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Outline Motivation Tail order Tail negative dependence Mixed copula regression model Conclusions

Aggregate loss modeling [3]

Modeling aggregate medical expenditures per year by considering:

Loss frequency: number of outpatient department visits to
physicians.
Loss severity: average facility expenses per visit.
Covariates: age, gender, race, income, insurance coverage, etc.
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Aggregate loss modeling (cont’d)

Zeros were removed to better illustrate dependence structures.

A binary regression model, say, Logistic regression can be used
first for loss frequency.

Challenges:

regression on loss frequency and loss severity together while
accounting for the dependence structure between them.
no suitable dependence models for the special dependence
pattern: negative dependence in the upper tail, and
independence in the lower tail.

L. Hua (NIU) 4/35
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Tail dependence - Gumbel copula

C (1− u, 1− u) ∼ λu, u → 0+; 0 < λ ≤ 1.
limu→1− P[U1 > u|U2 > u] = limu→1− P[U2 > u|U1 > u] = λ.
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From tail dependence to tail order

Tail dependence:

C (1− u, 1− u) ∼ λu, u → 0+; 0 < λ ≤ 1.

Tail order:

C (1− u, 1− u) ∼ uκ`(u), u → 0+; 1 ≤ κ.

Smaller tail order ⇒ stronger dependence in the tails.

κ = 1: usual tail dependence;

1 < κ < 2: intermediate tail dependence;

κ = 2: tail quadrant independence;

κ > 2: tail negative dependence.

Upper and lower tails can be quantified separately.
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Example - Gaussian copula

Bivariate Gaussian copula:

CΦ2(u1, u2) = Φ2(Φ−1(u1),Φ−1(u2); Σ),

where Φ2(·; Σ) is the joint cumulative distribution function (cdf) of
a standard bivariate Gaussian random vector with positive definite
correlation matrix Σ.

κ = 2/(1 + ρ);

`(u) = (− log u)−ρ/(1+ρ).

L. Hua (NIU) 7/35
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Elliptical copula

let X := (X1,X2) be an elliptical random vector such that

X
d
= RAU, (1)

where R ≥ 0 is independent of U, U is uniformly distributed on the
surface of the unit hypersphere {z ∈ R2|zTz = 1},

AAT = Σ =

(
1 ρ
ρ 1

)
, X ∼ F2 and X1,X2 ∼ F .

C (u1, u2) = F2(F−1(u1),F−1(u2); Σ).

L. Hua (NIU) 8/35
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Univariate tail heaviness

Need to quantify the tail heaviness of R.

Maximum Domain of Attraction (MDA)
(Fisher-Tippett theorem) Let (Xn) be a sequence of iid
random variables. If there exist constants cn > 0, dn ∈ R and
some non-degenerate H such that

maxn{X1, . . . ,Xn} − dn
cn

→d H,

then H is one of the following distributions: Fréchet (Φα),
Gumbel (Λ) and Weibull (Ψα).

L. Hua (NIU) 9/35
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Elliptical copula (cont’s)

Let C be the copula for an elliptical random vector X := (X1,X2)
constructed as (1), and bρ :=

√
2/(1 + ρ).

If R ∈ MDA(Λ), then the upper and lower tail orders of C is

κ = lim
r→∞

log (1− FR(bρr))

log (1− FR(r))
,

provided that the limit exists.

If R ∈ MDA(Φα), then κ = 1.

L. Hua (NIU) 10/35
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Elliptical copula (cont’s)

Example: Bivariate symmetric Kotz type copula
The density generator

g(x) = KxN−1 exp{−βxξ}, β, ξ,N > 0,

where K is a normalizing constant. The density function of R
is fR(x) = 2πxg(x2) = 2Kπx2N−1 exp{−βx2ξ}. Therefore,
the tail order for the symmetric Kotz type copula is

κ = [2/(1 + %)]ξ.

Gaussian copula belongs to this class with N = 1, β = 1/2
and ξ = 1, so its tail order is 2/(1 + %).

L. Hua (NIU) 11/35
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Extreme value copula

If a copula C satisfies C (ut1, . . . , u
t
d) = C t(u1, . . . , ud) for any

(u1, . . . , ud) ∈ [0, 1]d and t > 0, then we refer to C as an extreme
value copula, and

C (u1, . . . , ud) = exp{−A(− log u1, . . . ,− log ud)}.

Either upper tail dependence (eg: Gumbel copula, Galambos
copula) or independence.

Bivariate cases: κU = 1 with λU = 2− A(1, 1), and
κL = A(1, 1).

L. Hua (NIU) 12/35



Outline Motivation Tail order Tail negative dependence Mixed copula regression model Conclusions

Archimedean copula - Laplace Transform

A LT-Archimedean copula

Cψ(u1, . . . , ud) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)) (2)

has a mixture representation with LT ψ. That is,

Cψ(u1, . . . , ud) =

∫ ∞
0

d∏
j=1

G η(uj)dFY (η),

where FY is the cdf of the resilience random variable Y ,
G (u) = exp{−ψ−1(u)} (0 ≤ u ≤ 1) are certain cumulative
distribution functions, and ψ(s) = ψY (s) =

∫∞
0 e−sηdFY (η) is the

Laplace Transform (LT) of Y .

