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Motivation

Aggregate loss modeling [3]

Modeling aggregate medical expenditures per year by considering:

Average expense per visit

Loss frequency: number of outpatient department visits to
physicians.

Loss severity: average facility expenses per visit.

Covariates: age, gender, race, income, insurance coverage, etc.
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Motivation

Aggregate loss modeling (cont’d)

@ Zeros were removed to better illustrate dependence structures.

@ A binary regression model, say, Logistic regression can be used
first for loss frequency.
@ Challenges:
e regression on loss frequency and loss severity together while
accounting for the dependence structure between them.
@ no suitable dependence models for the special dependence
pattern: negative dependence in the upper tail, and
independence in the lower tail.
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Tail order

Tail dependence - Gumbel copula

C(l—ul—u)~Au, u—0T; 0<A<L
lim,_1- P[U1 > u|Uz > u] = lim,_,1- P[Us > u|U; > u] = A
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Tail order

From tail dependence to tail order

Tail dependence:

Cl—ul—u)~Au, u—0T; 0<A<L

Tail order:

C(l—u1l—u)~u"l(u), u—0F; 1<k.

Smaller tail order = stronger dependence in the tails.

@ x = 1: usual tail dependence;
o 1 < Kk < 2: intermediate tail dependence;
@ x = 2: tail quadrant independence;

@ k > 2: tail negative dependence.

Upper and lower tails can be quantified separately.
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Tail order
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Example - Gaussian copula

Bivariate Gaussian copula:
Co, (11, u2) = o(® 7 (un), @™ (w2); T),

where ®5(+; X) is the joint cumulative distribution function (cdf) of
a standard bivariate Gaussian random vector with positive definite
correlation matrix X.

r=2/(1+p);
0(u) = (— log u) P/ (1+0),
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Tail order
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Elliptical copula

let X := (X1, X2) be an elliptical random vector such that
X £ rAU, (1)

where R > 0 is independent of U, U is uniformly distributed on the
surface of the unit hypersphere {z € R?|z7z = 1},

AAT:Z:<; i),XNFganXm,szF.

C(U1, U2) = F2(F_1(U1), F_l(uz); Z).
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Tail order
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Univariate tail heaviness

@ Need to quantify the tail heaviness of R.

e Maximum Domain of Attraction (MDA)
(Fisher-Tippett theorem) Let (X,,) be a sequence of iid
random variables. If there exist constants ¢, > 0, d, € R and
some non-degenerate H such that

max,{X1,...,Xn} — dn
Cn

—d H7

then H is one of the following distributions: Fréchet (®,,),
Gumbel (A) and Weibull (V,,).
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Tail order
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Elliptical copula (cont’s)

Let C be the copula for an elliptical random vector X := (X1, X2)

constructed as (1), and b, := /2/(1 + p).

e If R € MDA(A), then the upper and lower tail orders of C is

= lim log (1 — Fr(b,r))
r—oo log (1 — Fg(r)) ’

provided that the limit exists.
o If R € MDA(®,,), then k = 1.
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Tail order
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Elliptical copula (cont’s)

o Example: Bivariate symmetric Kotz type copula
The density generator

g(x) = K" exp{—Bx*},  B,&,N >0,

where K is a normalizing constant. The density function of R
is fr(x) = 2mxg(x?) = 2Kmx®N~Lexp{—Bx%}. Therefore,
the tail order for the symmetric Kotz type copula is

w=[/(1+ o)

Gaussian copula belongs to this class with N =1,5=1/2
and £ =1, so its tail order is 2/(1 + p).
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Tail order
°

Extreme value copula

If a copula C satisfies C(ui,...,u5) = C*(uy, ..., uq) for any
(u1,...,uq) €10,1]¢ and t > 0, then we refer to C as an extreme
value copula, and

C(uy,...,uq) =exp{—A(—logui,...,—loguy)}.

@ Either upper tail dependence (eg: Gumbel copula, Galambos
copula) or independence.

@ Bivariate cases: Ky =1 with Ay =2 — A(1,1), and
kL= A(1,1).

L. Hua (NIU) 12/35



Tail order
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Archimedean copula - Laplace Transform

A LT-Archimedean copula

Cop(ur, -, ug) = (¥~ (un) + - + ¢ (ug)) (2)
has a mixture representation with LT . That is,

d

Colut, ..., ug) = h 1] 6" (u)dFy(n),
0

Jj=1

where Fy is the cdf of the resilience random variable Y,

G(u) = exp{—1y}(u)} (0 < u < 1) are certain cumulative
distribution functions, and 1(s) = ¥y (s) = [;* e *"dFy(n) is the
Laplace Transform (LT) of Y.
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Tail order
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Archimedean copula - Laplace Transform (cont's)

@ For a positive random variable Y with LT 1), the order of the
maximal non-negative moment is

My = My, =sup{m >0 : E(Y™) < oo}.

