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CHAPTER I

INTRODUCTION

Retirement security systems are designed to provide income in retirement. The

majority of workers in the United States retire before age 65. Since they lose their

income after retirement they will be financially insecure unless they have sufficient

savings or other sources of retirement income. The reduction in income upon retire-

ment can result in a reduced standard of living. For example, in 2000 the median

income for households with someone age 65 and over in the United States was 45

percent less than the median for all households in the United States (Rejda, 2003).

For married couples, if one spouse earns significantly more than the other, this

person has to take care of his or her own income after retirement. In addition, he or

she must consider their spouse’s income if their spouse outlives him or her. Apart

from living costs, the surviving spouse may have additional expenses such as funeral

expenses, uninsured medical bills, estate settlement costs, and federal estate taxes for

larger estates.

Economic security for retired workers and survivors of deceased workers in the

United States is, in the majority of cases, provided by Social Security, private pen-

sions, and individual savings. This is called the three pillars of economic-security

protection (Allen et al., 2003).
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1.1 Social Security System

The first pillar is the Social Security System (Old Age Security and Disability

Income, or OASDI). It is a government-sponsored public retirement program funded

by general tax revenue, payroll tax revenue, or both. The program was enacted into

law as a result of the Social Security Act of 1935. More than 90 percent of all workers

are working in occupations covered by OASDI (Rejda, 2003). The OASDI program

pays monthly retirement and disability benefits to eligible beneficiaries and it pays

survivor benefits to eligible surviving family members.

1.2 Pension Plans

In the United States, employer-provided pension plans make up the second layer

of protection against financial insecurity. Millions of workers participate in private

retirement plans. Federal legislation and the Internal Revenue Code have had a great

influence on the design of these plans. The Employee Retirement Income Security

Act of 1974 (ERISA) established guidelines that affect the tax, investment, and ac-

counting aspects of employer-provided retirement plans. The Taxpayer Relief Act of

1997 and the Economic Growth and Tax Relief Reconciliation Act of 2001 increased

the tax advantages of private retirement plans for employers and employees (Rejda,

2003). The Internal Revenue Service (IRS) issues new regulations that affect the

design of private retirement plans. A qualified retirement plan is defined as a plan

that meets the requirements established by the IRS and receives favorable income

tax treatment. The employer’s contributions (within limits) are tax deductible by

the employer as a business expense. These contributions are not considered taxable

income to the employees; the investment earnings on plan assets are not subject to

federal income tax until paid in the form of benefits (Allen at al., 2003, Rejda, 2003,
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and Hallman, 2003). Qualified pension plans together with Social Security benefits

will generally provide for 50 to 60 percent of the worker’s gross earnings before re-

tirement. A qualified plan must benefit all workers regardless of their income. A

plan must satisfy certain minimum coverage requirements to be a qualified plan. We

will not discuss these requirements in detail. However, since discrimination in favor

of highly compensated employees must be avoided, a qualified plan must satisfy one

of the following tests, which are described in (Rejda, 2003). (1) Ratio percentage

test: If a plan covers a special percentage, p, of the highly compensated employees,

it must also cover at least 70 percent of p of the non-highly compensated employees.

(2) Average benefits test: Two requirements must be fulfilled: (a) The plan must not

discriminate in favor of highly compensated employees, and (b) the average benefit

for non-highly compensated employees must be at least 70 percent of the average

benefit for the highly compensated employees.

If an employee is at least 21 and has one year of service he must be allowed to

participate in a qualified retirement plan. To remain qualified, a pension plan cannot

force anyone to retire at some mandatory retirement age.

1.2.1 Classification of Pension Plans

There are two types of pension plans: defined benefit plans and defined contribu-

tion plans. In a defined contribution plan the contribution rate is defined, but the

actual retirement benefit varies depending on the worker’s age of entry into the plan,

contribution rate, investment rate, and the age of normal retirement. The normal

retirement age is the age that a worker receives a full, unreduced benefit, when he

retires (Rejda, 2003). A defined benefit plan defines the monthly retirement benefit

but the contribution varies depending on the amount needed to fund the desired ben-

efit. The employer is expected to have sufficient funds to provide the benefits. The
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benefits typically depend on both earnings and years of participation in the plan.

In the past, defined benefit plans were more popular than defined contribution

plans. With the passage of the Employment Retirement Income Security Act (ERISA)

in 1974, defined contribution plans have grown in relative importance.

1.2.2 QPSA and QJSA

The Retirement Equity Act (REA) of 1984 requires that an employer provides

preretirement death benefits in the form of an annuity to the surviving spouse of

a deceased vested participant (called a qualified preretirement survivor annuity or

QPSA) for married participants. Only spouses of those employees who die before

retirement receive this benefit. The payment of the benefit must begin no later than

the day on which the deceased would have reached the early retirement age. The

early retirement age is the earliest age a worker can retire to receive a retirment

benefit. In defined benefit plans it is assumed that the participant has terminated

employment (instead of dying), survived to the earliest retirement age, retired with an

immediate QJSA (see next paragraph) at the earliest retirement age, and dies one day

after. In defined contribution plans, the benefit must be an annuity for the surviving

spouse which is actuarially equivalent to at least 50 percent of the participant’s vested

account balance on the day of death.

In addition, REA requires that an employer must provide a qualified joint and

survivor annuity (QJSA) for a married participant. This annuity pays over the lifetime

of the participant and, when the participant dies, continues payments to the surviving

spouse. The benefit for the surviving spouse is at least 50 percent and at most 100

percent of the payments being made to the participant. The joint and survivor annuity

must be actuarially equivalent to a single life annuity for the life of the participant.

The plan is not required to absorb the cost for either benefit. This cost may be

4



passed along to participants and their spouses, typically by reducing the retirement

benefit. At any time the participant is allowed to waive the QJSA form of benefit, the

QPSA form of benefit, or both, and he or she is allowed to revoke his or her selection

at any time during the election period. The spouse must consent to that election. The

spouse’s consent must be in writing and must be witnessed by a plan representative

or a notary public. These annuities need not be provided if the participant and his or

her spouse have been married less than one year (Allen et al., 2003 and Boyers, 1986).

1.3 Personal Savings

The third pillar in the United States is personal savings (including individual

insurance and annuities). Annuities are periodic payments for a fixed period of time

or for the duration of a designated life or lives. The person who receives the periodic

payment is called the annuitant. There are different types of annuities. We will focus

on Joint Life Annuities and Joint-and Last-Survivor-Annuities. Joint life annuities

for two lives provide payments as long as both persons are alive. Benefit payments

cease upon the first death. Such a plan is appropriate only when two people have

another source of income that is sufficient for one person, but not for both. These

contracts are not popular. Joint-and-last-survivor annuities pay benefits based on the

lives of two or more persons, such as a husband and wife. The insurer pays as long

as either of the annuitants is alive. Usually the benefits are paid for longer periods

of time than under single life annuities. That is why joint-and-last-survivor annuities

are more expensive than single life annuities. In spite the higher cost, this kind of

annuity is attractive for many couples who need an income as long as either is alive.

There are two features to keep the cost of this annuity reasonably low. First, it does

not need any guarantee period because benefits will continue for the surviving spouse.

Second, many annuities pay only two-thirds or one-half of the original income after
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the first death.

For married couples, when both persons die, the children and perhaps grandchil-

dren have to pay the federal estate tax. In the case of a larger estate, this may be

a huge amount of money and the children or grandchildren may be forced to sell

in order to pay the estate tax all or part of the estate. To conserve the size of a

larger estate after their death, a couple can buy Joint Survivorship Life Insurance.

The policy covers two lives as the insureds in a single policy. The death benefits

are payable to the beneficiary at the death of the second insured. Such an insurance

is not appropriate to meet family income needs after the death of the first insured.

The premium for joint survivorship life insurance is usually significantly less than the

premium for comparable individual life insurance. This occurs because the policy

covers two lives and does not pay until the second death (Hallmann, 1994).

In all cases mentioned above - QPSA, QJSA, joint-life-annuities, joint-and last-

survivor-annuities and joint survivorship life insurance - the payments are based on

a combination of two lives. My thesis discusses modelling such combinations of lives.
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CHAPTER II

ACTUARIAL NOTATION

2.1 Single Life Functions

We will adopt the notation used in Bowers et al. (1997). Let X be the age-at-death

random variable of a newborn and let FX(x) denote its distribution function,

FX(x) = Pr(X ≤ x), x ≥ 0.

Let fX(x) denote its density function. We have the relationship

F ′
X(x) = fX(x).

The survival function is denoted by

s(x) = 1− FX(x)

The symbol (x) denotes a person aged x. Let T (x) be the future lifetime of (x),

T (x) = X − x. Let tqx= Pr(T (x) ≤ t) and tpx = Pr(T (x) ≥ t) be the probability

that (x) will die within t years and the probability that (x) will survive the next t

years, respectively.

Definition 1 The greatest integer function is determined by the equation y = int(x),

where the value of y that corresponds to x is the greatest integer that is less than or
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equal to x.

Let K(x) be the curtate-future-lifetime; meaning the number of future years com-

pleted by (x) prior to death. K(x) is the greatest integer function of T (x). The

probability that a person aged x lives exactly k years is:

Pr(K = k) = Pr(k ≤ T (x) < k + 1)

= Pr(T (x) < k + 1)− Pr(T (x) < k)

= (1− k+1px)− (1− kpx)

= kpx − k+1px

= kpx − kpx · px+k

= kpx(1− px+k)

= kpxqx+k (1)

Definition 2 The force of mortality µ(x) is defined by

µ(x) =
fX(x)

1− FX(x)

It gives the value of the conditional p.d.f. of X at exact age x, given survival to that

age.

Since s′(x) = −fX(x), we have

µ(x) =
fX(x)

1− FX(x)
=
−s′(x)

s(x)
= − d

dx
log[s(x)]
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Integrating this expression from x to x + n, we have

−
∫ x+n

x

µ(y)dy =

∫ x+n

x

d

dy
log[s(y)]dy

⇔ −
∫ x+n

x

µ(y)dy = log[s(x + n)]− log[s(x)]

= log

[
s(x + n)

s(x)

]
= log[npx]

⇔ npx = exp

[
−

∫ x+n

x

µ(y)dy

]
.

Substituting x + s by y, we have

npx = exp

[
−

∫ n

0

µ(x + s)ds

]
. (2)

Let FT (x)(t) and fT (x)(t) denote the distribution and density function of T (x), respec-

tively. Since FT (x)(t) = tqx, we have

fT (x)(t) =
d

dt
tqx =

d

dt

[
1− s(x + t)

s(x)

]
= −s′(x + t)

s(x)

=
s(x + t)

s(x)
· −s′(x + t)

s(x + t)
= tpx · µ(x + t), t ≥ 0. (3)

Definition 3 The complete-expectation-of-life is defined as

E[T (x)] =

∫ ∞

0

t · tpx · µ(x + t)dt

and denoted by
◦
ex, assuming that the expected value exists.

Using integration by parts we get

◦
ex =

∫ ∞

0

t · d

dt
FT (x)(t)dt =

∫ ∞

0

t · d

dt
(−tpx)dt
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= t(−tpx)
∣∣∣
∞

t=0
+

∫ ∞

0
tpxdt

Lemma 1 When we assume that the expected value of T (x) exists, we have

lim
t→∞

t(−tpx) = 0.

The proof is based on an idea by Fisz (1963):

Proof:

lim
t→∞

t(tpx)

= lim
t→∞

t · Pr(T (x) > t)

= lim
t→∞

t ·
∫ ∞

t

fT (x)(u)du

= lim
t→∞

∫ ∞

t

t · fT (x)(u)du

≤ lim
t→∞

∫ ∞

t

u · fT (x)(u)du

= 0.

Since

lim
t→∞

t(tpx) ≥ 0

and

lim
t→∞

t(tpx) ≤ 0
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we have

lim
t→∞

t(tpx) = 0. (4)

Thus, we have

lim
t→∞

t(−tpx) = − lim
t→∞

t(tpx) = 0.

2

When we assume that the expected value of T (x) exists, we have by Lemma 1

◦
ex =

∫ ∞

0
tpxdt (5)

The second moment of the future lifetime is

E[T 2] =

∫ ∞

0

t2 · tpx · µ(x + t)dt =

∫ ∞

0

t2
d

dt
(−tpx)dt

= t2(−tpx)
∣∣∣
∞

t=0
+

∫ ∞

0

2ttpxdt

We assume that E[T 2(x)] exists. Thus, we have

E[T 2] = 2

∫ ∞

0

ttpxdt (6)

And the variance of the future lifetime is

V ar[T ] = E[T 2]− E2[T ]

= 2

∫ ∞

0

ttpxdt− ◦
e
2

x (7)
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Definition 4 Assuming that the expected value of K(x) exists, the curtate-expectation-

of-life is defined as

E[K(x)] =
∞∑

k=0

kkpxqx+k =
∞∑

k=0

kpx

and denoted by ex.

Following Bowers et al. (1997) we will now discuss various forms of annuities. A

life annuity is a series of payments made continuously or at equal intervals (such as

months, quarters, years) until a given life dies. It may be temporary, meaning limited

to a given number of years, or it may be payable for the whole life. The payments may

commence immediately, or the annuity may be deferred. Payments may be due at

the beginnings of the payment intervals (annuities-due) or at the end of such intervals

(annuities-immediate). We assume a constant effective annual rate of interest i (or

the equivalent constant force of interest δ). The discount factor is denoted as v and

is equal to 1
1+i

. The present value of the amount C paid at time t depends on the

discount factor v and is equal to vtC. We start with annuities payable continuously

at the rate of 1 per year. A whole life annuity provides for payments until death. Let

ān| denote the present value of a level annual payment of 1 paid continuously.