L. Hua (NIU) 13/35
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Archimedean copula - Laplace Transform (cont’s)

For a positive random variable Y with LT ψ, the order of the
maximal non-negative moment is

MY = Mψ = sup{m ≥ 0 : E(Ym) <∞}.

Let ψ be the LT of a positive random variable Y , under some
regularity conditions with 1 ≤ Mψ ≤ d , the Archimedean
copula Cψ has upper tail order κU = Mψ.

One limitation of LT-Archimedean copula: there is only
positive dependence.

L. Hua (NIU) 14/35
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A new 1-parameter copula family

Archimedean family based on inverse Gamma LT (ACIG
copula)
Let Y = X−1 have the inverse Gamma (IΓ) distribution, where
X ∼ Gamma(α, 1) for α > 0. The LT of the inverse Gamma
distribution:

ψ(s;α) =
2

Γ(α)
sα/2Kα(2

√
s), s ≥ 0, α > 0,

where Kα is the modified Bessel function of the second kind.
This family is decreasing in concordance as α increases, with limits
of the independence copula as α→∞ and the comonotonic
copula as α→ 0. κL =

√
d ;κU = (d ∧ α) ∨ 1.

L. Hua (NIU) 15/35
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Normalized contour plots of ACIG copula
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Archimedean copula - Williamson d-Transform

Williamson d-transform of R is

ψ(s) =

∫ ∞
s

(1− s/r)d−1FR(dr), s ∈ [0,∞).

The WT-Archimedean copula is the survival copula induced by the
random vector

X := (X1, . . . ,Xd)
d
= R × (S1, . . . ,Sd), (3)

where R is a positive random variable and (S1, . . . ,Sd) is uniformly
distributed on the simplex {x ∈ Rd

+ : ||x||1 = 1}, and R and
(S1, . . . ,Sd) are independent.

L. Hua (NIU) 17/35
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Tail negative dependence

Tail negative dependence: tail order κ > d .

For example, Gaussian copula with ρ < 0 has
κ = 2/(1 + ρ) > 2.

Let a random vector X := (X1, . . . ,Xd) be defined as (3). If
1/R ∈ MDA(Φα), and E[1/R] <∞, then κU = α.

Let X := (X1, . . . ,Xd) be defined as (3). If 1/R ∈ MDA(Λ),
then the upper tail order of the corresponding Archimedean
copula is κU =∞.

L. Hua (NIU) 18/35
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Tail negative dependence - IPS copula

Inverse-Pareto - Simplex copula, aka, IPS copula

Let Xi
d
= RSi , i = 1, 2, (S1, S2) be uniformly distributed on

{x ≥ 0 : x1 + x2 = 1}, and T := 1/R follow a Pareto
distribution with cdf F (x) = 1− (1 + x)−α, x ≥ 0, α > 1.
Then the generator for the WT-Archimedean copula is

ψ(s) =
s

1− α
[
1− (1 + 1/s)−α+1

]
+ 1, s ≥ 0, α > 1.

κU = α > 1 and κL = 1.
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Outline Motivation Tail order Tail negative dependence Mixed copula regression model Conclusions

Tail negative dependence - IPS copula (cont’s)

Normalized contour plots
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Tail negative dependence - GGS copula

Generalized-Gamma - Simplex mixture, aka, GGS copula

Let Xi
d
= RSi , i = 1, 2, (S1, S2) be uniformly distributed on

{x ≥ 0 : x1 + x2 = 1}, and R1/β follow a Gamma distribution
with shape parameter α so that

FR(x) =
1

βΓ(α)

∫ x

0
sα/β−1 exp{−s1/β}ds α > 0, β > 0,

and the Archimedean generator is

ψ(s) =
1

Γ(α)

(
Γ(α, s1/β)− sΓ(α− β, s1/β)

)
,

where Γ(·, ·) is an upper incomplete gamma function.

κU = max{α/β, 1} and κL = 21/β.
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Tail negative dependence - GGS copula (cont’s)

Normalized contour plots
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Outline Motivation Tail order Tail negative dependence Mixed copula regression model Conclusions

Medical expenditure data with GGS copula
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Outline Motivation Tail order Tail negative dependence Mixed copula regression model Conclusions

Applications in aggregate loss modeling

Compound Poisson: S = X1 + · · ·+ XN

Tweedie regression: Poisson and Gamma mixtures

Two-parts regression ([2]): Logistic regression + GLM for
X |N > 0

Mixed copula regression ([1]): copula for X and N

N|N > 0 : Zero-truncated Poisson regression

X |N > 0 : Gamma regression
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Outline Motivation Tail order Tail negative dependence Mixed copula regression model Conclusions

Mixed copula regression with GGS copula

Dataset: Medical Expenditure Panel Survey, 2010
Responses: numbers of outpatient visits to physician (frequency)

average facility expenses (severity)
Covariates: ages, incomes, gender, education,

insurance coverage, races
Sample size: 2263

Model:

frequency: Zipf ∼ age + insurance coverages + races

severity: lognormal ∼ age + insurance coverages + races

dependence: GGS copula, with homogeneous dependence
parameters α, β: for both upper and lower tails.

