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Abstract 

 The purpose of this paper is to fit four probability distributions to crop yields, three of 
which are parametric, and then to price crop insurance contracts using the Actual Production 
History method.  The method of moments was used to estimate the parameters of the 
distributions for twenty-four districts in the Northern Region of Ghana.  It is found that the Beta 
distribution’s premium rates are greater than the Gamma and Lognormal premium rates in every 
district.  The gamma premium rates are greater than the lognormal premium rates in almost every 
district, but by very little.  The empirical premium rates are very inconsistent.  The more 
expensive premium rates happen when there is a higher skewness coefficient.  The lowest 
premium rate occurred in the East Mamprusi District, and the highest premium occurred in the 
Bongo district.     

Introduction 

 Crop insurance has been a highly studied topic in recent years.  It can exist in several 
forms: loss crop insurance, revenue crop insurance, and yield crop insurance.  Loss crop 
insurance is the term used to describe insurance against losses due to natural disasters such as 
floods, hail, and hurricanes.  Revenue crop insurance protects farmers from low revenues, and 
yield crop insurance protects farmers from low yields.  This paper will focus on this last issue.   
 The first question that comes to mind when one thinks of revenue or yield crop insurance 
is why are farmers protected against revenue and yield decreases?  In any other industry, 
insurance is not offered for these types of protections.  A clothing company can’t buy insurance 
to protect them from low sales.  So why then is revenue and yield insurance offered to farmers?  
The answer to that is the agriculture industry is essential for human survival.  If farmers go out of 
business, there will be no food production and the human race will cease to exist.  The 
alternative has almost the same effect.  If a single farmer or two dominate the market, food prices 
will skyrocket and be unaffordable for most.  These are the reasons why crop insurance exists.   
 One form of low yield crop insurance is the Actual Production History method.  Using 
this method, the crop insurance premium depends on the farmer’s historical yield.  This paper 
discusses how to calculate the Actual Production History premium rate after fitting the crop 
yields from twenty-four different districts in three regions in Northern Ghana to three parametric 
distributions and the discrete empirical distribution.  (Klugman, Panjer, and Willmot, 2008) 
define a parametric distribution as a set of distribution functions each determined by specifying 
one or more values, called parameters, each of which is fixed and finite. 
 Several methods have been developed for modeling crop insurance premiums.  (Goodwin 
& Ker, 1998) use nonparametric methods to model the crop yield distribution, (Ker & Goodwin, 
2000) discuss both Nonparametric Empirical Bayes kernel density estimation and spatial-
temporal models (space-time models), and (Sherrick, Zanini, Schnitkey, & Irwin, 2004) use 
semiparametric methods using the Normal, Logistic, Lognormal, Weibull, and Beta distributions.  
(Just, R.E. & Q. Weninger, 1999) also discuss the normality of crop yields.      
 With the empirical distribution, each observation has the same probability of occurring.  
One advantage of using the empirical distribution is that conclusions can be made directly from 
the data, thus increasing the accuracy of the calculations.  However, a disadvantage is that it is 
discrete, and when new data is observed, the entire distribution changes. 
 A continuous parametric distribution, on the other hand, has the advantage of being 
flexible.  Instead of the entire distribution changing when new data is added, only the parameters 
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change, leaving the original distribution or “frame” in place.  This flexibility gives a parametric 
distribution a big advantage in that it can have different values of skewness and kurtosis.  

Skewness is defined as 
µ3
σ 3 , and kurtosis is defined as 

µ4
σ 4 , where µ3  is the third central moment, 

µ4  is the fourth central moment, and σ  is the standard deviation (Klugman, Panjer, and 
Willmot, 2008).  Being able to take on different values for these two quantities is important 
because the first four central moments of distribution are the main descriptors of its shape 
(Ramirez, McDonald, and Carpio, 2010).  A disadvantage however, is that usually the 
distribution is not known, and there has to be an initial assumption about which distribution the 
data comes from.   
 The rest of this paper discusses how to fit three distributions to this yield data: the 
lognormal distribution, the beta distribution, and the gamma distribution.  After the distributions 
are fit, the calculation of the Actual Production History premium rates will be discussed.  Once 
the premium rates from the parametric distributions are calculated, they will be compared to the 
empirical rates.  The following section examines the problems that arise when a private crop 
insurance industry attempts to be created. 