@ Let 1) be the LT of a positive random variable Y, under some
regularity conditions with 1 < M,, < d, the Archimedean
copula Cy has upper tail order kyy = M,.

@ One limitation of LT-Archimedean copula: there is only
positive dependence.
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Tail order
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A new 1-parameter copula family

Archimedean family based on inverse Gamma LT (ACIG
copula)

Let Y = X! have the inverse Gamma (IT) distribution, where
X ~ Gamma(a, 1) for « > 0. The LT of the inverse Gamma
distribution:

2
(s, ) = @Sa/zKaQﬁ)a s >0, >0,
where K, is the modified Bessel function of the second kind.
This family is decreasing in concordance as « increases, with limits

of the independence copula as o« — oo and the comonotonic
copulaas a — 0. vy = Vd;ky = (d Aa) V1.
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Tail order
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Normalized contour plots of ACIG copula
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Tail order
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Archimedean copula - Williamson d-Transform

Williamson d-transform of R is
W(s) = / (1= s/r)~1Fa(dr), s € [0,00).

The WT-Archimedean copula is the survival copula induced by the
random vector

X = (Xt,.... Xq) LR % (S1,...,Sq), (3)

where R is a positive random variable and (51, ..., S4) is uniformly
distributed on the simplex {x € RY : ||x||; = 1}, and R and
(51,...,Sq4) are independent.
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Tail negative dependence
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Tail negative dependence

Tail negative dependence: tail order k > d.

For example, Gaussian copula with p < 0 has
k=2/(1+p)>2.

Let a random vector X := (X1, ..., Xy) be defined as (3). If
1/R € MDA(®,), and E[1/R] < oo, then Ky = a.

Let X := (Xi,...,Xy) be defined as (3). If 1/R € MDA(A),
then the upper tail order of the corresponding Archimedean
copula is Ky = oo.

L. Hua (NIU) 18/35



Tail negative dependence
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Tail negative dependence - IPS copula

@ Inverse-Pareto - Simplex copula, aka, IPS copula
Let X; 4 RS;,i =1,2, (51,52) be uniformly distributed on
{x>0:x1+x =1}, and T := 1/R follow a Pareto
distribution with cdf F(x) =1—(14+x)"%,x >0, a > 1.
Then the generator for the WT-Archimedean copula is

Y(s) = [1-(1+1/s) "] +1, s>0,a>1

]__

e ky=a>1land x, = 1.
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Tail negative dependence
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Tail negative dependence - IPS copula (cont's)

Normalized contour plots
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Tail negative dependence
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Tail negative dependence - GGS copula

o Generalized-Gamma - Simplex mixture, aka, GGS copula
Let X; 4 RS;,i =1,2, (51,52) be uniformly distributed on
{x>0:x +x =1}, and RY/B follow a Gamma distribution
with shape parameter « so that

1
- BT(a)

and the Archimedean generator is

Fr(x)

/ s¥8 L exp{—s/P}ds o> 0,8 >0,
0

0(e) = s (Tl st%) = sT e = 5.517))

where I'(-,-) is an upper incomplete gamma function.
o ry = max{a/B3,1} and r = 21/8,
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Tail negative dependence
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Tail negative dependence - GGS copula (cont’s)

Normalized contour plots
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Mixed copula regression model
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Medical expenditure data with GGS copula

Outpatient Visits to Physicians (MEPS 2010) GGS copula fitted

Normal score of number of visits

Normal score of average expenses
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Mixed copula regression model
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Applications in aggregate loss modeling

@ Compound Poisson: § = X1 +--- + Xy
o Tweedie regression: Poisson and Gamma mixtures

e Two-parts regression ([2]): Logistic regression + GLM for
X|N >0
@ Mixed copula regression ([1]): copula for X and N

N|N > 0 : Zero-truncated Poisson regression

X|N > 0: Gamma regression
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Mixed copula regression model
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Mixed copula regression with GGS copula

Dataset: Medical Expenditure Panel Survey, 2010

Responses: numbers of outpatient visits to physician (frequency)
average facility expenses (severity)