L. Hua (NIU) 25/35



Outline Motivation Tail order Tail negative dependence Mixed copula regression model Conclusions

Mixed copula regression with GGS copula (cont’s)

Min 1st quantile Median Mean 3rd quantile Max

OPVEXP10 3 187 704 2373 2356 68370

Average Expense 3 132 406 1460 1573 36680

Age 0 29.5 50 46.44 64 85

Number of Visits 1 2 3 4 5 6 7 8 9 10
OPDRV10 (#obs) 1461 394 144 73 58 26 29 9 13 9

11 12 13 14 15 16 17 18 19 20
5 5 5 2 4 1 1 2 2 1

21 22 23 25 28 29 31 32 33 35
1 1 1 1 2 1 1 1 1 1

38 40 42 46 48 65 98 - - -
1 1 2 1 1 1 1 - - -

Insurance Coverage Any Private (1) Public Only (2) Uninsured (3)
INSCOV10 (#obs) 1356 757 150

Race Hispanic (1) Black (2) Asian (3) Other (4)
RACETHNX (#obs) 433 440 91 1299

L. Hua (NIU) 26/35



Outline Motivation Tail order Tail negative dependence Mixed copula regression model Conclusions

Marginal regression - Loss frequency

Zipf’s distribution can be written as

fN(n|s,m) =
n−s∑m
i=1 i

−s
, n = 1, 2, . . . ,m, s > 0,

where s > 0,m ∈ {1, 2, 3, . . . } are the parameters of the Zipf’s
distribution, and m is the maximum value of N; for this dataset, we
chose m = 98, the maximum number of visits in the dataset.

Zipf’s distribution has a power law, so the right tail of the
distribution is heavier than the commmonly-used Poisson
distribution.

Zipf’s distribution can be looked at as a discretized Pareto
distribution, and the value of s determines the degree of tail
heaviness.

The covariates are introduced as follows

ln(si ) = xTi η, i = 1, . . . , 2263,

where η is the regression coefficients.
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Marginal regression - Loss severity

Lognormal model can be written as

fY (y |µ, σ) =
1

σy
√

2π
exp

{
− (ln y − µ)2

2σ2

}
,

where µ is the location parameter and σ is the scale parameter σ.

The covariates are introduced through the following equation

µi = xTi γ, i = 1, . . . , 2263,

where γ is the corresponding regression coefficients
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The joint model using copulas

Joint density functions of continuous Y and discrete N:

fY ,N(y , n|θ) = fY [D1(FY (y),FN(n)|θ)− D1(FY (y),FN(n − 1)|θ)] ,

where D1(u, v |θ) := ∂C(u,v |θ)
∂u .

MLEs for the overall likelihood (margins and dependence)
were obtained.
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Mixed copula regression with GGS copula (cont’s)

Marginal s.e. GGS s.e.

Frequency Intercept 0.855 0.039 0.869 0.038
age -0.002 0.001 -0.002 0.001
ins(2) -0.114 0.029 -0.108 0.028
ins(3) -0.085 0.053 -0.118 0.052
race(2) 0.044 0.041 0.026 0.040
race(3) 0.138 0.075 0.133 0.072
race(4) 0.155 0.036 0.133 0.035

Severity Intercept 5.911 0.096 5.889 0.094
age 0.005 0.001 0.005 0.001
ins(2) -0.707 0.070 -0.685 0.069
ins(3) -0.541 0.132 -0.447 0.130
race(2) 0.115 0.104 0.168 0.101
race(3) 0.025 0.177 0.064 0.172
race(4) 0.387 0.089 0.412 0.087
ln(σ) 0.418 0.015 0.421 0.015

Dependence ln(α) - - 5.476 0.011
ln(β) - - 2.430 0.022
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Mixed copula regression with GGS copula (cont’s)

Table: Aggregate loss comparisons, where
AIC = −2× log likelihood + 2× number of parameters.

GGS copula Independence Data

Aggregate Loss (USD) 5, 733, 236 8, 153, 765 5, 371, 218
AIC 41, 812 41, 869 –
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Conclusions

1 Strength of dependence in the tails can be efficiently quantified by
tail orders.

2 Tail negative dependence can be introduced by scale mixture models
(eg: Elliptical and WT-Archimedean copulas), while
WT-Archimedean copula can handle different dependence patterns
in upper and lower tails, respectively, ranging from positive to
negative dependence.

3 Modeling the dependence structure in the upper tail carefully is
particularly important for aggregate loss modeling, when loss
frequency and loss severity are not independent.
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Thank you!
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