
A Probabilistic Analysis of Chapter 7 and Chapter 11 of
the U.S. Bankruptcy Code[1]

Qihe Tang

Department of Statistics and Actuarial Science, University of Iowa

Colloquium of Department of Mathematics, Illinois State University,
March 01, 2013

1This talk is based on recent joint works with Bin Li, Lihe Wang and Xiaowen Zhou.

Qihe Tang (University of Iowa) Chapter 7 and Chapter 11 March 01, 2013 1 / 34



Contents

1. Introduction

2. Framework

3. Main result for the di¤usion case

4. On the auxiliary quantity

5. Numerical examples

Qihe Tang (University of Iowa) Chapter 7 and Chapter 11 March 01, 2013 2 / 34



Contents

1. Introduction

2. Framework

3. Main result for the di¤usion case

4. On the auxiliary quantity

5. Numerical examples

Qihe Tang (University of Iowa) Chapter 7 and Chapter 11 March 01, 2013 3 / 34



Traditional �rm value models

Stemming from Merton (1974, Journal of Finance) and Black and Cox
(1976, Journal of Finance), numerous structural models have been
proposed:

di¤usion process
Lévy (driven) process
Markov regime-switching models
� � �

Traditionally, bankruptcy and liquidation are treated as the same event
that the �rm value reaches an absorbing low barrier:

0: Gerber and Shiu (ruin theory)
constant: Longsta¤ and Schwartz (1995, Journal of Finance)
exponential function: Black and Cox (1976, Journal of Finance)
stationary mean-reverting process: Collin-Dufresne and Goldstein
(2000, Journal of Finance)
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Chapter 7 and Chapter 11

In practice, the procedures of bankruptcy and liquidation as described in
the U.S. bankruptcy code are rather complicated:

When a �rm is unable to service its debt or pay its creditors but its
�scal situation is not severe, the �rm is given the right to declare
bankruptcy under Chapter 11 of reorganization.

Chapter 11 allows the �rm to remain in control of its business with a
bankruptcy court providing oversight. The court grants the �rm a
certain observation period during which the �rm can restructure its
debt.

The debtor usually proposes a plan of reorganization to keep its
business alive and pay creditors over time.

In case the reorganization plan fails, Chapter 11 will be converted to
Chapter 7 of liquidation governed by §1019 of the U.S. bankruptcy
code.
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The role of Chapter 11

Warren and Westbrook (2009, Michigan Law Review) showed empirical
evidences for the conclusion that the Chapter 11 system o¤ers a realistic
hope for troubled businesses to turn around their operations and rebuild
their capital structures.

For related empirical studies of the role of Chapter 11, see also:

Hotchkiss (1995, Journal of Finance)

Bris, Welch and Zhu (2006, Journal of Finance)

Denis and Rodgers (2007, Journal of Financial and Quantitative
Analysis)
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Literature review - bankruptcy barrier

Under these practical considerations, many recent works in the literature of
corporate �nance have included Chapter 11 reorganization proceedings and
made a distinction between bankruptcy and liquidation.

See the following works:

Moraux (2004, Working paper, Université de Rennes I.)
François and Morellec (2004, Journal of Business)
Galai, Raviv and Wiener (2007, Journal of Banking & Finance)
Broadie and Kaya (2007, Journal of Financial and Quantitative
Analysis)

In these works, a �rm will be liquidated when the time its value constantly
or cumulatively spending under the bankruptcy barrier exceeds a grace
period granted by the bankruptcy court.

However, only the bankruptcy barrier was considered and, hence, the �rm
is not necessarily liquidated even when its value is extremely low, which
violates the principle of limited liability.
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Literature review - Parisian ruin

It is interesting to notice that a similar research trend has emerged in risk
theory independently. Originating from the study of Parisian options,
Parisian ruin was �rst introduced. Parisian ruin is essentially the same as
liquidation explained above.