ān| =
∫ n

0

vtdt =

∫ n

0

e−δtdt =
1

δ
− 1

δ
e−δn,

Hence, the present value of payments to be made is Y = āT | for all T ≥ 0 where T

is the future lifetime of (x). The expected present value, called the actuarial present

value, for a continuous whole life annuity is denoted by āx where the past fixed

subscript, x, indicates that the annuity ceases when (x) dies. As shown in (3), the
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p.d.f. of T is tpxµ(x + t) and the actuarial present value can be calculated by

āx = E[Y ] = E[āT |] =

∫ ∞

0

ā t| · tpxµ(x + t)dt (8)

=

∫ ∞

0

ā t|
d

dt
(−tpx)dt

We integrate by parts with f(t) = ā t| and g′(t) = tpxµ(x+ t) = d
dt

[FT (t)] = d
dt

[1− tpx],

implying that f ′(t) = (1
δ
− 1

δ
exp(−δt))′ = exp(−δt) = vt and that g(t) = −tpx. So,

we get:

āx = ā t| · (−tpx)
∣∣∣
∞

t=0
+

∫ ∞

0

vt
tpxdt

Since E[T 2] < ∞, we have

āx =

∫ ∞

0

vt
tpxdt (9)

We now turn to temporary and deferred life annuities. An n-year temporary life

annuity pays continuously while (x) survives during the next n years. The present

value of a benefits random variable for such an annuity of 1 per year is

Y =





āT | 0 ≤ T < n

ān| T ≥ n

The expected present value, called the actuarial present value, of an n-year temporary

life annuity is denoted by āx: n| and equals

āx: n| = E[Y ] =

∫ n

0

ā t| · tpxµ(x + t)dt + ān| · npx
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Integrating by parts with f(t) = ā t| and g′(t) = tpxµ(x + t), implying that f ′(t) = vt

and g(t) = −tpx, we have

āx: n| = ā t| · (−tpx)
∣∣∣
n

t=0
+

∫ n

0

vt
tpxdt + ān| · npx =

∫ n

0

vt
tpxdt (10)

The analysis for an n-year deferred whole life annuity is similar. This annuity com-

mences its payments n years after the policy becomes effective and then as long as

(x) survives. The present value random variable Y is defined as

Y =





0 = āT | − āT | 0 ≤ T < n

vnāT−n| = āT | − ān| T ≥ n

Lemma 2

vnāT−n| = āT | − ān|

Proof:

vnāT−n| = vn

∫ T−n

0

vtdt =

∫ T−n

0

vt+ndt

Substituting u by t + n, gives

vnāT−n| =
∫ T

n

vudu =

∫ T

0

vudu−
∫ n

0

vudu = āT | − ān|. 2

Note that, from the definitions of Y ,

(Y for an n-year deferred whole life annuity)

= (Y for a whole life annuity)− (Y for an n-year temporary life annuity).
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Hence, the actuarial present value of an n-year deferred whole life annuity, denoted

by n|āx, is

n|āx = āx − āx: n|

We now turn to the analysis of an n-year certain and life annuity. This is a whole

life annuity with a guarantee of payments for the first n years. The present value of

annuity payments is

Y =





ān| T ≤ n

āT | T > n

The actuarial present value is denoted by āx: n|.

āx: n| = E(Y ) =

∫ n

0

ān| · tpxµ(x + t)dt +

∫ ∞

n

ā t| · tpxµ(x + t)dt

= nqx · ān| +
∫ ∞

n

ā t|
d

dt
(−tpx)dt.

Using integration-by-parts with f(t) = ā t|, g′(t) = tpxµ(x+t), f ′(t) = vt, g(t) = −tpx,

we have

āx: n| = nqx · ān| + ā t|(−tpx)
∣∣∣
∞

n
+

∫ ∞

n

vt
tpxdt.

Because the expected value of the future lifetime is finite, we have

nqx · ān| + ān| · npx +

∫ ∞

n

vt
tpxdt = ān|(nqx + npx) +

∫ ∞

n

vt
tpxdt

= ān| +
∫ ∞

n

vt
tpxdt
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The theory of discrete life annuities is analogous to the theory of continuous

life annuities, with integrals replaced by sums and integrands replaced by sum-

mands. For continuous annuities there was no distinction between payments at the

beginning of payment intervals or at the ends, meaning, between annuities-due and

annuities-immediate. For discrete annuities, we need this distinction, and we start

with annuities-due. A whole-life annuity-due is an annuity that pays a unit amount

at the beginning of each year that the annuitant (x) survives. Let än| denote the

present value of a level annual payment of 1 dollar paid at the beginning of each year

of n years.

än| =
n−1∑

k=0

vk =
1− vn

1− v
.

The present value random variable, Y , for a whole life annuity-due is Y = äK+1|,

where K is the curtate-future lifetime of (x). The actuarial present value of a whole

life annuity-due can be calculated by

äx = E(Y ) =
∞∑

k=0

äk+1| · kpx · qx+k (11)

To simplify this we need summation by parts (Seton Hall University, 2003):

Lemma 3 Consider the sequences {an}∞n=1 and {bn}∞n=1. Let SN =
∑N

n=1 an be the

n-th partial sum. Then for any 0 < m ≤ n we have

n−1∑
j=m

Sj(bj − bj+1) =
n∑

j=m

aj · bj − [Sn · bn − Sm−1 · bm]
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Proof:

n∑
j=m

aj · bj =
n∑

j=m

(Sj − Sj−1) · bj

=
n∑

j=m

Sj · bj −
n∑

j=m

Sj−1 · bj

=
n∑

j=m

Sj · bj −
n−1∑

j=m−1

Sj · bj+1

=
n−1∑
j=m

Sj · (bj − bj+1) + Snbn − Sm−1bm.

2

If n = ∞ the formula reduces to

∞∑
j=m

Sj(bj − bj+1) =
∞∑

j=m

aj · bj + Sm−1 · bm (12)

Proof:

∞∑
j=m

aj · bj =
∞∑

j=m

(Sj − Sj−1) · bj

=
∞∑

j=m

Sj · bj −
∞∑

j=m

Sj−1 · bj

=
∞∑

j=m

Sj · bj −
∞∑

j=m−1

Sj · bj+1

=
∞∑

j=m

Sj · (bj − bj+1)− Sm−1bm.

2

Note that äK+1| =
∑K

k=0 vk and kpx · qx+k = kpx · (1− px+k) = kpx− k+1px. We choose
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Sj = ä j+1|, bj = jpx, aj = vj and m = 1. Now we can use formula (12) to obtain

äx =
∞∑

k=0

äk+1| · kpx · qx+k =
∞∑

k=0

Sk(bk − bk+1)

= S0(b0 − b1) +
∞∑

k=1

Sk(bk − bk+1)

= ä1|(0px − px) +
∞∑

k=1

vk
kpx + S0b1 = qx +

∞∑

k=1

vk
kpx +

0∑
j=0

vj · px

= qx +
∞∑

k=1

vk
kpx + px = 1 +

∞∑

k=1

vk
kpx =

∞∑

k=0

vk
kpx (13)

The present-value random variable of an n-year temporary life annuity-due of 1 per

year is

Y =





äK+1| 0 ≤ K < n

än| K ≥ n

and its actuarial present value is

äx: n| = E(Y ) =
n−1∑

k=0

äk+1| · kpx · qx+k + än| · npx

= ä1| · 0px · qx +
n−1∑

k=1

äk+1| · kpx · qx+k + än| · npx

= qx +
n−1∑

k=1

äk+1| · kpx · qx+k + än| · npx

We use Lemma 3 with Sj = ä j+1|, bj = jpx, aj = vj, m = 1 and n = n to obtain

äx: n| = qx + än| · npx +
n∑

k=1

vk
kpx − [än+1| · npx − ä1| · px]
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= qx + än| · npx +
n−1∑

k=1

vk
kpx + vn

npx − än+1|npx + px

= 1 + än| · npx +
n−1∑

k=1

vk
kpx + npx(v

n − än+1|)

= 1 + än| · npx +
n−1∑

k=1

vk
kpx + npx(v

n −
n∑

j=0

vj)

= 1 + än| · npx +
n−1∑

k=1

vk
kpx + npx(−

n−1∑
j=0

vj)

= 1 + än| · npx +
n−1∑

k=1

vk
kpx − npx · än| = 1 +

n−1∑

k=1

vk
kpx =

n−1∑

k=0

vk
kpx (14)

For an n-year deferred whole life annuity-due of 1 payable at the beginning of each

year while (x) survives from x + n onward, the present-value random variable is

Y =





0 0 ≤ K < n

vnäK+1−n| K ≥ n

and its actuarial present value is

E(Y ) = n|äx =
∞∑

k=n

vnäK+1−n| · kpx · qx+k =
∞∑

k=n

vk
kpx

The last equality follows again by summation-by-parts. The procedures above for

annuities-due can be adapted for annuities immediate. Payments for this kind of

annuity are made at the ends of the payment periods. For example, for a whole life

annuity-immediate, the present value random variable is

Y = aK|,
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where

aK| =
K∑

j=1

vj.

Then,

ax = E(Y ) =
∞∑

k=0

kpx · qx+k · ak| =
∞∑

k=0

kpx · qx+k(äk+1| − 1)

= äx −
∞∑

k=0

kpx · qx+k = äx − 1 =
∞∑

k=1

kpx · vk

2.2 Multiple Life Functions

In this subsection we want to discuss density functions, probability functions, force

of mortality and annuities for two lives. We follow Bowers et at. (1997). A useful

definition is that of status for which there are definitions of survival and failure.

In order to define a status we need two elements. Since there is a broad range of

application of the concept, the general term entities is used in the definition.

· There must be a finite set of entities; and for each member it must be possible to

define a future lifetime random variable.

· It must be possible to determine the survival of the status at any future time.

To illustrate the meaning of a status let’s look at an example: A single life (x)

defines a status that survives while (x) is alive. Thus the random variable T (x), used

in the previous subsection to denote the future lifetime of (x), can be interpreted as

the period of survival of the status and also as the time-until-failure of the status. The

time-until-failure of a status is a function of the future lifetimes of the lives involved.

In theory these future lifetimes will be dependent. The joint distribution function of
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T (x) and T (y) is

FT (x)T (y)(s, t) = Pr(T (x) ≤ s, T (y) ≤ t) =

∫ s

−∞

∫ t

−∞
fT (x)T (y)(u, v)dvdu

and the joint survival function of T (x) and T (y) is

sT (x)T (y)(s, t) = Pr(T (x) > s, T (y) > t) =

∫ ∞

s

∫ ∞

t

fT (x)T (y)(u, v)dvdu

2.2.1 The Joint-Life-Status

The joint-life-status survives while every member of a set of lives is alive and

fails when the first member dies. It is denoted by (x1, ..., xm), where xi is the age

of member i and m is the number of members. Notation introduced in the previous

subsection is used here with the subscript listing several ages rather than a single age.

For example, äxy and tpxy have the same meaning for the joint-life status (xy) as äx

and tpx have for the single life (x).

We consider the distribution of the time-until-failure of a joint-life status. For m

lives, T (x1, ...., xm) = min[T (x1), ..., T (xm)], where T (xi) is the future lifetime of indi-

vidual i. In the special case of two lives, (x)and (y), we have T (xy) = min[T (x), T (y)].

When indicated by context, we denote the future lifetime of the joint-life status by

simply T . The distribution function of T , for t > 0, in terms of the joint distribution

of T (x) and T (y) is

FT (t) = tqxy = Pr(T ≤ t) = Pr[min(T (x), T (y)) ≤ t]

= 1− Pr[min(T (x), T (y)) > t] = 1− Pr[T (x) > t and T (y) > t]

= 1− sT (x)T (y)(t, t). (15)
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Note that

tpxy = Pr[T (xy) > t] = 1− FT (xy)(t) = sT (x)T (y)(t, t)

As explained in the previous subsection, the distribution of T can be specified by the

force of mortality. The traditional notation for this force is µx+t: y+t (analogous to

µx+t) but we use the notation µxy(t). By analogy with the first formula (2) and with

fT (x)(x) and FT (x)(x) replaced by fT (xy)(t) and FT (xy)(t), we have

µxy(t) =
fT (xy)(t)

1− FT (xy)(t)
(16)

Theorem 1 If T (x) and T (y) are independent the following conditions hold:

(1) tpxy = tpx · tpy

(2) µxy(t) = µ(x + t) + µ(y + t)

Remark 1 (2) means that if the future lifetimes are independent, the force of mor-

tality for their joint-life status is the sum of the forces of mortality of the individuals.

Proof:

First, we prove property (1) of Theorem 1: Since T (x) and T (y) are independent we

have

tpxy = Pr(T (x) > t, T (y) > t) = Pr(T (x) > t) · Pr(T (y) > t) = tpx · tpy

Second, we want to show property (2) of Theorem 1: Note that

sT (x)T (y)(t, t) =

∫ ∞

t

∫ ∞

t

fT (x)T (y)(u, v)dudv.
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We want to find the derivative of sT (x)T (y)(t, t) with respect to t. To find this deriva-

tive, we need the Leibniz’s rule, as in Zwillinger (1992):

d[
∫ β(t)

α(t)
g(v, t)dv]

dt

=

∫ β(t)

α(t)

d

dt
g(v, t)dv + g(β(t), t)

d

dt
β(t)− g(α(t), t)

d

dt
α(t) (17)

In our case

α(t) = t, β(t) = ∞, g(v, t) =

∫ ∞

t

fT (x)T (y)(u, v)du,

Thus, using (17), we have

d

dt
g(v, t) =

d

dt

∫ ∞

t

fT (x)T (y)(u, v)du

=

∫ ∞

t

0 + 0− fT (x)T (y)(t, v) · 1

= −fT (x)T (y)(t, v).

Using (17), this implies that

d

dt
sT (x)T (y)(t, t) =

d

dt

∫ ∞

t

g(v, t)dv

=

∫ ∞

t

−fT (x)T (y)(t, v)dv + 0− g(t, t) · 1

= −
∫ ∞

t

fT (x)T (y)(t, v)dv −
∫ ∞

t

fT (x)T (y)(u, t)du. (18)

Using (15) and (18) we have

fT (xy)(t) =
d

dt
FT (xy)(t) =

d

dt
[1− sT (x)T (y)(t,t)] = − d

dt
sT (x)T (y)(t, t)
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=

∫ ∞

t

fT (x)T (y)(t, v)dv +

∫ ∞

t

fT (x)T (y)(u, t)du. (19)

Since T (x) and T (y) are independent and using (3) and (19), we have

fT (x)T (y)(u, v) = fT (x)(u) · fT (y)(v) = upx · µ(x + u) · vpy · µ(y + v)

and

fT (xy)(t) =

∫ ∞

t
tpx · µ(x + t) · vpy · µ(y + v)dv

+

∫ ∞

t
upx · µ(x + u) · tpy · µ(y + t)du

= tpx · µ(x + t)

∫ ∞

t

fT (y)(v)dv + tpy · µ(y + t)

∫ ∞

t

fT (x)(u)du

= tpx · µ(x + t)tpy + tpy · µ(y + t)tpx = tpx · tpy[µ(x + t) + µ(y + t)]. (20)

Thus, using (20) and (16), we have

µxy(t) =
fT (xy)(t)

1− FT (xy)(t)
=

tpx · tpy[µ(x + t) + µ(y + t)]

1− [1− sT (x)T (y)(t, t)]

=
tpx · tpy[µ(x + t) + µ(y + t)]

tpxy

=
tpx · tpy[µ(x + t) + µ(y + t)]

tpx · tpy

= µ(x + t) + µ(y + t).

