test data and defining positive as 

“Serious delinquency in two years” are summarized below. The results from the SVM 

is better than the logistic model but worse than the random forest model. 

 

4.6. Summary  

 

Data True Pos Rate False  Pos Rate True Neg Rate False Neg Rate Accuracy Rate Error Rate

Training 0.89 0.00 1.00 0.11 0.96 0.04

Test 0.90 0.00 1.00 0.10 0.96 0.04
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Graph 5: ROC on train data (top) and ROC on test data (bottom)  

5. Principal Components  

A principal component analysis is concerned with explaining the variance–covariance 

structure of a set of variables through a few linear combinations of these variables. Its 

general objectives are data reduction and interpretation. Although p components are 

required to reproduce the total system variability, often much of this variability can be 

accounted for by a small number k of the principal components. If so, there is almost as 

much information in the k components as there is in the original p variables. The k 

principal components can then replace the initial p variables, and the original data set, 

consisting of n measurements on p variables, is reduced to a data set consisting of n 

measurements on k principal components (Johnson & Wichern, 2014). 

The scree plot below is that of the scaled data since the original values are very different. 

From the scree plot and the table that contains the importance of principal components 

below, after the fifth principal component almost 80% of the variability in the data can 

be explained. Hence, I build the classification models using the 5 principal components. 
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Graph 6: Scree plot showing the 5 principal components can replace the 10 variables. 

5.1. Summary: Test data 

Using the 5 principal component scores from the principal component analysis, the 

results from the models are summarized below. The SVM model has the highest area 

under curve value of 0.9559 and the Random Forest model result was worse than that on 

the original model. 

 

Graph 7: ROC on test data using principal components 
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6. Conclusion 

 Motivated by the shortfall of the credit scoring algorithm, this paper focused on 

improving the state of the art in credit scoring, by predicting the probability that 

somebody will experience financial distress in the next two year. I obtained the data from 

an ended competition on Kaggle website and classification techniques, namely, the linear 

discriminant analysis, the quadratic discriminant analysis, logistic regression, SVM and 

the Random Forest were used to build models. The principal components was used as a 

data reduction technique which resulted in the lowest MSE in the regression model when 

predicting missing values for “Income” but did not improve the results in the 

classification. The results indicates that the Random Forest was the best predictive model 

and should be used in conjunction with the credit scoring algorithms to calculate the 

probability of default. 
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