See the following works:

Dassios and Wu (2008, Working Paper, London School of Economics)

Czarna and Palmowski (2011, Journal of Applied Probability)
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Our considerations

We follow Broadie, Chernov and Sundaresan (2007, Journal of Finance) to
describe the procedures of bankruptcy and liquidation by incorporating the
following:

the Chapter 11 reorganization

the Chapter 7 liquidation

the conversion from Chapter 11 to Chapter 7

the grace period in Chapter 11

Formally, suppose that the value process is modeled by X = fXt , t � 0g
with X0 = x0.
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Two stopping times

Ta: the �rst time that X goes below level a

τb(c): the �rst time X has continuously stayed below level b for c
units of time

a
x 0

0 Ta
_

●

fir
m
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b
x 0

0 lτb−(c)
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Liquidation time

Let a < b and c > 0 be three exogenous constants, with

a: the liquidation barrier

b: the bankruptcy barrier

c : the grace period in Chapter 11

With an initial wealth x0 > b, we de�ne the liquidation time by

Ta ^ τb(c).

This covers three scenarios of liquidation.
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First scenario of liquidation

Declaring Chapter 7 directly: the �rm su¤ers a catastrophic loss causing
its �rm value jumps from a level above the bankruptcy barrier b to a level
below the liquidation barrier a.

time
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Second scenario of liquidation

Conversion from Chapter 11 to Chapter 7: the �rm value drops below the
liquidation barrier a prior to the end of the grace period c .

time

fir
m

 v
al

ue

a
b

x 0

0 Ch.11 Ch.7

●

●

<c

Qihe Tang (University of Iowa) Chapter 7 and Chapter 11 March 01, 2013 14 / 34



Third scenario of liquidation

Conversion from Chapter 11 to Chapter 7: the time the �rm spends in
bankruptcy exceeds the grace period c granted by the bankruptcy court.

time
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The probability of liquidation

The probability of liquidation is de�ned by

q(x0) = q(x0; a, b, c) = Px0 fTa ^ τb(c) < ∞g . (2.1)

This probability of liquidation in the in�nite-time horizon provides us with
a quantitative understanding of the �rm�s liquidation risk in the long run.

It is sometimes more convenient to start with the probability of
non-liquidation

p(x0) = 1� q(x0) = Px0 fTa ^ τb(c) = ∞g .
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Some immediate remarks

Obviously, q(x0; a, b, c) is monotone decreasing in c .

Letting c # 0 yields
q(x0; a, b, 0) = Px0 fTb < ∞g ,

while letting c " ∞ yields

q(x0; a, b,∞) = Px0 fTa < ∞g .
Hence, the duration c serves as a bridge connecting the two traditional
probabilities of bankruptcy:

Px0 fTa < ∞g � q(x0; a, b, c) � Px0 fTb < ∞g .

Letting a # �∞ yields

q(x0;�∞, b, c) = Px0 fτb(c) < ∞g .
This is essentially the probability of liquidation introduced by François and
Morellec (2004, Journal of Business) and Broadie and Kaya (2007, Journal
of Financial and Quantitative Analysis).
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The �rm value process

Suppose that the �rm value is modeled by a time-homogeneous di¤usion
process X = fXt , t � 0g, with dynamics

dXt = µ(Xt )dt + σ(Xt )dWt ,

where:

X0 = x0 is the initial wealth

fWt , t � 0g is a standard Brownian motion (Wiener process)
µ(�) and σ(�) > 0 are two measurable functions satisfying usual
conditions of the existence and uniqueness theorem

Denote by fFt , t � 0g the natural �ltration generated by fWt , t � 0g.
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The two-sided exit problem

De�ne

G (x) = exp
�
�
Z x 2µ(y)

σ2(y)
dy
�
, S(x) =

Z x
G (y)dy .

The function S(�) is referred to as the scale function of X . To avoid
triviality, we assume that S(∞) < ∞.

It is well known that, for u < x < v ,

Px fTu < Tv g =
R v
x G (y)dyR v
u G (y)dy

, Px fTu > Tv g =
R x
u G (y)dyR v
u G (y)dy

.