2

Let’s consider an annuity payable continuously at the rate of 1 dollar per year until

(u) fails, the present value random variable for such an annuity is Y = āT |, where T is

the future lifetime of (u). The actuarial present value of the annuity, āu, is: (compare
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(8) and (9))

āu =

∫ ∞

0

ā t| · tpuµ(u + t)dt =

∫ ∞

0
tpu · vtdt

We want to apply this relationship to an annuity payable continuously at the rate

of 1 dollar per year while both persons (x) and (y) are alive. This is an annuity in

respect to (xy). Thus, we have:

āxy =

∫ ∞

0
tpxy · vtdt

2.2.2 The Last-Survivor Status

The last-survivor status exists as long as at least one member of a set of lives

is alive and fails when the last member dies. It is denoted by (x1, ..., xm), where -

as before - xi is the age of member i and m is the number of the members. The

future lifetime of the last-survivor is denoted by T (x1, ..., xm), and it is equal to

T (x1, ..., xm) = max[T (x1), ..., T (xm)], where T (xi) is the future lifetime of member i.

We only consider the case of two lives (x) and (y). The future lifetime of the joint-life

status in this case is T (xy) = max[T (x), T (y)]. The distribution function of T (xy) is

FT (xy)(t) = Pr[T (xy) ≤ t] = Pr[max(T (x), T (y)) ≤ t]

= Pr[T (x) ≤ t and T (y) ≤ t] = 1− tpxy

and

fT (xy)(t) =
d

dt
FT (xy)(t)

There are relationships among T (xy), T (xy), T (x) and T (y):
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T (xy) is either equal to T (x) or equal to T (y). T (xy) is equal to the other one. That’s

why the following equations hold:

T (xy) + T (xy) = T (x) + T (y)

T (xy)T (xy) = T (x)T (y)

From probability, we know that

Pr(A ∪B) + Pr(A ∩B) = Pr(A) + Pr(B).

If A = {T (x) ≤ t} and B = {T (y) ≤ t}, we have A ∪ B = {T (xy) ≤ t} and

A ∩B = {T (xy) ≤ t} and then

FT (xy)(t) + FT (xy)(t) = FT (x)(t) + FT (y)(t).

This implies

tpxy + tpxy = tpx + tpy
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CHAPTER III

GOMPERTZ LAW

3.1 Single Lives

There are two main justifications for postulating an analytic law for mortality.

Those justifications are from Higgins (2003) and Bowers et al. (1997):

1. Philosophic: Since many phenomena which are observed in physics are governed

by simple formulas, some authors have suggested that human mortality can be ex-

plained by a simple law with biological arguments.

2. Practical: It is more convenient to operate with a function with only a few pa-

rameters than with a life table with perhaps 100 parameters. Besides, it is easier

to estimate functions like life expectations, conditional probabilities of survival, etc.

Since some analytic forms have elegant properties it is convenient to evaluate proba-

bilities for more than one life.

The earliest model still in use and the most influental parametric mortality model

in literature is that of Benjamin Gompertz from 1825. He recognized that the behavior

of human mortality for large portions of the life table is exponential. The original

Gompertz law is

µ(x) = Bcx, (21)
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where B and c are positive unknown parameters or

µ(x) = Bebx, (22)

where µ(x) is the force of mortality at age x as defined in chapter 2. If we compare

those two equations, we can see that one is only the reparametrization of the other:

Substituting eb for c in (21), we get (22). This implies that

µ(x + t) = Beb(x+t) = Bebxebt = µ(x)ebt. (23)

Following Gajek and Ostaszewski (2002, 2003) we want to calculate the expected

value, the variance and the variability coefficient of the future lifetime T under Gom-

pertz’ law of mortality. Using (2), the probability of surviving t years for a life (x)

under Gompertz’ law of mortality is

tpx = exp

[
−

∫ t

0

µ(x + s)ds

]
= exp

[
−

∫ t

0

µ(x)ebsds

]

= exp

[
− µ(x)

b
ebs

∣∣∣
t

s=0

]
= exp

[
− µ(x)

b
ebt +

µ(x)

b

]
= exp

[
− µ(x)

b
(ebt − 1)

]

Since fT (t) = tpxµ(x + t) by (3), we have that

fT (t) = exp

[
− µ(x)

b
(ebt − 1)

]
· µ(x) · ebt = µ(x) exp

[
bt− µ(x)

b
(ebt − 1)

]

is the density function of the future lifetime of (x) under Gompertz’ law of mortality.

We want to calculate the complete expectation of life,
◦
ex, (defined in chapter 2) under

Gompertz’ law of mortality. Using (5) we have

◦
ex =

∫ ∞

0
tpxdt =

∫ ∞

0

exp

[
− µ(x)

b
(ebt − 1)

]
dt
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= exp

[
µ(x)

b

] ∫ ∞

0

exp

[
− µ(x)

b
ebt

]
dt

In order to calculate this integral, we substitute µ(x)
b

ebt by eu and solve for t to obtain

µ(x)

b
ebt = eu

⇔ ebt = eu · b

µ(x)

⇔ bt = u + ln

[
b

µ(x)

]

⇔ t =
1

b
· u +

1

b
ln

[
b

µ(x)

]
.

Thus, we have

dt

du
=

1

b
.

Since we integrate with respect to t between the limits zero and ∞, the corresponding

limits for u = ln[µ(x)
b

ebt] = ln[µ(x)
b

] + bt are ln[µ(x)
b

] and ∞ and we obtain

◦
ex = exp

[
µ(x)

b

] ∫ ∞

ln[
µ(x)

b
]

1

b
e−eu

du =
1

b
e

µ(x)
b H

[
ln

(
µ(x)

b

)]
,

where H(t) =
∫∞

t
e−eu

du.

Theorem 2 The function H( · ) is strictly increasing and convex.

Proof:

a) It is obvious that H( · ) is strictly increasing, since e−eu
is positive.

b) To show that H( · ) is strictly convex, we evaluate its first and second derivative:

H ′(t) = −e−et
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and

H ′′(t) = −e−et · (−1) · et = e−et · et > 0.

Since the second derivative of H is strictly greater than zero, this completes the proof.

2

Let θ be equal to ln[µ(x)
b

], then

◦
ex =

1

b
H(θ)eeθ

(24)

In order to calculate the variance of the future lifetime, V ar[T (x)], using Gompertz

law of mortality, we first have to find the second moment of T (x): E[T 2(x)]. Using

(6) we have

E[T 2(x)] = 2

∫ ∞

0

t · tpxdt = 2

∫ ∞

0

t exp

[
− µ(x)

b
(ebt − 1)

]
dt

= 2eµ(x)/b

∫ ∞

0

t exp

[
− µ(x)

b
ebt

]
dt.

Substituting µ(x)
b

ebt by eu and using that θ is equal to ln[µ(x)
b

] we get:

E[T 2(x)] = 2eµ(x)/b · 1

b2
·
∫ ∞

ln[
µ(x)

b
]

(u− ln[
µ(x)

b
]) · exp[−eu]du

=
2

b2

∫ ∞

θ

(u− θ) exp[−eu]du · exp[eθ] (25)

=
2

b2
G(θ) exp[eθ], (26)

where G(t) =
∫∞

t
(u− t) exp[−eu]du

Theorem 3 G(· ) is

(i) nonnegative,
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(ii) strictly increasing,

(iii) convex, and

(iv) G′(t) = −H(t)

Proof:

(i) Since t ≤ u < ∞, this is obvious.

(ii) and (iv) Using (17) we have

G′(t) =

∫ ∞

t

− exp[−eu]du + 0− (t− t) exp[−et] = −
∫ ∞

t

exp[−eu]du

= −H(t)

⇒ (iv). Since H(t) > 0, this implies that G′(t) = −H(t) < 0. Thus, G( · ) is strictly

decreasing.

(iii) Since

G′′(t)
(iv)
= −H ′(t) = −(−exp[−et]) = exp[−et]

is greater than zero, G(· ) is strictly convex.

2

Using (24) and (26), we have

V ar[T ] = E(T 2)− E2(T ) =
2

b2
G(θ) exp[eθ]− ◦

e
2

x

=
◦
e
2

x

[
2G(θ)

exp[eθ][H(θ)]2
− 1

]
. (27)

Definition 5 The variability coefficient τT is defined by

τT =

√
V ar(T )
◦
ex

. (28)
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The variability coefficient for the future lifetime T is

τT =

√
2G(θ)

H2(θ) exp[eθ]
− 1 · ◦ex

◦
ex

=

√
2G(θ)

H2(θ) exp[eθ]
− 1. (29)

Theorem 4 lim
θ→−∞

τT = 0

Proof:

First, we note that

lim
θ→−∞

H ′(θ) = lim
θ→−∞

− exp[−eθ] = −1.

Using the de l’Hospital Rule and Theorem 3 (iv) we have

lim
θ→−∞

G(θ)

H2(θ)
= lim

θ→−∞
G′(θ)

2H(θ)H ′(θ)
= lim

θ→−∞
−H(θ)

2H(θ)H ′(θ)
= lim

θ→−∞
− 1

2H ′(θ)

= − 1

2(−1)
=

1

2
.

Thus, τT =
√

2 · 1
2
· 1− 1 = 0.

2

This shows that under the assumption of Gompertz law and for small values of θ, the

variability coefficient τT is approximately 0.

We want to examine what happens for large values of θ.

Theorem 5 lim
θ→∞

τT = 1

Proof:

First, note that

lim
θ→∞

H(θ) = 0.
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Using the de l’Hospital Rule we get

lim
θ→∞

e−θ exp{−eθ}
H(θ)

= lim
θ→∞

−e−θ exp{−eθ}+ exp{−eθ} · (−1)

− exp{−eθ} · e6θ · e−θ

= lim
θ→∞

[e−θ + 1] = 1.

This implies that

lim
θ→∞

e−θH ′(θ)
H(θ)

= −1.

Thus, using the de l’Hospital Rule and Theorem 3 (iv), we have

lim
θ→∞

G(θ)

e−θH(θ)
= lim

θ→∞
G′(θ)

−e−θH(θ) + e−θH ′(θ)

= lim
θ→∞

−H(θ)

−e−θH(θ) + e−θH ′(θ)
= lim

θ→∞
1

e−θ − e−θ H′(θ)
H(θ)

=
1

0− (−1)
= 1.

Hence,

lim
θ→∞

G(θ) exp{−eθ}
H2(θ)

= lim
θ→∞

e−θ exp{−eθ}
H(θ)

· G(θ)

e−θH(θ)
= 1 · 1 = 1.

2

Finally,

lim
θ→∞

τT = lim
θ→∞

√
2G(θ) exp{−eθ}

H2(θ)
− 1 =

√
2 · 1− 1 = 1.

This implies that

√
V ar(T )
◦
ex

is approximately 1 the greater the value of θ, which means

the more µ(x) exceeds b.
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3.2 Multiple Lives

Again we assume that mortality follows Gompertz’s law. Besides we assume that

T (x) and T (y) are independent. We have already seen in equation (21) that the force

of mortality is equal to Bcx if mortality follows Gompertz. We want to substitute a

joint-life status (xy) by a single-life survival status (w) that has a force of mortality

equal to the force of mortality of (xy) for all t ≥ 0. Consider µxy(s) = µ(w + s),

s ≥ 0. Since T (x) and T (y) are assumed to be independent, we know from Theorem

1 that this equation is equivalent to:

µ(x + s) + µ(y + s) = µ(w + s) ⇔ Bcx+s + Bcy+s = Bcw+s

⇔ cx + cy = cw (30)

(30) defines w. It follows that for t ≥ 0,

tpw = exp[−
∫ t

0

µ(w + s)ds]

= exp[−
∫ t

0

µxy(s)ds]

= tpxy.

This implies that if w is defined as in (30), then all probabilities, expected values,

and variances for the joint-life status (xy) equal those for the single life (w). Let’s

look at an example:

Example 1 Calculate the value of ä60:70 if the interest rate is 6 percent and if c =

100.04 using Gompertz’s law of mortality and assuming independence of the future

lifetimes T(x) and T(y).
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Solution:

(30) ⇒ (100.04)60 + (100.04)70 = (100.04)w

This simplifies to:

882.146 = (100.04)w ⇔ w =
ln[882.146]

ln[100.04]
= 73.63851158.

Using linear interpolation, we have:

ä60:70 =
∞∑

k=0

vk · kp60:70 = 0.63851158ä74 + 0.36148842ä73 = 7.584.

The value by the ä60 table is 7.55633.
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CHAPTER IV

LIKELIHOOD RATIO TESTS AND OTHER STATISTICAL TESTS

In this section we want to present two kinds of tests: Likelihood-ratio tests as in

Mood, Graybill and Boes (1974) and a distribution-free test for independence as in

Hollander and Wolfe (1999).

4.1 Likelihood-Ratio Tests

Let ϑ be an unknown parameter vector and let θ, called the parameter space,

denote the set of possible values that ϑ can assume.

Definition 6 The likelihood function of n random variables X1, ..., Xn is defined to

be the joint density of the n random variables, denoted by

L(ϑ) = fX1,...,Xn(x1, ..., xn; ϑ),

where ϑ is the unknown parameter vector.

Definition 7 Let L(ϑ) = L(ϑ; x1, ..., xn) be the likelihood function for the random

variables X1, ..., Xn. Let ϑ̂ = ϑ̂(x1, ..., xn) denote the value of ϑ in θ that maximizes

L(ϑ), i.e. L(ϑ̂) ≥ L(ϑ) for all ϑ ∈ θ. Then T = ϑ̂(X1, ..., Xn) is the maximum

likelihood estimator of ϑ. ϑ̂ = ϑ̂(x1, ..., xn) is the maximum likelihood estimate for ϑ

for the sample x1, ..., xn.

Remark 2 The maximum likelihood estimate ϑ̂(x1, ..., xn) is the value of θ that is
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”most likely” to have produced the data set x1, ..., xn.

It is sometimes easier to find the maximum of the logarithm of the likelihood function,

denoted by ln[L(ϑ)] = l(ϑ), rather than working with the likelihood function itself.

Since the logarithm is a monotonic function, L(ϑ) and l(ϑ) have the same maxima.

Before we look at an example, we need another definition.

Definition 8 A set of n independent and identically distributed random variables is

called a random sample (Everitt, 2002).