Covariates: ages, incomes, gender, education,
insurance coverage, races

Sample size: 2263

Model:
o frequency: Zipf ~ age + insurance coverages + races
@ severity: lognormal ~ age + insurance coverages 4 races

o dependence: GGS copula, with homogeneous dependence
parameters «, 5: for both upper and lower tails.
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Mixed copula regression model
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Mixed copula regression with GGS copula (cont’s)

Min  1st quantile Median Mean 3rd quantile Max
OPVEXP10 3 187 704 2373 2356 68370
Average Expense 3 132 406 1460 1573 36680
Age 0 29.5 50 46.44 64 85
Number of Visits 1 2 3 4 5 6 7 8 9 10

OPDRVI10 (#obs) | 1461 394 144 73 58 26 29 9 13 9
11 12 13 14 15 16 17 18 19 20
5 5 5 2 4 1 1 2 2 1
21 22 23 25 28 29 31 32 33 35
1 1 1 1 2 1 1 1 1 1
38 40 42 46 48 65 98 - - -
1 1 2 1 1 1 1 - - -

Insurance Coverage | Any Private (1) Public Only (2)  Uninsured (3)
INSCOV10 (#obs) 1356 757 150
Race Hispanic (1) Black (2) Asian (3) Other (4)
RACETHNX (#obs) 433 440 91 1299
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Mixed copula regression model
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Marginal regression - Loss frequency

@ Zipf's distribution can be written as
n—S
S
where s > 0,m € {1,2,3,...} are the parameters of the Zipf's

distribution, and m is the maximum value of N; for this dataset, we
chose m = 98, the maximum number of visits in the dataset.

fu(n|s, m) = n=12,....,m s>0,

@ Zipf's distribution has a power law, so the right tail of the
distribution is heavier than the commmonly-used Poisson
distribution.

@ Zipf's distribution can be looked at as a discretized Pareto
distribution, and the value of s determines the degree of tail
heaviness.

@ The covariates are introduced as follows
In(sj)) =xin, i=1,...,2263,

where 17 is the regression coefficients.
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Mixed copula regression model
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Marginal regression - Loss severity

@ Lognormal model can be written as

1 Iny — u)?
fY(y|MaU) = O'y\/% exp{_(zag)}v

where 1 is the location parameter and ¢ is the scale parameter o.

@ The covariates are introduced through the following equation
pwi=xry, i=1,...,2263,

where -y is the corresponding regression coefficients
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Mixed copula regression model
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The joint model using copulas

@ Joint density functions of continuous Y and discrete N:
fy n(y, nl6) = fy [Di(Fy(y), Fn(n)|6) — Di(Fy(y), Fn(n —1)[6)],

where Dy (u, v|0) := w_

@ MLEs for the overall likelihood (margins and dependence)
were obtained.
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Mixed copula regression model
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Mixed copula regression with GGS copula (cont’s)

Marginal s.e. GGS s.e.

Frequency Intercept 0.855 0.039 | 0.869 0.038
age -0.002 0.001 | -0.002 0.001

ins(2) -0.114 0.029 | -0.108 0.028

ins(3) -0.085 0.053 | -0.118 0.052

race(2) 0.044 0.041 | 0.026 0.040

race(3) 0.138 0.075 | 0.133 0.072

race(4) 0.155 0.036 | 0.133 0.035

Severity Intercept 5911 0.096 | 5.889 0.094
age 0.005 0.001 | 0.005 0.001

ins(2) -0.707 0.070 | -0.685 0.069

ins(3) -0.541 0.132 | -0.447 0.130

race(2) 0.115 0.104 | 0.168 0.101

race(3) 0.025 0.177 | 0.064 0.172

race(4) 0.387 0.089 | 0.412 0.087

In(c) 0.418 0015 | 0.421 0.015

Dependence | In(«) - - | 5.476 0.011
In(8) - - | 2430 0022
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Mixed copula regression model
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Mixed copula regression with GGS copula (cont’s)

Table: Aggregate loss comparisons, where
AIC = =2 X log likelihood + 2 X number of parameters.

GGS copula | Independence Data
Aggregate Loss (USD) | 5,733,236 8,153,765 | 5,371,218
AlIC 41,812 41,869 -
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Conclusions

Conclusions

@ Strength of dependence in the tails can be efficiently quantified by
tail orders.

@ Tail negative dependence can be introduced by scale mixture models
(eg: Elliptical and WT-Archimedean copulas), while
WT-Archimedean copula can handle different dependence patterns
in upper and lower tails, respectively, ranging from positive to
negative dependence.

© Modeling the dependence structure in the upper tail carefully is
particularly important for aggregate loss modeling, when loss
frequency and loss severity are not independent.
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Conclusions
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Thank you!
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