Letting v = ∞ in second relation above yields

Px fTu = ∞g =
R x
u G (y)dyR ∞
u G (y)dy

. (3.1)
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The main result

Introduce an auxiliary quantity

A(a, b, c) = lim
ε#0

Pb�ε fTb > Ta ^ cg
ε

. (3.2)

It will be proved later that A(a, b, c) exists, is �nite and equals the
boundary derivative of the solution of a PDE. Hence, its value can be
easily determined numerically.

Theorem 3.1 For a < b � x0 and c > 0,

q(x0) =
A(a, b, c)

A(a, b, c)
R ∞
b G (y)dy + G (b)

Z ∞

x0
G (y)dy . (3.3)
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Proof of Theorem 3.1

For x � b, by the strong Markov property,
p(x) = Px fTa = ∞, τb(c) = ∞g

= Px fTb = ∞g+ Px fTa = ∞, τb(c) = ∞,Tb < ∞g
= Px fTb = ∞g+ Ex [Px fTa = ∞, τb(c) = ∞,Tb < ∞j FTbg]
= Px fTb = ∞g+ Px fTb < ∞g p(b). (3.4)

It follows that

p0+(b) = lim
ε#0

p(b+ ε)� p(b)
ε

= q(b) lim
ε#0

Pb+ε fTb = ∞g
ε

= q(b)
G (b)R ∞

b G (y)dy
, (3.5)

where in the last step we used (3.1).
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Proof of the Theorem 3.1 (Cont.)

Similarly, for x 2 (a, b) we have

p(x) = Px fTa = ∞, τb(c) = ∞g = Px fTb � Ta ^ cg p(b).

The limit A(a, b, c) in (3.2) exists and is �nite.

It follows that

p0�(b) = lim
ε#0

p(b)� p(b� ε)

ε

= p(b) lim
ε#0

Pb�ε fTb > Ta ^ cg
ε

= p(b)A(a, b, c). (3.6)
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ε

= p(b)A(a, b, c). (3.6)

Qihe Tang (University of Iowa) Chapter 7 and Chapter 11 March 01, 2013 23 / 34



Proof of the Theorem 3.1 (Cont.)

Similarly, for x 2 (a, b) we have

p(x) = Px fTa = ∞, τb(c) = ∞g = Px fTb � Ta ^ cg p(b).

The limit A(a, b, c) in (3.2) exists and is �nite.

It follows that

p0�(b) = lim
ε#0

p(b)� p(b� ε)

ε

= p(b) lim
ε#0

Pb�ε fTb > Ta ^ cg
ε

= p(b)A(a, b, c). (3.6)

Qihe Tang (University of Iowa) Chapter 7 and Chapter 11 March 01, 2013 23 / 34



Proof of Theorem 3.1 (Cont.)

The function p(�) is di¤erentiable at b.

Thus, the conjunction of (3.5) and (3.6) gives

p(b) =
G (b)

A(a, b, c)
R ∞
b G (y)dy + G (b)

. (3.7)

Substituting (3.7) into (3.4) and using (3.1), we obtain

p(x) =

R x
b G (y)dyR ∞
b G (y)dy

+

R ∞
x G (y)dyR ∞
b G (y)dy

� G (b)

A(a, b, c)
R ∞
b G (y)dy + G (b)

.

Thus, relation (3.3) follows from q(x) = 1� p(x).
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A PDE

Consider the modi�ed two-sided exit probability function

φ(x , t; a, b) = Px fTb � Ta ^ tg , a < x < b, t � 0.