Let’s look at an example.

Example 2 Suppose that we draw a random sample of size n from the normal distri-

bution with mean µ and variance of 1. µ is the only unknown parameter. The sample

values are denoted by x1, ..., xn. Since we have a random sample, the likelihood func-

tion is the product of n normal density functions:

L(µ) =
n∏

i=1

(2π)−
1
2 exp

[
− (xi − µ)2

2

]

= (2π)−
n
2 exp

[
− 1

2

n∑
i=1

(xi − µ)2

]

l(µ) = −n

2
log(2π)− 1

2

n∑
i=1

(xi − µ)2

The necessary condition for a maximum is that the derivative of l(µ) with respect to

µ has to be equal to 0.

d

dµ
l(µ) = 0 ⇔

n∑
i=1

(xi − µ̂) = 0

⇔ n · 1

n

n∑
i=1

xi − nµ̂ = 0

⇔ nx̄− nµ̂ = 0 ⇔ µ̂ = x̄.
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We still have to check if the sufficient condition for a maximum holds:

d2

d2µ
l(µ̂) = −n < 0

This implies that µ̂ = x̄ is the maximum likelihood estimate.

4.1.1 Generalized Likelihood Ratio Tests

The generalized likelihood ratio test tests composite hypotheses. Let X1, ..., Xn

be a sample with joint density fX1,...,Xn(x1, ..., xn; ϑ). Let ϑ ∈ θ. Suppose that θ is

the k-dimensional parameter space. Suppose we want to test {H0 : ϑ1 = ϑ0
1, ..., ϑr =

ϑ0
r, ϑr+1, ..., ϑk}, where ϑ0

1, ..., ϑ
0
r are known and ϑr+1, ..., ϑk are left unspecified. Let

θ0 = {ϑ : ϑ ∈ H0}.

Definition 9 Let L(ϑ; x1, ..., xn) be the likelihood function for the random variables

X1, ..., Xn. Let fX1,...,Xn(x1, ..., xn; ϑ) denote their joint density function. The gener-

alized likelihood-ratio, denoted by λ, is defined by (Mood et al. 1974)

λ = λ(x1, ..., xn) =
sup{L(ϑ; x1, ..., xn) : ϑ ∈ θ0}
sup{L(ϑ; x1, ..., xn) : ϑ ∈ θ} .

We replace the observations x1, ..., xn by the random variables X1, ..., Xn, we write

Λ = λ(X1, ..., Xn).

Remark 3 (i) 0 ≤ λ ≤ 1;

λ ≥ 0: because both numerator and denominator are nonnegative

λ ≤ 1: the supremum taken in the numerator is over a smaller set of parameter values

than the supremum in the denominator.

(ii) The denominator of λ is the likelihood function evaluated at the maximum like-

lihood estimate ϑ̂. If the numerator is much smaller than the denominator, which

means that λ is small, the data x1, ..., xn do not support the null hypothesis. So
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H0 should be rejected whenever λ ≤ λ0, where λ0 is some fixed constant satisfying

0 ≤ λ0 ≤ 1.

Asymptotic distribution of generalized likelihood ratio

−2 log[Λ] = −2 log

[
sup{L(ϑ; X1, ..., Xn) : ϑ ∈ θ0}
sup{L(ϑ; X1, ..., Xn) : ϑ ∈ θ}

is asymptotically distributed as a chi-square distribution with r degrees of freedom,

when H0 is true and the sample size n is large (Mood et al., 1974). The degrees of

freedom, r, can be interpreted in two ways: (i) as the number of parameters specified

by H0 and (ii) as the difference in the dimensions of θ and θ0.

In Remark 3 (ii) H0 is rejected for small values of λ. Since −2 log[λ] decreases in λ

a test that is equivalent to a generalized likelihood test is one that rejects H0 for large

values of −2 log[λ]. Thus, a test with approximate significance level α is given by the

following: Reject H0 whenever −2 log[λ] > χ2
α(r), where χ2

α(r) is the α-quantile of

the chi-squared distribution with r degrees of freedom. Let’s look at an example:

Example 3 Suppose that a random sample of size n is drawn from a normal dis-

tribution like in Example 2. We want to test {H0 : µ = 0 versus H1 : µ 6= 0}.
The maximum likelihood estimate is µ̂ = x̄. The test statistic for the asymptotic

generalized likelihood ratio-test is

−2 ln

[
L(0; x1, ..., xn)

L(µ̂; x1, ..., xn)

]

= −2 ln

[ (2π)−
n
2 exp

[
−∑n

i=1(xi − 0)2/2

]

(2π)−
n
2 exp

[
−∑n

i=1(xi − x̄)2/2

]
]
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= −2 ln

[
exp[−

n∑
i=1

(x2
i )/2]

]
+ 2 ln

[
exp[−

n∑
i=1

(xi − x̄)2/2]

]

=
n∑

i=1

x2
i −

n∑
i=1

(xi − x̄)2

=
n∑

i=1

x2
i −

n∑
i=1

(x2
i − 2xix̄ + x̄2)

= 2
n∑

i=1

xix̄− nx̄2 = 2nx̄2 − nx̄2 = nx̄2.

This test statistic has a chi-squared distribution with one degree of freedom because

one parameter (µ) was specified in the reduced model. Reject H0 whenever

−2 log[λ] = nx̄2 > χ2
α(1).

If we choose α to be 0.05, we get: Reject H0 whenever

nx̄2 > 3.84. (31)

4.2 A Distribution-Free Test for Independence

Let (X1, Y1), ..., (Xn, Yn) be a random sample from a continuous bivariate popu-

lation with joint distribution FXY and marginal distributions FX and FY . The null

hypothesis is

H0 : FXY (x, y) = FX(x)FY (y) for all (x,y) pairs. (32)

We introduce Kendall’s Tau and Spearman’s rho because we are using these correla-

tion coefficients for measuring the dependence of the future lifetimes of a couple in

section 5.6.
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4.2.1 Kendall’s Tau

The alternative will be that type of dependence between X and Y which is of

principal interest. In this section, we concentrate on a type of dependence measured

by Kendall’s correlation coefficient.

Definition 10 Kendall’s correlation coefficient is defined by

τ = 2P [(Y2 − Y1)(X2 −X1) > 0]− 1, (33)

where (X1, Y1), ..., (Xn, Yn) is a random sample from a continuous bivariate popula-

tion.

Theorem 6 If X and Y are independent, then τ is equal to 0.

Proof:

The event {(Y2 − Y1)(X2 −X1) > 0} occurs if and only if {Y2 > Y1 and X2 > X1} or

{Y2 < Y1 and X2 < X1}. Since these events are mutually exclusive, we have:

P [(Y2 − Y1)(X2 −X1) > 0] = P [X2 > X1, Y2 > Y1] + P [X2 < X1, Y2 < Y1]

If X and Y are independent, we have

P [X2 > X1, Y2 > Y1] = P [X2 > X1]P [Y2 > Y1] =
1

2
· 1

2
=

1

4
,

because X1 and X2 are independent and identically distributed (iid) and Y1, Y2 are iid

as well. Note that Y1, Y2 need not have the same distribution as X1 and X2. Similarly,
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if X and Y are independent, it follows that

P [X2 < X1, Y2 < Y1] =
1

4
.

Thus, if X and Y are independent, we have that

τ = 2

(
1

4
+

1

4

)
− 1 = 0.

2

Definition 11 The Kendall statistic K is defined by (Hollander and Wolfe, 1999)

K =
n−1∑
i=1

n∑
j=i+1

Q[(Xi, Yi), (Xj, Yj)], (34)

where

Q[(a, b), (c, d)] =





1 , if (d-b)(c-a) > 0

−1 , if (d-b)(c-a) < 0
(35)

This means that for each pair of subscripts (i, j) with i < j, score 1 if (Yj−Yi)(Xj−Xi)

is positive and score −1 if it is negative. Thus, K adds up the 1s and −1s from the

paired sign statistics. There are three possible types of tests:

a. One-sided upper-tail test: We want to test (32), which implies τ = 0 versus

the alternative that X and Y are positively correlated, i.e. H1 : τ > 0. We reject

H0 whenever K ≥ kα at the level of significance α, where kα is chosen such that the

type 1 error probability is equal to α. To motivate this test: The null hypothesis is

that the X and Y random variables are independent, which implies that τ is equal

to zero. The alternative in this procedure is that τ is positive, which implies that
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P [(Y2 − Y1)(X2 − X1) > 0] > 1
2
. Thus, there tend to be a large number of positive

paired sign statistics and fewer negative paired sign statistics. Hence, we expect a

big, positive value for K. This suggests that we should reject H0 in favor of τ > 0

for large values of K.

b. One-sided lower-tail test: We want to test (32) versus the alternative that X

and Y are negatively correlated, i.e. H2 : τ < 0.

We reject H0 whenever K ≤ −kα at the level of significance α.

c. Two-sided test: We want to test (32) versus the alternative that X and Y

are dependent, i.e. H3 : τ 6= 0. We reject H0 whenever |K| ≥ kα/2 at the level of

significance α.

To justify test procedures b. and c. note that the distribution of K under the

null hypothesis is symmetric about 0 (Hollander and Wolfe, 1999). This implies

P (K ≤ −x) = P (K ≥ x)

under the null hypothesis. Thus, we have

P (|K| ≥ kα/2) = 1− P (−kα/2 ≤ K ≤ kα/2) = 1− [P (K ≤ kα/2)− P (K ≤ −kα/2)]

= 1− [1− α/2− α/2] = α.

Another possibility of testing those three hypotheses is using a large sample ap-

proximation. It is based on the asymptotic normality of K. To standardize K, we

need to know the expected value and variance of K when the null hypothesis of inde-

pendence is true. The expected value and variance are given in Hollander and Wolfe

(1999):
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Lemma 4 Under H0, the expected value and variance of K are

(i) E0(K) = 0

and

(ii) V ar0(K) =
n(n− 1)(2n + 5)

18
.

Proof:

(i) E(K) = E{
n−1∑
i=1

n∑
j=i+1

Q[(Xi, Yi), (Xj, Yj)]}

=
n−1∑
i=1

n∑
j=i+1

E{Q[(Xi, Yi), (Xj, Yj)]}

=
n−1∑
i=1

n∑
j=i+1

{P [(Y2 − Y1)(X2 −X1) > 0]− P [(Y2 − Y1)(X2 −X1) < 0]}

=
n−1∑
i=1

n∑
j=i+1

{P [(Y2 − Y1)(X2 −X1) > 0]

− P [(Y2 − Y1)(X2 −X1) < 0] + 1− 1}

=
n−1∑
i=1

n∑
j=i+1

{P [(Y2 − Y1)(X2 −X1) > 0]− P [(Y2 − Y1)(X2 −X1) < 0]

+ P [(Y2 − Y1)(X2 −X1) > 0] + P [(Y2 − Y1)(X2 −X1) < 0]− 1}

=
n−1∑
i=1

n∑
j=i+1

{2P [(Y2 − Y1)(X2 −X1) > 0]− 1}

=
n−1∑
i=1

n∑
j=i+1

τ =
n−1∑
i=1

(n− i)τ =
n−1∑
j=1

jτ =
(n− 1)n

2
τ =

(n

2

)
τ

Under the null hypothesis of independence we have

E0[K] = 0
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(ii) V ar(K) =
n−1∑
i=1

n∑
j=i+1

V ar(Qij) +
n−1∑
i=1

n∑
j=i+1

n−1∑
s=1

n∑
t=s+1

Cov(Qij, Qst),

for (i, j) 6= (s, t),

where

Quv = Q[(Xu, Yu), (Xv, Yv)], for 1 ≤ u < v ≤ n.

The following equality holds (Hollander and Wolfe, 1999):

V ar(K) = [n(n− 1)

[
1

2
(1− τ 2) + 4(n− 2)

{
δ −

(
τ + 1

2

)2}]
,

where δ = P [(Y2 − Y1)(X2 −X1) > 0 and (Y3 − Y1)(X3 −X1) > 0]

We can break down δ:

δ = Pr[Y2 > Y1, X2 > X1, Y3 > Y1, X3 > X1]

+ Pr[Y2 > Y1, X2 > X1, Y3 < Y1, X3 < X1]

+ Pr[Y2 < Y1, X2 < X1, Y3 > Y1, X3 > X1]

+ Pr[Y2 < Y1, X2 < X1, Y3 < Y1, X3 < X1]

= Pr[Y1 < min(Y2, Y3), X1 < min(X2, X3)]

+ Pr[Y2 > Y1 > Y3, X2 > X1 > X3]

+ Pr[Y2 < Y1 < Y3, X2 < X1 < X3]

+ Pr[Y1 > max(Y2, Y3), X1 > max(X2, X3)]
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When X and Y are independent, we have:

δ0 = Pr0[Y1 < min(Y2, Y3)]Pr0[X1 < min(X2, X3)]

+ Pr0[Y2 > Y1 > Y3]Pr0[X2 > X1 > X3]

+ Pr0[Y2 < Y1 < Y3]Pr0[X2 < X1 < X3]

+ Pr0[Y1 > max(Y2, Y3)]Pr0[X1 > max(X2, X3)].

Since X1, X2, X3 are mutually independent and identically distributed, as are Y1, Y2, Y3,

we have:

Pr0[Y1 < min(Y2, Y3)] = Pr0[X1 < min(X2, X3)] =
1

3
,

P r0[Y1 > max(Y2, Y3)] = Pr0[X1 > max(X2, X3)] =
1

3
,

and

Pr0[Y2 > Y1 > Y3] = Pr0[X2 > X1 > X3] = Pr0[Y2 < Y1 < Y3]

= Pr0[X2 < X1 < X3] =
1

6
.

This implies

δ0 =
1

3

(
1

3

)
+

1

6

(
1

6

)
+

1

6

(
1

6

)
+

1

3

(
1

3

)
=

10

36
.
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Since we assume that X and Y are independent we substitute τ by zero and δ0 by 10
36

.

V ar0(K) = n(n− 1)

[
1

2
(1− 02) + 4(n− 2)

{
10

36
−

(
0 + 1

2

)2}]

= n(n− 1)

[
1

2
+

1

9
(n− 2)

]
=

n(n− 1)(2n + 5)

18

2

Hence, the standardized version of K is

K∗ =
K − E0(K)√

V ar0(K)
=

K√
n(n−1)(2n+5)

18

(36)

When H0 is true and n tends to infinity, then K∗ has an asymptotic N(0, 1) distribu-

tion (Hollander and Wolfe, 1999). That’s why for a large sample size, our test looks

like that:

a. Reject H0 in favor of the alternative that X and Y are positively correlated

whenever K∗ ≥ zα, where zα is the α-quantile of N(0, 1).

b. Reject H0 in favor of the alternative that X and Y are negatively correlated

whenever K∗ ≤ −zα.

c. Reject H0 in favor of the alternative that X and Y are dependent whenever

|K∗| ≥ zα/2.

There is still the question remaining: What happens to K if we have ties among

the n X observations and/or among the n Y observations? We replace the function

Q[(a, b), (c, d)] in the definition of K (34) by

Q∗[(a, b)(c, d)] =





1 , if (d-b)(c-a) > 0

0 , if (d-b)(c-a) = 0

−1 , if (d-b)(c-a) < 0

(37)
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This means that in the case of tied X or Y values, zeros are assigned to the associated

paired sign statistics. When we now use procedure a., b. or c. and when we substitute

Q by Q∗ in Definition 11, this test has only approximately a level of significance of

α because the ties affect the variance under the null hypothesis of independence of

K (Hollander and Wolfe, 1999). An estimator of Kendall’s correlation coefficient τ is

(Hollander and Wolfe, 1999)

τ̂ =
2K

n(n− 1)
. (38)

Lemma 5 τ̂ assumes only values between -1 and 1.

Proof:

Since K =
∑n−1

i=1

∑n
j=i+1 Q[(Xi, Yi), (Yi, Yj)] we get the smallest value of K when

Q[(Xi, Yi), (Yi, Yj)] is -1 for all i, j. Then we have K =
∑n−1

i=1

∑n
j=i+1−1 = −n(n−1)

2
.

This implies that τ̂ = 2K
n(n−1)

=
−n(n−1)

2
·2

n(n−1)
= −1. The argument is similar for the

maximum value of τ̂ .

2

If there are ties, we should use Q∗[(a, b), (c, d)] as in (37) in the definition of K.

4.2.2 Spearman’s Rho

Another possibility of testing independence is using Spearman’s rho.

Definition 12 Spearman’s correlation coefficient (rho) is defined by

ρs = 6Pr[(X1 −X2)(Y1 − Y3) > 0]− 3, (39)

where (X1, Y1), ..., (Xn, Yn) is a random sample from a continuous bivariate popula-

tion.

48



Theorem 7 If X and Y are independent, Spearman’s rho is zero.

Proof:

We know from the proof of Theorem 6 that if X and Y are independent, we have

Pr[(X1 −X2)(Y1 − Y3) > 0]

= Pr[X2 > X1, Y2 > Y1] + Pr[X2 < X1, Y2 < Y1] =
1

2
.

Thus, we have

ρs = 6Pr[(X1 −X2)(Y1 − Y3) > 0]− 3 = 6

(
1

2

)
− 3 = 0

2

We present the classical estimate of Spearman’s rho and the proof (following Kruskal,

1958).

Lemma 6 An estimate of Spearman’s rho

ρs = 6Pr[(X1 −X2)(Y1 − Y3)]− 3, (40)

is

ρ̂s =

∑n
k=1[RXi

− n+1
2

][RYi
− n+1

2
]

(n2 − 1)n/12
, (41)

where (X1, Y1), ..., (Xn, Yn) is a random sample from a continuous bivariate popula-

tion, RXi
is the rank of Xi and RYi

is the rank of Yi.

Proof:

We want to estimate Spearman’s correlation coefficient. At first we should find an
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estimate for

Pr[(X1 −X2)(Y1 − Y3) > 0] = Pr[(X1, X2)(Y1, Y3) concordant],

where two hypothetical bivariate observations (X1, X2)(Y1, Y3) are concordant, in the

sense that the two x-coordinates differ with the same sign as the two y-coordinates.

Kruskal (1958) considers actual observations (Xi, Yi). There are n2 − 1 points of the

form (Xj, Yk) excluding the point (Xi, Yi), we work with. Replace the X ′
is by the

numbers 1, 2, ..., n (lowest Xi is replaced by 1, next lowest by 2, and so on). These

ranks of Xi are denoted by RXi
. Similarly, the Y ′

i s are replaced by their ranks. Denote

these ranks by RYi
. From these n2 − 1 points (Xj, Yk), exactly (RXi

− 1)(RYi
− 1)

points will lie below and to the left of (Xi, Yi) and (n−RXi
)(n−RYi

) points will lie

above and to the right of (Xi, Yi) . Let’s look at an example for n = 4:

Example 4 Imagine we have 4 x- and 4 y-coordinates: X1=1.2, X2=2.3, X3=4.5,

X4=2.2, Y1=2, Y2=4.3, Y3=2.4, Y4=1.4. Thus, we have 16 points: (X1, Y1) = (1.2, 2),

(X1, Y2) = (1.2, 4.3), (X1, Y3) = (1.2, 2.4), (X1, Y4) = (1.2, 1.4), (X2, Y1) = (2.3, 2),

(X2, Y2) = (2.3, 4.3), (X2, Y3) = (2.3, 2.4), (X2, Y4) = (2.3, 1.4), (X3, Y1) = (4.5, 2),

(X3, Y2) = (4.5, 4.3), (X3, Y3) = (4.5, 2.4), (X3, Y4) = (4.5, 1.4), (X4, Y1) = (2.2, 2),

(X4, Y2) = (2.2, 4.3), (X4, Y3) = (2.2, 2.4), (X4, Y4) = (2.2, 1.4).

Consider the point (X2, Y3) = (2.3, 2.4). Since X2 is the third smallest x-coordinate

and Y3 is the third smallest y-coordinate, we have RX2 = 3 and RY3 = 3. There are

(3− 1) · (3− 1) = 4

points where the x-coordinate is less than X2 and the y-coordinate is less than Y3;
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namely (X1, Y1), (X1, Y4) (X4, Y1) (X4, Y4). There is

(4− 3) · (4− 3) = 1

point where the x-coordinate is greater than X2 and the y-coordinate is greater than

Y3; namely (X3, Y2). Therefore, the number of points concordant with (X2, Y3) is:

4 + 1 = 5.

There are still

2(4− 1) = 6

points unequal to (X2, Y3), where the x-coordinate is equal to X2 or the y-coordinate

is equal to Y3. They lie between concordance and disconcordance.

In general, we have that the number of points concordant with (Xi, Yi) is

(RXi
− 1)(RYi

− 1) + (n−RXi
)(n−RYi

)

= 2RXi
RYi

− (n + 1)(RXi
+ RYi

) + n2 + 1.

There are still 2(n − 1) points (Xi, Yi) between concordance and disconcordance.

Since they lie between concordance and disconcordance, Kruskal (1958) counts them

half. Therefore an estimate of Pr[(X1, X2)(Y1, Y3) concordant] is the total number of

intersections concordant with (Xi, Yi) added by one-half times the number of points

between concordance and disconcordance divided by the total number of intersections
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excluding (Xi, Yi). Expressed as a formula, we get

1

n2 − 1
[2RXi

RYi
− (n + 1)(RXi

+ RYi
) + n2 + 1 +

1

2
(2(n− 1))]

=
1

n2 − 1
[2RXi

RYi
− (n + 1)(RXi

+ RYi
) + n2 + 1 + n− 1]

=
1

n2 − 1
[2RXi

RYi
− (n + 1)(RXi

+ RYi
) + n(n + 1)].

We still have to average this over the n (Xi, Yi)
′s which can be considered:

1

n(n2 − 1)

n∑
i=1

[2RXi
RYi

− (n + 1)(RXi
+ RYi

) + n(n + 1)]

=
1

n(n2 − 1)
[2

n∑
i=1

RXi
RYi

− (n + 1)
n∑

i=1

(RXi
+ RYi

) + n2(n + 1)]

=
1

n(n2 − 1)
[2

n∑
i=1

RXi
RYi

− (n + 1)
n∑

i=1

(i + i) + n2(n + 1)]

=
1

n(n2 − 1)
[2

n∑
i=1

RXi
RYi

− (n + 1)2
n(n + 1)

2
+ n2(n + 1)]

=
1

n(n2 − 1)
[2

n∑
i=1

RXi
RYi

− n(n + 1)2 + n2(n + 1)]

=
1

n(n2 − 1)
[2

n∑
i=1

RXi
RYi

− n(n + 1)(n + 1− n)]

=
1

n(n2 − 1)
[2

n∑
i=1

RXi
RYi

− n(n + 1)]

To get the estimate of ρs, we can now use the relationship

ρs = 6Pr[(X1 −X2)(Y1 − Y3) > 0]− 3.
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An estimate of ρs is

ρ̂s = 6[
1

n(n2 − 1)
[2

n∑
i=1

RXi
RYi

− n(n + 1)]]− 3

=
12

∑n
i=1 RXi

RYi
− (6n(n + 1) + 3n(n2 − 1))

n(n2 − 1)

=

∑n
i=1 RXi

RYi
− 1

4
n(n + 1)(1 + n)

n(n2 − 1)/12

=

∑n
i=1 RXi

RYi
− n(n+1)2

4

n(n2 − 1)/12

=

∑n
i=1 RXi

RYi
− 2n(n+1)2

4
+ n(n+1)2

4

n(n2 − 1)/12

=

∑n
i=1 RXi

RYi
− n+1

2
n(n+1)

2
− n+1

2
n(n+1)

2
+ [n+1

2
]2n

n(n2 − 1)/12

=

∑n
i=1 RXi

RYi
− n+1

2

∑n
i=1 RXi

− n+1
2

∑n
i=1 RYi

+ [n+1
2

]2n

n(n2 − 1)/12

=

∑n
i=1[RXi

− n+1
2

][RYi
− n+1

2
]

(n2 − 1)n/12
.

2

The n X observations are ordered from least to greatest and RXi
is the rank of Xi,

i = 1, ..., n, in this ordering. Similarly, the n Y observations are ordered and RYi
de-

notes the rank of Yi. If we reject {H0: X and Y are independent} in favor of {H1: X

and Y are not independent} whenever |ρ̂s| ≥ rs, α
2
, this test has a level of significance

of α, where rs, α
2

is chosen to make the type 1 error probability equal to α. Motivation

of this test: Our null hypothesis is that X and Y are independent. This implies that

any permutation of the X ranks (RX1 , ..., RXn) is equally likely to occur with any

permutation of the Y ranks (RY1 , ..., RYn). This means that ρ̂s should be close to

zero. In contrast to that, when the alternative: {X and Y are not independent} is

true, |ρ̂s| should be large.
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Similarly to the tests using Kendall’s Tau, another possibility of testing is with a

large sample approximation. It is based on the asymptotic normality of ρ̂s. To stan-

dardize ρ̂s we need to know its expected value and variance when the null hypothesis

of independence is true.

Lemma 7 Under H0, the expected value and variance of ρ̂s are:

E(ρ̂s) = 0

and

V ar(ρ̂s) =
1

n− 1
.

So, this means that ρ̂s−0√
1

n−1

is approximately standard normal distributed as n tends

to infinity. If we reject H0 whenever |ρ̂s ·
√

n− 1| ≥ zα/2, this test has approximately

a level of significance of α (Hollander and Wolfe, 1999).
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CHAPTER V

BIVARIATE MORTALITY MODEL FOR COUPLED LIVES

5.1 Introduction and Notation

The following chapter discusses several ideas of Carriere (1986, 2000) and Frees

et al. (1996) about modelling the dependence of the future lifetime of coupled lives.

The models are applied to a data set from a Canadian life annuity portfolio. Frees et

al. (1996) observed 14,889 policies where one person was male and the other person

was female over the period December 29, 1988, through December 31, 1993. The

contracts were joint and last-survivor annuities. Frees et al. (1996) observed the date

of birth, date of death (if it was applicable), date of contract initiation, and sex of

each person. In their article Frees et al. (1996) use the following notation which we

will adopt:

· X and Y are the ages at death of him and her, respectively,

· x and y are the contract initiation ages,

· t0 is the time of contract initiation,

· a := max(12/29/1988− t0, 0) : time from contract initiation to the beginning of the

observation period,

· x + a and y + a : his and her entry age, respectively,

· b := 1/1/94−max(12/29/88, t0): observation period,

· T1 = X − x− a : his future lifetime,

· T2 = Y − y − a : her future lifetime,

· T1 and T2 are only observed if they are both greater than 0.
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· j = 1 or 2

· T ∗
j = min(Tj, b),

· dj =





1 , if the person j survives the observation period (Tj > b)

0 , if the person j dies during the observation period

5.2 Specification of the Model of Frees et al. (1996)

Lemma 8 X ∼ F ⇒ F (X) ∼ U(0, 1), where U(0,1) is the uniform distribution on

the interval (0,1)

Proof:

We have to consider three cases. The first case is that x is non-positive. This implies

that Pr(F (X) ≤ x) = 0. The second case is that 0 < x < 1. Since F−1 is increasing,

we have

Pr(F (X) ≤ x) = Pr(F−1(F (X)) ≤ F−1(x))

= Pr(X ≤ F−1(x)) = F (F−1(x)) = x.

The third case is that x ≥ 1. Thus, we have Pr(F (X) ≤ x) = 1.

2

We now want to discuss copulas as a starting point for constructing families of bi-

variate distributions. Upton and Cook (2002) describe a copula as a function that

relates a joint cumulative distribution function to the distribution functions of the

individual variables. Let F be the multivariate distribution function for the random

variables X1, ..., Xn and let the cumulative distribution function of Xj be Fj for all

j. Let Uj be defined by Uj = Fj(Xj) for each j = 1, ..., n. This implies by Lemma 8

that the marginal distribution of Uj has a continuous uniform distribution on (0,1).

Assume that for each uj there is a unique xj such that xj = F−1(uj) and let the joint
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distribution function of U1, ..., Un be C. Then

C(u1, ...un) = Pr[Uj < uj for all j] = F [F−1
1 (u1), ..., F

−1
n (un)]

for all u1, ..., un in (0,1), because Uj < uj is equivalent to Xj < F−1(uj).

The function C is called the copula. Another - equivalent - formula to show the

relationship is:

C[F1(x1), ..., Fn(xn)] = F (x1, ..., xn).

We still haven’t defined a copula. Let us give a precise definition as given by Nelsen

(1999):

Definition 13 A copula is a function C from [0, 1]× [0, 1] to [0, 1] with the following

properties:

1. For every u, v in [0,1],

C(u, 0) = 0 = C(0, v)

and

C(u, 1) = u and C(1, v) = v;

2. For every u1, u2, v1, v2 in [0,1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.
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The name ”copula” was chosen to emphasize the manner in which a copula ”couples”

a joint distribution function to its univariate margins (Nelsen, 1999). Frees et al.