The following theorem establishes a PDE for this function:

Theorem 4.1 Suppose h(x , t) solves

ht (x , t) = µ(x)hx (x , t) +
1
2

σ2(x)hxx (x , t), a < x < b, t > 0,

with the boundary conditions h(b, t) = 1 and h(a, t) = 0 for t � 0 while
h(x , 0) = 0 for a < x < b. Then

h(x , t) = φ(x , t; a, b), a � x � b, t � 0.
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Existence and �niteness of A(a,b,c)

By the well-known regularity theory of PDE (see, e.g. Theorem 4.22 of
Lieberman (1996)), we immediately have the following:

Corollary 4.1 It holds for every �xed t > 0 that φx (x , t; a, b)jx=b is �nite
and continuous with respect to t. In particular,

A(a, b, c) = lim
ε#0

Pb�ε fTb > Ta ^ cg
ε

= lim
ε#0

1� φ(b� ε, c ; a, b)
ε

= φx (x , c ; a, b)jx=b

exists and is �nite.
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Numerical PDE

Recall formula (3.3) for the default probability q(x0):

q(x0) =
A(a, b, c)
A(a, b, c)

Z ∞

b
G (y)dy + G (b)

Z ∞

x0
G (y)dy . (3.3)

The only implicit part is the quantity A(a, b, c).

Theorem 4.1 and Corollary 4.1 enable us to compute A(a, b, c) numerically
via a PDE. We use the Crank-Nicolson method to solve A(a, b, c):

It is a second-order implicit �nite di¤erence method, which is
unconditionally convergent and stable.

The local error is of order O(4x2) +O(4t2), implying that the
error for A(a, b, c) is of order O(4x) +O(4t2).
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Numerical example 1

First, we assume that the �rm value follows a linear Brownian motion,

dXt = µdt + σdBt ,

and that the capital structure remains unchanged during bankruptcy.

Then

q(x0) =
A(a, b, c)

A(a, b, c) + 2µ/σ2
e�

2µ(x0�b)
σ2 .

Parameters: µ = 0.1, σ = 0.25, a = 0.1, b = 0.2, and c = 1.

mesh A(a, b, c) q(x0) time (s)

4x = 4t = 0.005 8.5534038 1.3801420e�3.2x0 0.09655
4x = 4t = 0.001 8.4987776 1.3777311e�3.2x0 3.94097
4x = 4t = 0.0005 8.4919795 1.3774294e�3.2x0 32.5367
4x = 4t = 0.00025 8.4885830 1.3772786e�3.2x0 267.074
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Next, we propose a reorganization plan during bankruptcy:

dXt = µ(Xt )dt + σ(Xt )dWt ,

µ(x) = µ1fx>bg +
�
1� b� x

2(b� a)

�
µ1fa�x�bg,

σ(x) = σ1fx>bg +
�
1� b� x

2(b� a)

�
σ1fa�x�bg.

This reorganization plan concerns the priority of the debt holder over the
shareholders during bankruptcy by reducing µ(�) and σ(�). Meanwhile, the
ratio µ(�)/σ(�) remains constant.

mesh A(a, b, c) q(x0) time (s)

4x = 4t = 0.005 8.2173101 1.3649425e�3.2x0 0.55676
4x = 4t = 0.001 8.1639584 1.3624470e�3.2x0 4.42222
4x = 4t = 0.0005 8.1574008 1.3621387e�3.2x0 34.5876
4x = 4t = 0.00025 8.1541313 1.3619848e�3.2x0 267.169
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Numerical example 2

Second, we assume that the �rm value follows a geometric Brownian
motion,

dXt = µXtdt + σXtdBt ,

and that the capital structure remains unchanged during bankruptcy.

Then

q(x0) =
A(a, b, c)

A(a, b, c) + 2µ/σ2 � 1

�
b
x0

�2µ/σ2�1
.

Parameters: µ = 0.1, σ = 0.25, a = 0.1, b = 0.2, and c = 1.

mesh A(a, b, c) q(x0) time (s)

4x = 4t = 0.005 11.495846 0.014815100x�2.20 0.46036
4x = 4t = 0.001 11.145638 0.014590922x�2.20 4.36286
4x = 4t = 0.0005 11.101517 0.014562175x�2.20 31.4908
4x = 4t = 0.00025 11.079429 0.014547740x�2.20 276.484
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Potential future works

Consider a more general �rm value process of strong Markov property;

Incorporate (heavy-tailed) jumps into the modeling;

Consider the more practical �nite-time case;

Applications to evaluation, pricing and �nancial risk management.

Thank You Very Much!!!
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