(1996) use a copula to express bivariate distributions. They consider a random vector

(X, Y ), where X and Y represent the ages at death of him and her, respectively. The

distribution function of (X, Y ) is denoted by H, where H(x, y) = Pr(X ≤ x, Y ≤ y)

and F1 and F2 denote the respective marginal distribution functions, that is F1(x) =

H(x,∞) and F2(y) = H(∞, y). We observe bivariate distribution functions of the

form:

H(x, y) = C(F1(x), F2(x)), (42)

where C is a copula.

Copulas are useful because they provide a link between the marginal distributions

and the bivariate distribution. From equation (42) it is obvious that H is determined

if C, F1 and F2 are known. There are many possibilities for the copula function. We

will look at Frank’s copula as presented in Frees et al. (1996). This family can be

expressed as

C(u, v) =
1

α
ln[1 + (exp(αu)− 1)(exp(αv)− 1)/(exp(α)− 1)]. (43)

Theorem 8

H(x, y) =
1

α
ln[1 + (eαF1(x) − 1)(eαF2(y) − 1)/(exp(α)− 1)] (44)

is a joint distribution function with marginal distributions F1(x) and F2(y) when α is

unequal to 0.

Proof:

(1) H(x, y) = FXY (x, y) is a distribution function of two future lifetime random
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variables:

H(0, 0) =
1

α
· ln

[
1 +

(exp(αF1(0))− 1)(exp(αF2(0))− 1)

exp(α)− 1

]

=
1

α
ln

[
1 +

(exp(α · 0)− 1)(exp(α · 0)− 1)

exp(α)− 1

]

=
1

α
· ln(1)

= 0

H(∞,∞) =
1

α
ln

[
1 +

(exp(αF1(∞))− 1)(exp(αF2(∞))− 1)

exp(α)− 1

]

=
1

α
ln

[
1 +

(exp(α)− 1)(exp(α)− 1)

exp(α)− 1

]

=
1

α
ln(exp(α))

= 1

(2) The joint p.d.f. is non-negative:

The second derivative of H = FXY with respect to x and y is denoted as fXY (x, y)

or as h, the derivative of F1 with respect to x is denoted as f1 and the derivative of

F2 with respect to y is denoted as f2.

The first derivative of C(F1(x), F2(y)) with respect to y is:

d

dy
H(x, y) =

1

α
· 1

1 + (eαF1(x) − 1)(eαF2(y) − 1)/(exp(α)− 1)

· exp(αF1(x)) · α · f2(y) · exp(αF2(y))− αf2(y) exp(αF2(y))

eα − 1

=
1

α

exp(αF1(x)) · α · f2(y) · exp(αF2(y))− αf2(y) exp(αF2(y))

eα − 1 + (eαF1(x) − 1)(eαF2(y) − 1)
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The second derivative of C(F1(x), F2(y)) with respect to x and y is

h(x, y) =
d2

dxdy
H(x, y) =

d

dx

[
d

dy
H(x, y)

]

=

[
eα − 1 + (eαF1(x) − 1)(eαF2(y) − 1)

]

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

·

[
eαF1(x) · α · f1(x) · α · eαF2(y) · f2(y)

]

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

−

[
eαF1(x) · α · f2(y) · eαF2(y) − αf2(y)eαF2(y)

]

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

·

[
αeαF1(x)f1(x)eαF2(y) − αf1(x)eαF1(x)

]

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

=
(eα − 1) · α2eαF1(x)eαF2(y)f1(x)f2(y)

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

+
eαF1(x)eαF2(y)α2eαF1(x)eαF2(y)f1(x)f2(y)

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

− eαF1(x)α2eαF1(x)eαF2(y)f1(x)f2(y)

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

− eαF2(y)α2eαF1(x)eαF2(y)f1(x)f2(y)

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

+
α2eαF1(x)eαF2(y)f1(x)f2(y)

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2
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− eαF1(x)eαF2(y)α2eαF1(x)eαF2(y)f1(x)f2(y)

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

+
eαF1(x)α2eαF1(x)eαF2(y)f1(x)f2(y)

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

+
eαF2(y)α2eαF1(x)eαF2(y)f1(x)f2(y)

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

− α2eαF1(x)eαF2(y)f1(x)f2(y)

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

=
(eα − 1)α2eαF1(x)eαF2(y)f1(x)f2(y)

α ·
[
eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2

=
(eα − 1)αeαF1(x)eαF2(y)f1(x)f2(y)[

eα − 1 +

(
eαF1(x) − 1

)(
eαF2(y) − 1

)]2 (45)

The joint p.d.f is non-negative:

Case 1: α > 0: numerator ≥ 0 and denominator ≥ 0 ⇒ p.d.f. ≥ 0

Case 2: α < 0: numerator ≥ 0 and denominator ≥ 0 ⇒ p.d.f. ≥ 0.

(3) F1(x) and F2(y) are marginal distributions:

H(x,∞) =
1

α
ln[1 + (eαF1(x) − 1)(eα − 1)/(eα − 1)]

=
1

α
ln[eαF1(x)]

= F1(x).
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H(∞, y) =
1

a
ln[1 + (eα − 1)(eαF2(y) − 1)/(eα − 1)]

=
1

a
ln[eαF2(y)]

= F2(y).

2

Theorem 9 The parameter α captures the dependence of X and Y . X and Y are

independent in the limit as α → 0.

Proof:

fXY (x, y) can be expressed as f1(x)f2(y)A(α)B(α)C(α), where

A(α) = exp[α(F1(x) + F2(y))],

B(α) =
α

eα − 1
,

C(α) =
1

[1 + (eαF1(x)−1)(eαF2(y)−1)
exp(α)−1

]2

We want to show that

lim
α→0

fXY (x, y) = f1(x)f2(y)

First, we only look at lim(A(α)B(α)C(α)) as α → 0. We have

lim
α→0

A(α) = exp(0) = 1

Using the de l’Hospital Rule, we obtain

lim
α→0

B(α) = lim
α→0

1

eα
=

1

1
= 1
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and lim
α→0

C(α) depends on the term in the denominator. Using the de l’Hospital Rule,

we obtain:

lim
α→0

(eαF1(x) − 1)(eαF2(y) − 1)

exp(α)− 1

= lim
α→0

F1(x)eαF1(x)(eαF2(y) − 1)

eα
+ lim

α→0

F2(y)eαF2(y)(eαF1(x) − 1)

eα

= 0/1 = 0

Therefore lim
α→0

C(α) = 1
(1+0)2

= 1, and lim
α→0

fXY (x, y) = f1(x)f2(y).

2

To completely specify the model, each marginal distribution is assumed to be Gom-

pertz. We will use another parametrization for Gompertz model than the one dis-

cussed in chapter 3:

µ(x) =
1

c
exp

[
x−m

c

]
(46)

With B = 1
c
e−

m
c and b = 1

c
, it can be seen that (46) is only a reparameterized version

of the expression for Gompertz used in (22). We are using this parametrization

because the parameters are informative. For example, m is the mode of the density

(see Lemma 9), and c is approximately the standard deviation.

Lemma 9 m is the mode of the density function corresponding to (46).

Proof:

The density function for a newborn is (see (3))

fT (0)(x) = xp0 · µ(x)

= exp

[
−

∫ x

0

1

c
exp

[
s−m

c

]]
ds · 1

c
exp

[
x−m

c

]
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=
1

c
exp

[
− exp

[
x−m

c

]
+ exp

[−m

c

]
+

[
x−m

c

]]
.

We want to set the first derivative equal to zero using Maple:

Figure 1: Mode of the Density

> diff((1/c)*exp((x-m)/c+exp(-m/c)-exp((x-m)/c)),x);











−
1

c

e









−x m

c

c

e











+ −
−x m

c

e







−

m

c

e









−x m

c

c

> solve({(1/c-exp((x-m)/c)/c)*exp((x-m)/c+exp(-m/c)-exp((x-m)/c))/

c=0},{x});

{ }=x m

> 

Since the second derivative of the density function evaluated at the point x = m

is (using Maple)

− exp(−1 + exp(−m/c))/(c3) < 0,

m is the maximum of the density function. The distribution function of the future

lifetime under this parametrization of Gompertz model is

F (x) = 1− exp

[
−

∫ x

0

µ(y)dy

]

= 1− exp

[
− 1

c
e−

m
c

∫ x

0

e
y
c dy

]

= 1− exp

[
− 1

c
e−

m
c

∫ x/c

0

eucdu

]

= 1− exp

[
− e−

m
c (e

x
c − 1)

]

= 1− exp

[
e−

m
c (1− e

x
c )

]
. (47)
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Our model for modelling the dependence of future lifetimes of coupled lives is speci-

fied. We assume the marginals being Gompertz and express the bivariate distribution

by Frank’s copula. The model has five parameters: m1, c1,m2, c2, α.

5.3 Maximum-Likelihood-Estimation

5.3.1 Maximum-Likelihood Method in General

We now want to use the maximum-likelihood method to compare several marginal

distributions. We will need the derivative of H with respect to x, which will be

denoted by H1, the derivative of H with respect to y will be denoted by H2 and the

second derivative of H with respect to x and y will be denoted by h. We develop the

likelihood function at first in general, only assuming that the derivatives with respect

to x and y of H(x, y) exist. Then we develop it for the model assuming the marginals

being Gompertz and expressing the bivariate distributions by Frank’s copula. Recall

that T1 and T2 are only observed if they are both greater than 0. We define the

conditional distribution function of T1 and T2:

HT (t1, t2) = Pr(T1 ≤ t1, T1 ≤ t2|T1 and T2 are observed)

=
Pr(0 < T1 ≤ t1, 0 < T2 ≤ t2)

Pr(T1 > 0, T2 > 0)

=
Pr(0 < X − x− a ≤ t1, 0 < Y − y − a ≤ t2)

Pr(T1 > 0, T2 > 0)

=
Pr(x + a < X ≤ t1 + x + a, y + a < Y ≤ t2 + y + a)

Pr(X > x + a, Y > y + a)

=
Pr(X ≤ t1 + x + a, y + a < Y ≤ t2 + y + a)

1− [Pr(X < x + a) + Pr(Y < y + a)− Pr(X < x + a, Y < y + a)]

− Pr(X < x + a, y + a < Y ≤ t2 + y + a)

1− [Pr(X < x + a) + Pr(Y < y + a)− Pr(X < x + a, Y < y + a)]

=
Pr(X ≤ t1 + x + a, Y ≤ t2 + y + a)− Pr(X ≤ t1 + x + a, Y ≤ y + a)

1− [H(x + a,∞) + H(∞, y + a)−H(x + a, y + a)]
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− Pr(X < x + a, Y ≤ t2 + y + a)− Pr(X < x + a, Y ≤ y + a)

1− [H(x + a,∞) + H(∞, y + a)−H(x + a, y + a)]

=
H(t1 + x + a, t2 + y + a)−H(t1 + x + a, y + a)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

− H(x + a, t2 + y + a)−H(x + a, y + a)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)
. (48)

Frees at al (1996) point out that this data is censored in that most policyholders

survived through the end of the observation period. Being censored means that he

or she survives the end of the observation period, and being uncensored means that

he or she dies during the observation period. We have to consider four cases: the

lifetimes can be both uncensored, the first uncensored and the second censored, the

first censored and the second uncensored and both censored.

· Case 1: Both lifetimes are uncensored

We may assume that t1 < b and t2 < b. We are in the case, where both die during

the observation period. Using the notation from section 5.1 we have that d1 = 0 and

d2 = 0.

Pr(T ∗
1 < t1, T

∗
2 < t2|T ∗

1 and T ∗
2 are observed)

= Pr(min(T1, b) < t1, min(T2, b) < t2|T1 > 0, T2 > 0)

= Pr(T1 < t1, T2 < t2|T1 > 0, T2 > 0)

= HT (t1, t2)

The contribution to the likelihood-function is the second derivative of HT (t1, t2) with

respect to t1 and t2. Using (48) we get:

h(x + a + t1, y + a + t2)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)
(49)
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· Case 2 : first lifetime uncensored, second censored.

We may assume: t1 < b and t2 ≥ b. We are in the case where he dies during the

observation period and she survives the observation period. Therefore we have d1 = 0

and d2 = 1.

Pr(T ∗
1 < t1, T

∗
2 = t2|T ∗

1 and T ∗
2 are observed)

= Pr(min(T1, b) < t1, min(T2, b) = b|T1 > 0, T2 > 0)

= Pr(T1 < t1, T2 ≥ b|T1 > 0, T2 > 0)

= HT (t1,∞)−HT (t1, b)

The contribution to the likelihood-function is the derivative of this probability with

respect to t1 . Using (48) we get:

HT (t1,∞)−HT (t1, b)

=
H(x + a + t1,∞)−H(x + a,∞)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

− H(x + a + t1, y + a)−H(x + a, y + a)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

− H(x + a + t1, y + a + b)−H(x + a, y + a + b)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

+
H(x + a + t1, y + a)−H(x + a, y + a)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

So, the derivative of this probability with respect to t1 is :

H1(x + a + t1,∞)−H1(x + a + t1, y + a)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

− H1(x + a + t1, y + a + b)−H1(x + a + t1, y + a)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

=
H1(x + a + t1,∞)−H1(x + a + t1, y + a + b)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)
(50)
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· Case 3 : first lifetime censored, second uncensored.

We may assume: t1 ≥ b and t < b. We are in the case, where he survives the

observation period and she dies during the observation period. Therefore d1 = 1 and

d2 = 0.

Pr(T ∗
1 = b, T ∗

2 < t2|T ∗
1 and T ∗

2 are observed)

= Pr(min(T1, b) = b, min(T2, b) < t2|T1 > 0, T2 > 0)

= Pr(T1 ≥ b, T2 < t2|T1 > 0, T2 > 0)

= HT (∞, t2)−HT (b, t2)

The contribution to the likelihood-function is the derivative of this probability with

respect to t2. Using (48) we get:

HT (∞, t2)−HT (b, t2)

=
H(∞, y + a + t2)−H(x + a, y + a + t2)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

− H(∞, y + a)−H(x + a, y + a)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

− H(x + a + b, y + a + t2)−H(x + a, y + a + t2)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

+
H(x + a + b, y + a)−H(x + a, y + a)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

So, the derivative of this probability with respect to t2 is:

H2(∞, y + a + t2)−H2(x + a, y + a + t2)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

− H2(x + a + b, y + a + t2)−H2(x + a, y + a + t2)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)

=
H2(∞, y + a + t2)−H2(x + a + b, y + a + t2)

1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)
(51)
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· Case 4 : both lifetimes censored.

We may assume: t1 ≥ b and t2 ≥ b. We have d1 = 1 (he survives the observation

period) and d2 = 1 (she survives the observation period). The contribution to the

likelihood-function is:

Pr(T ∗
1 = b, T ∗

2 = b|T ∗
1 and T ∗

2 are observed)

= Pr(min(T1, b) = b, min(T2, b) = b|T1 > 0, T2 > 0)

= Pr(T1 ≥ b, T2 ≥ b|T1 > 0, T2 > 0)

= Pr(X − x− a ≥ b, Y − y − a ≥ b|T1 > 0, T2 > 0)

=
Pr(X ≥ x + a + b, Y ≥ y + a + b)

Pr(T1 > 0, T2 > 0)

=
1− Pr(X < x + a + b)− Pr(Y < y + a + b)

Pr(X > x + a, Y > y + b)

+
Pr(X < x + a + b, Y < y + a + b)

Pr(X > x + a, Y > y + b)

=
1−H(x + a + b,∞)−H(∞, y + a + b) + H(x + a + b, y + a + b)]

1− [Pr(X < x + a) + Pr(Y < y + b)− Pr(X < x + a, Y < y + b)]

=
1−H(x + a + b,∞)−H(∞, y + a + b) + H(x + a + b, y + a + b)

1−H(x + a,∞)−H(∞, y + b) + H(x + a, y + b)

(52)

If we combine these four cases, we can get the likelihood-function for a single obser-

vation as :

L(x, y, t1, t2, d1, d2, a, b)

= [(h(x + a + t1, y + a + t2))
(1−d1)(1−d2)

·(H1(x + a + t1,∞)−H1(x + a + t1, y + a + b))(1−d1)d2

·(H2(∞, y + a + t2)−H2(x + a + b, y + a + t2))
d1(1−d2)
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·(1−H(x + a + b,∞)−H(∞, y + a + b) + H(x + a + b, y + a + b))d1·d2 ]/

[1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)] (53)

Thus, the logarithm of the likelihood-function for a single observation is:

ln[L(x, y, t1, t2, d1, d2, a, b)]

= (1− d1)(1− d2) · ln[h(x + a + t1, y + a + t2)]

+ ((1− d1)d2) · ln[H1(x + a + t1,∞)−H1(x + a + t1, y + a + b)]

+ (d1(1− d2)) · ln[H2(∞, y + a + t2)−H2(x + a + b, y + a + t2)]

+ (d1 · d2) · ln[1−H(x + a + b,∞)

− H(∞, y + a + b) + H(x + a + b, y + a + b)]

− ln[1−H(x + a,∞)−H(∞, y + a) + H(x + a, y + a)] (54)

The log-likelihood-function for the whole data set is :

14889∑
i=1

ln[L(xi, yi, t1i, t2i, d1i, d2i, ai, bi)]

5.3.2 Maximum-Likelihood Method for our Model

To evaluate the maximum-likelihood-estimates for the model assuming the marginals

being Gompertz and expressing the bivariate distributions by Frank’s copula, we need

the derivatives of equation (44)

H(x, y) =
1

a
ln[1 + (eαF1(x) − 1)(eαF2(y) − 1)/(eα − 1)] :

H1(x, y) =
f1(x)eαF1(x)(eαF2(y) − 1)

eα − 1 + (eαF1(x) − 1)(eαF2(y) − 1)
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and

H2(x, y) =
f2(x)eαF2(y)(eαF1(x) − 1)

eα − 1 + (eαF1(x) − 1)(eαF2(y) − 1))

and (see equation (45))

h(x, y) =
(eα − 1)aeαF1(x)eαF2(y)f1(x)f2(y)

[eα − 1 + (eαF1(x) − 1)(eαF2(y) − 1)]2
,

where

Fj(x) = 1− exp[exp(−mj/cj)(1− exp(x/cj))] (see (47))

fj(x) = − exp[exp(−mj/cj)(1− exp(x/cj))] · exp(−mj/cj)

·(−1) exp(x/cj) · (1/cj)

= exp[exp(−mj/cj)(1− exp(x/cj))] · exp((x−mj)/cj) · (1/cj)

F1(x) is the distribution function of the future lifetime of the husband and F2(x) is

the distribution function of the future lifetime of the wife, and m1, c1 are the param-

eters of the distribution function of the husband and m2, c2 are the parameters of the

distribution of his wife, j is either 1 or 2.

Frees et al. (1996) get the following maximum-likelihood estimates for their model

assuming the marginals being Gompertz and expressing the bivariate distributions
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by Frank’s copula:

m1 = 85.82

c1 = 9.98

m2 = 89.40

c2 = 8.12

α = −3.367 (55)

and they get the following maximum-likelihood estimates assuming independence and

still using Gompertz marginals:

m1 = 86.38

c1 = 9.83

m2 = 92.17

c2 = 8.11

α is not applicable (56)

To be able to interpret the dependence parameter α, we should convert it to

Spearman’s correlation coefficient ρs. Recall Spearman’s correlation coefficient from

equation (39)

ρs = 6Pr[(X1 −X2)(Y1 − Y3) > 0]− 3. (57)

If C is the Frank’s copula and the marginals are Gompertz, then Frees et al. (1996)

state that:

ρ(α) = 1− 12(D2(−α)−D1(−α))/α, (58)
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where

Dk(x) =
k

xk

∫ x

0

tk

exp(t)− 1
dt (59)

Using Maple we get Figure 2:

Figure 2: Spearman

> int(t/(exp(t)-1),t=0..3.367);

1.491950961

> int(t^2/(exp(t)-1),t=0..3.367);

1.702578300

> 

Thus, we have

D1(−α) = D1(3.367) =
1

3.367
· 1.491950961 = 0.443109879

and

D2(−α) = D2(3.367) =
2

3.3672
· 1.702578300 = 0.300366059.

Hence

ρ(α) = ρ(−3.367) = 1− 12(D2(3.367)−D1(3.367))/(−3.367) = 0.49126.

If we have independence the correlation is zero (see Theorem 7). Since ρs = 0.49 this

shows a strong statistical dependence (For dependence of the future lifetimes see also

section 5.6).
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5.4 How Dependence of Joint Lives Effects Annuity Values

We describe as in Frees at al. (1996) the effects of our model of mortality on

annuity values. The last-survivor annuity for insureds x and y is an annuity in

respect to (xy). Applying (13), we get that the actuarial present value of this annuity

is

äxy =
∞∑

k=0

vk
kpxy, (60)

where v is the discount factor and i is a constant effective interest rate and

kpxy = 1−HT (k, k). (61)

HT is as defined in equation(48).

The maximum likelihood estimates with and without independence are listed in

(55) and (56). The annuity values are compared by dividing the annuity values

estimated without an independence assumption by those estimated with the inde-

pendence assumption. Frees et al. (1996) observe this ratio for example for joint

and r annuities. These annuities pay a special amount, for example 1 dollar, while

both annuitants are alive and r dollars while only one annuitant is alive. Usually r

is two-thirds or one-half. In the United States, for these annuities there may be a

larger market than for annuities with r = 1 because the Employee Retirement In-

come Security Act (ERISA) mandates all qualified pension plans to offer to qualified

beneficiaries a joint and survivor annuity with r at least 50 percent (see Chapter I

for details). The actuarial present value for a joint and r annuity is

äxy(r) =
∞∑

k=0

vk(rkpx + rkpy − (2r − 1)kpxy), (62)
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where kpx = 1−HT (k,∞) is the conditional probability that a person aged x survives

k years, kpy = 1−HT (∞, k) is the conditional probability that a person aged y sur-

vives k years, and kpxy = kpx+kpy−kpxy = 1−HT (k,∞)−HT (∞, k)+HT (k, k) is the

conditional probability that both persons aged x and y survive k years. Explanation

of the formula: What does rkpx + rkpy − 2rkpxy + kpxy mean? Let’s first look at

rkpx + rkpy: He gets r dollars if he survives and she is dead. Similarly, she gets r dol-

lars if she survives and he is dead and they both get r dollars while they are both alive.

This implies that we have to subtract 2r times the probability that they are both alive

and then we still have to add kpxy, because they get 1 dollar while they are both alive.

Frees et al. (1996) evaluated the following ratios of dependent to independent

joint and r annuity values assuming 5 percent interest and equal annuity age. A ratio

of less than one indicates that the annuity values assuming independence are larger

than those assuming dependence:

Table 1: Ratios of Dependent to Independent Joint and r Annuity Values
r=0 r=1/4 r=1/3 r=1/2 r=2/3 r=1

50 years 1.0 0.99 0.99 0.98 0.98 0.97
55 years 1.0 0.98 0.98 0.98 0.97 0.96
60 years 0.99 0.98 0.98 0.97 0.96 0.95
65 years 0.98 0.97 0.97 0.96 0.96 0.95
70 years 0.97 0.96 0.96 0.95 0.95 0.94
75 years 0.94 0.94 0.94 0.94 0.94 0.94
80 years 0.89 0.91 0.92 0.93 0.94 0.95

We can see that almost every ratio is less than one. For joint and r = 1 annuities,

we can see that the ratio is approximately 0.95. This implies that the annuity val-

ues for this special annuity are reduced by approximately 5 percent when dependent

mortality models are used compared to the standard model of independence.
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5.5 Review of Alternative Notation

In this subsection we want to present some alternative notation developed by Car-

riere (2000). Recall from section 5.1 that 14,889 policies where one person was female

and the other was male were observed. Carriere (2000) writes the observations for

each policy k = 1 . . . 14,889 in an observation vector Xk = (xmk, xfk, tmk, tfk, lk)
′
,

where

· xmk is the age of the male at the time of entering the study,

· xfk is the age of the female at the time of entering the study,

· tmk is zero if he survives the observation period and otherwise tmk + xmk is his age

at death.

· Similarly, tfk is zero if she survives the observation period and otherwise tfk + xfk

is her age at death.

· lk is the length of time from the date of entering the study to the end of the study.

Usually lk =12/31/93 - 29/12/88 = 5 years +2 days = 5 years +2/365 years =5.055

years.

· Let θ denote the vector of parameters.

· Smf (tm, tf | θ) = Pr(T (xm) > tm, T (xf ) > tf ) denotes the bivariate survival function

of the time-at-death random variables T (xm) and T (xf ).

· T (xm) is the future lifetime of a person currently aged xm.

· Smf
1 denotes the partial derivative of Smf with respect to tm,

· Smf
2 denotes the partial derivative of Smf with respect to tf , and

· Smf
12 denotes the partial derivative of Smf with respect to tm and tf .

· The likelihood function is denoted as L(θ). Its representation is given in terms of

survival functions and not in terms of cumulative distributions functions as in Frees

et al. (1996).
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L(θ) =

14,889∏

k=1

[Ldd
k ]δ

m
k δf

k [Lds
k ]δ

m
k (1−δf

k )[Lsd
k ](1−δm

k )δf
k [Lss

k ](1−δm
k )(1−δf

k ), (63)

where

δm
k =





1 , if he dies

0 , if he survives

δf
k =





1 , if she dies

0 , if she survives

Ldd
k = Smf

12 (tmk, tfk| θ),

Lds
k = −Smf

1 (tmk, lk| θ),

Lsd
k = −Smf

2 (lk, tfk| θ),

Lss
k = Smf (lk, lk| θ),

The marginal functions of Smf (tm, tf | θ) will be denoted as Sm, Sf and they are defined

as Sm(t| θ) = Smf (t, 0| θ) and Sf (t| θ) = Smf (0, t| θ). Since

Sm(t| θ) = Pr(T (xm) > t) = tpxm =
t+xmp0

xmp0

,

only xp0 needs to be defined for the marginals.

5.6 Dependence of his and her Future Lifetime

There are different possibilities to summarize the dependence between two random

variables by a single measure. If we suppose that the death of a man, aged xm, has

no effect on the death or survival of his wife, aged xf (or vice versa), then the

two lives are not associated. This means, stochastically, that T (xm) and T (xf ) are
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independent, i.e. Pr(T (xm) ≤ tm, T (xf ) ≤ tf ) = Pr(T (xm) ≤ tm)Pr(T (xf ) ≤ tf )

for all tm, tf . In this case a usual measure of association will be zero. Carriere and

Chan (1986) defines a pair of lives in agreement if a long life for one is associated

with a long life for the other. In this case, the measure will be positive. He defines

the two lives to be in perfect agreement if there exists a strictly increasing function

I(·) such that T (xm) = I(T (xf )). Similarly, he defines the lives to be in disagreement

if a short life for one is associated with a long life for the other. In this case, the

measure will be negative. And he defines the lives to be in perfect disagreement if

there exists a strictly decreasing function D(·) such that T (xf ) = D(T (xm)). Usually,

the measure of association is the linear correlation coefficient. Let µxm = E[T (xm)],

σ2
xm

= V ar[T (xm)] and similarly µxf
= E[T (xf )], σ2

xf
= V ar[T (xf )].

Definition 14 The linear correlation coefficient is:

Cor[T (xm), T (xf )] =
Cov[T (xm), T (xf )]

σxmσxf

=
E[T (xm)T (xf )]− µxmµxf

− µxmµxf
+ µxmµxf

σxmσxf

= E

[
T (xm)T (xf )− µxmT (xf )− µxf

T (xm) + µxmµxf

σxmσxf

]

= E

[
(T (xm)− µxm)(T (xf )− µxf

)

σxmσxf

]

Other measures are Spearman’s correlation coefficient and Kendall’s population cor-

relation coefficient, which are defined as (see Definition 10 and Definition 12)

ρs = 6Pr[(Xm1 −Xm2)(Xf1 −Xf3) > 0]− 3 (64)
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and

τ = 2Pr[(Xm2 −Xm1)(Xf2 −Xf1) > 0]− 1. (65)

If Txm and Txf
are independent, both measures are zero (see Theorem 6 and Theorem

7).

Assume that the marginal distributions are Gompertz with paramters mm =

86.37, σm = 9.83,mf = 92.17, σf = 8.11 (see (55)). Let Gi,k denote the known

continuous distribution function of T (xi,k), given that the death occur during the ob-

servation period (i = m, f and k = 1, ..., 229; only the information in the 229 policies

is used where both persons died during the observation period because the censored

observations should be neglected.).

Gi,k(ti,k) = Pr(T (xi,k) ≤ ti,k|T (xi,k) ≤ lk)

=
Pr(T (xi,k) ≤ ti,k)

Pr(T (xi,k) ≤ lk)

=
1− Si(ti,k|θ)
1− Si(lk|θ) .

Gi,k(T (xi,k)) =: Ui,k ∼ U(0, 1) (see Lemma 8). Under the null hypothesis of inde-

pendence of T (xm) and T (xf ), the pairs (Umk, Ufk) for k = 1, ..., 229 are independent

and identically distributed with a common copula C(u, v) = uv. This means that

(U11, U21), ...(U1,229, U2,229) is a random sample from a continuous bivariate popula-

tion (see section (4.2) for more details about these tests)

Let Ri,k denote the rank of Ui,k. Then the estimate of Spearman’s correlation coeffi-
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cient is

ρ̂s =

∑229
k=1[Rmk − 229+1

2
][Rfk − 229+1

2
]

229(2292 − 1)/12
= 0.415.

(For a justification of ρ̂s see (41)), the estimate of Kendall’s Tau τ̂ is 0.325.

Under the assumption of independence and for a large sample size ρ̂s is asymptot-

ically normal with mean of zero and variance of 1
229−1

(Lemma 7). Since τ̂ = 2K
n(n−1)

=

0.325, this implies that K = 8484.45. Under independence and for a large sample

size, K is asymptotically normal with a mean of zero and a variance of n(n−1)(2n+5)
18

(see Lemma 4). We have | ρ̂s√
1/(n−1)

| = √
228· ρ̂s = 6.266 > z0.025 = 1.96, where z0.025 is

the 0.025-quantile of the standard normal distribution, and |K∗| = K√
n(n−1)(2n+5)/18

=

7.32 > z0.025 = 1.96. Thus the null hypothesis of independence of T (xm) and T (xf )

can be rejected. The result from this method must be used with caution because we

are assuming that the marginals are known (Gompertz) and we only use 229 obser-

vations.

5.7 Alternative Bivariate Models

5.7.1 Alternative Marginals

In this section the Gompertz law for the marginals will be compared to the Inverse-

Gompertz, Lognormal, Weibull and Gamma models. The survival functions for the

five models:

Gompertz: xp0 = exp

[
e−

m
σ (1− e

x
σ )

]
(66)

Weibull: xp0 = exp(−(x/m)m/σ) (67)
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Gamma: xp0 =

∫ ∞

x

(zm/σ2)m2/σ2

zΓ(m2/σ2)
exp(−zm/σ2)dz (68)

Lognormal: xp0 =

∫ ∞

m/σ ln(x/m)

1√
2π

exp(−z2/2)dz (69)

Inverse Gompertz: xp0 =
1− exp(− exp(−x−m

σ
))

1− exp(− exp(m
σ
))

(70)

The paramatrization may be unfamiliar, but the parameters are informative. We

already used the parametrization for the Gompertz model in equation (46). In all

cases m > 0 is a location parameter and σ > 0 is a dispersion parameter (Carriere,

2000).

5.7.1.1 Maximum-Likelihood

Now we want to find the maximum-likelihood estimates for (m1, σ1) and (m2, σ2)

denoted by (m̂1, σ̂1) and (m̂2, σ̂2). Estimating the male and female marginals sepa-

rately is equivalent to estimating the marginals under an independent bivariate model.

This means that Smf (tm, tf | θ) = Sm(tm| θ)Sf (tf | θ). Let θ̂ denote the maximum like-

lihood estimator of θ. Carriere’s results for using these five models as marginals for

an independent bivariate model are listed in the following table:

Table 2: Maximum-Likelihood Estimates
m̂m σ̂m m̂f σ̂f − ln[L(θ̂)]

Gompertz 86.37 9.83 92.16 8.11 10033.8
Weibull 86.72 10.11 92.99 9.26 10047.2
Gamma 84.47 13.23 93.36 15.39 10113.2
Lognormal 83.94 13.64 93.28 16.64 10130.9
Inverse-Gompertz 79.51 14.31 89.40 18.53 10180.5

We can observe that m̂m < m̂f for all models; implying that the average age of a

male is less than the average age of a female for every model. The smallest value for

− ln[L(θ̂)] is for the Gompertz model. This implies that the Gompertz model is the
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best model of the five considered.

5.7.1.2 Generalized Likelihood Ratio Tests

Since the Log-Likelihood-values of the Gompertz and the Weibull model are very

close, we want to test the null hypothesis H0: Weibull versus the alternative hy-

pothesis H1: Gompertz. Since the hypotheses are non-nested, we first have to look

at another test: H0: Weibull versus H1: mixture of Weibull and Gompertz. Let

Q := pW + (1 − p)G, 0 ≤ p ≤ 1, denote a mixture of a Weibull and a Gompertz

density. The paramters of Q are two paramters of G and two paramters of W and

the paramter p, so that the number of paramters of Q is 5. Testing the hypothesis

H0: Weibull versus the alternative hypothesis H1: Q is equivalent to testing the hy-

pothesis H0: p = 1 versus the alternative hypothesis H1: p 6= 1. Let LQ(θ̂Q) denote

the likelihoodfunction for Q evaluated at the maximum likelihood estimate θ̂Q and let

LW (θ̂W ) denote the likelihoodfunction for W evaluated at the maximum likelihood

estimate θ̂Q. The test statistic is

Y := −2 ln[
LW (θ̂W )

LQ(θ̂Q)
] ∼ χ2(5− 2) = χ2(3)

(see section 4.1). The test, which rejects H0 in favor of H1: Q whenever Y > χ2(3, α),

has a significance level of approximately α for a large sample size. However, we don’t

want to test the hypothesis H0: Weibull versus the alternative hypothesis H1:Q,

instead we want to test the hypothesis H0:Weibull versus the alternative hypothesis

H1: Gompertz. Let LG(θ̂G) denote the likelihoodfunction of the Gompertz model

evaluated at the maximum likelihood estimate θ̂G . Let

T = −2 ln

[
LW (θ̂W )

LG(θ̂G)

]
.
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Lemma 10

Pr(T > χ2(3, a)) < Pr(Y > χ2(3, a)) ≈ α.

Proof:

Note that

LQ(θ̂Q) = sup{f(x1, ..., xn; p,mW , σW ,mG, σG) : (p,mW , σW ,mG, σG) ∈ θ},

where mW and σW are the parameters of the Weibull distribution and mG and σG

are the parameters of the Gompertz distribution. Besides note that

LG(θ̂G) = sup{f(x1, ..., xn; p,mW , σW ,mG, σG) : (p = 1, 0, 0,mG, σG) ∈ θ}.

This implies that we take the supremum over a larger set for LQ(θ̂Q) than for LG(θ̂G).

Thus, we have that LQ(θ̂Q) is greater than or equal to LG(θ̂G). That is equivalent to

ln[LQ(θ̂Q)] ≥ ln[LG(θ̂G)]

⇔ −2 ln[LW (θ̂W )] + 2 ln[LQ(θ̂Q)] ≥ −2 ln[LW (θ̂W )] + 2 ln[LG(θ̂G)]

⇔ Y ≥ T.

Hence we have

Pr(T > χ2(3, a)) < Pr(Y > χ2(3, a)) ≈ α

for a large sample size.

2
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This implies that if we reject H0: Weibull in favor of H1: Gompertz whenever

T > χ2(3, α) this test has a level of significance of approximately α.

Let’s look at the data set (Carriere, 2000):

Table 3: Log-Likelihood Function Evaluated at the Log-Likelihood Estimates

−lnL(θ̂)
Gompertz 10033.8
Weibull 10047.2

Thus, the test statistic for the asymptotic generalized ratio test (see section 4.1.2)

T = −2 ln[
LW (θ̂W )

LG(θ̂G)
] = −2 ln[LW (θ̂W )]− (−2 ln[LG(θ̂G)])

= 2 · 10, 047.2− 2 · 10, 033.8 = 26.8 > χ2(3, 0.05) = 7.81.

This implies that H0 should be rejected.

5.7.2 Alternative Families

In section 5.2 a model is specified using Gompertz marginals and Frank’s copula.

In the previous section we have seen that Gompertz’s law for the marginals seems to

be a good fit. In this section the family due to the Linear-Mixing-Frailty as bivariate

distribution is compared to the families due to Frailty, Normal, Generalized Frank,

Generalized Normal, Frank and Correlated Frailty. The copulas of these models are

listed below:

Frank (F):

C(u, v) =
1

α
ln

[
exp(−α)− 1

exp(−α(u + v))− exp(−α · u)− exp(−α · v) + exp(−α)

]
,

α ∈ <, α 6= 0
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Frailty (Fr):

C(u, v) = max(0, (u1−eα

+ v1−eα − 1)
1

1−eα ), α ∈ <, α 6= 0

Normal (N):

C(u, v) = H(Φ−1(u), Φ−1(v)| ρ), −1 < ρ < 1,

where Φ−1 is the inverse function of Φ, that is Φ−1(Φ(t)) = t and

Φ(t) =

∫ t

−∞

e−z2/2

√
2π

dz

H(x, y| ρ) =

∫ x

−∞

∫ y

−∞

exp

[
− 0.5(z2

1 − 2ρz1z2 + z2
2)/(1− ρ2)

]

2π
√

1− ρ2
dz2dz1

The three models already presented are one-parameter families of copulas. We want

to describe how a multiple-parameter family of copulas can be constructed as in

Carriere (2000).

Lemma 11 Let g(· ) be an increasing function with g(0) = 0 and g(1) = 1. Assume

that g(· ) has an inverse g−1(· ) such that g−1(g(u)) = u. If C(u, v) is a copula then

g−1[C(g(u), g(v))] is also a copula.

If g(u) = uξ, ξ > 0, then g(· ) is an increasing function with g(0) = 0ξ = 0, since

ξ > 0 and thus ξ 6= 0, and g(1) = 1ξ = 1. The inverse of g(· ) is g−1(u) = u1/ξ. Hence

the preliminaries of Lemma 11 are fulfilled. Using the technique and Frank’s copula

we obtain a Generalized Frank model, defined as follows:
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Generalized Frank:

C(u, v) = [C(uξ, vξ)]1/ξ

=

[
1

α
ln

[
exp(−α)− 1

exp(−α(uξ + vξ))− exp(−α · uξ)− exp(−α · vξ) + exp(−α)

]]1/ξ

,

α ∈ <, α 6= 0

Correlated Frailty (CF):

C(u, v) =
(uv)1−p

(u−α + v−α − 1)p/α

Linear-Mixing Frailty (LMF):

C(u, v) = (1− p)uv + p(u−α + v−α − 1)−1/α, 0 ≤ p ≤ 1, α > 0

5.7.2.1 Maximum-Likelihood

We will use as in Carriere (2000) the Maximum-Likelihood method to compare

these copulas and the results for the maximum likelihood estimates and the likelihood

function evaluated at the maximum likelihood estimates are shown in the following

table (following Carriere, 2000):
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Table 4: Maximum-Likelihood Estimates for Various Bivariate Models
m̂m σ̂m m̂f σ̂f - - ρ̂s −lnL(θ̂)

LMF 86.5 10.1 92.5 8.39 α̂ = 2.41 ρ̂ = 0.339 0.325 9947.2
CF 86.5 10.1 92.3 8.29 α̂ = 2.41 ρ̂ = 0.348 0.275 9947.2
GF 86.5 10.1 92.2 8.16 α̂ = 1.54 ξ = 3.06 0.249 9949.1
F 86.5 10.2 92.5 8.31 α̂ = 3.04 - 0.454 9951.1
N 86.5 10.1 92.3 8.20 ρ̂ = 0.326 - 0.313 9953.9
Fr 86.6 10.5 92.8 8.51 α̂ = 1.00 - 0.639 9958.3
Ind. 86.4 9.83 92.2 8.11 - - 0 10033.8

Since the Linear-Mixing Frailty and the Correlated Frailty have the largest value

for the statistic ln[L(θ̂)], they seem to be good models.

5.7.2.2 Generalized Likelihood Ratio Tests

(See section 4.2 for more details about likelihood ratio tests) We want to test

· a) H0: Generalized Frank, versus the alternate H1: Linear-Mixing Frailty

· b) H0: Correlated Frailty, versus the alternate H1: Linear-Mixing Frailty

· c) H0: Frank, versus the alternate H1: Linear-Mixing Frailty

· d) H0: Normal, versus the alternate H1: Linear-Mixing Frailty

· e) H0: Frailty, versus the alternate H1: Linear-Mixing Frailty

· f) H0: Independent Model, versus the alternate H1: Linear-Mixing Frailty

· a) The test statistic for this test is

T = −2 ln[
LGF (θ̂GF )

LLMF (θ̂LMF )
]

= −2[ln(LGF (θ̂GF ))− ln(LLMF (θ̂LMF ))],

where LGF (θ̂GF ) denotes the likelihood function for the generalized Frank evaluated

at the Maximum-Likelihood estimate θ̂GF and LLMF (θ̂LMF ) is the likelihood function
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for the Linear Mixing Frailty evaluated at the Maximum-Likelihood estimate θ̂LMF .

Since the hypotheses are non-nested, we use the testing methodology as in section

5.7.1.2. The number of degrees of freedom is 3 (Carriere, 2000). Plugging in the

values from the previous table we have

T = −2 ln[−9949.1 + 9947.2] = 3.8 < χ2(3, 0.05) = 7.81.

This implies that H0: Generalized Frank should not be rejected.

b) through f) are very similar. We are only looking at the results and using the

degrees of freedom in Carriere, 2000.

· b) T = −2 ln

[
LCF (θ̂CF )

LLMF (θ̂LMF )

]
= −2 ln[−9947.2 + 9947.2] = 0 < χ2(1, 0.05) = 3.84.

This implies that H0: Correlated Frailty is not rejected.

· c) T = 7.8 > χ2(2, 0.05) = 5.99.

This implies that H0: Frank is rejected.

· d) T = 13.4 > χ2(2, 0.05) = 5.99.

This implies that H0: Normal is rejected.

· e) T = 22.2 > χ2(1, 0.05) = 3.84.

This implies that H0: Frailty is rejected.

· f) T = 173.2 > χ2(2, 0.05) = 5.99.

This implies that H0: Independent model is rejected.

These tests imply that the Linear Mixing Frailty is significantly better than all the

other models except the Correlated Frailty and the Generalized Frank model. The

independent and Frailty models are nested within the Linear Mixing Frailty model,

the generalized Frank, Frank and Normal are non-nested. Since the statistic ln[L(θ̂)]

of the Linear Mixing Frailty is larger than or equal to the statistic of the other models,
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we can conclude that the Linear Mixing Frailty is the preferred model. Besides it is

less complicated than the generalized Frank and the correlated Frailty models.
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