Background Research 

 Developing a private crop insurance industry is not an easy task, especially in a 
developing country.  In a developing country, such as Ghana, there are several factors that need 
to be considered before selling insurance: credit history, amount of risk, etc., but the data is not 
available.  So great care must be taken before entering this market.  A few of the biggest 
problems are moral hazard, adverse selection, and systemic risk. 
 Moral hazard is the term used to describe the change in the insured’s behavior after being 
insured, that is, once someone becomes insured, they will take less care in preventing the event 
from which they are insured.  In some situations, they may even purposefully cause the event to 
happen or increase its severity.  In the case of crop insurance, there can be situations such as 
planting the crops in low quality soil or not watering crops.  Moral hazard can be a very 
expensive problem, and therefore could prevent the emergence of a private sector crop insurance 
market (Chambers, 1989). 
 Another big problem is adverse selection.  When several different insured’s get the same 
coverage in the same area, there is bound to be some price discrepancies.  While all insured’s 
paid the same premium, some insured’s have more risk and some have less.  Those with less risk 
might realize that the insurance is not worth the price, and stop the coverage.  However, those 
with more risk might think it is a great bargain and decide to increase the coverage.  So there are 
less risky insured’s leaving the pool and more risky insured’s entering the pool, causing a large, 
risky group of insured’s.  This is another problem that can be costly for insurers (Skies & Reed, 
1986). 
 A third issue with developing a private crop insurance industry is systemic risk.  
Systemic risk is the concept that the entire system may fail due to large loss events, moral 
hazard, and adverse selection (Miranda & Glauber, 1997). 
 In Northern Ghana, there are eight main crops: Maize, Rice, Sorghum, Millet, Cassava, 
Yam, G’Nuts, and Cowpea.  This analysis focuses only on maize.  The reason for this is that 
maize is the only crop that is consistently grown.  That is, it is the only crop for which the data is 
available for all years.     
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            Before starting the analysis, it is important to understand the distributions used in the 
yield modeling.  Below are three of the distributions and their various quantities.  There are a 
few things to notice.  First of all, all though the beta distribution appears to be a three-parameter 
distribution, the parameter theta must be set in advance.  Theta is determined by rounding up the 
maximum yield to the nearest 0.1.   

Beta Distribution 

The probability density function is given by: 

                    (1)       f x( ) = Γ a + b( )
Γ a( )Γ b( )

x
θ

⎛
⎝⎜

⎞
⎠⎟
a

1− x
θ

⎛
⎝⎜

⎞
⎠⎟
b−1 1

x
,  a,b > 0,  0 < x < θ  

where Γ α( ) = xα −1e− x
0

∞

∫ dx .  The moments are given by: 

                    (2)       E Xk( ) = θ kΓ a + b( )Γ a + k( )
Γ a( )Γ a + b + k( ) ,  k > −a  

and the method of moments estimators of a and b are: 

                    (3)               â =
θm2 − mt
θt −θm2 ,  b̂ =

θm − t( ) θ − m( )
θt −θm2  

Gamma Distribution 

Probability Density Function: 

                    (4)                  f x( ) = xα −1e
−
x
θ

θαΓ α( ) ,  α,θ, x > 0  

Moments: 

                    (5)             E Xk( ) = θ kΓ α + k( )
Γ α( ) ,  k > −α  

Method of Moments Estimates: 

                    (6)                         α̂ =
m2

t − m2 ,  θ̂ =
t − m2

m
 

Lognormal Distribution 

Probability Density Function: 
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                    (7)           f x( ) = 1
xσ 2π

e
−

ln x−µ
σ

⎛
⎝⎜

⎞
⎠⎟

2

2 ,  µ,σ , x > 0  

Moments: 

                    (8)                   E Xk( ) = ekµ+
1
2
k2σ 2

,  ∀k  

Methods of Moments Estimates: 

                    (9)        µ̂ = ln m( ) − 1
2
σ̂ 2 ,  σ̂ = ln t( ) − 2 ln m( )  

where 

                     (10)                   m =
xi

i=1

n

∑
n

,  t =
xi

2

i=1

n

∑
n

 

Equations 1 through 10 were taken from (Klugman, Panjer, and Willmot, 2008). 
             These distributions were chosen for several reasons.  The beta distribution was chosen 
for its support.  Observing the data, it appears as though there is an upper bound on crop yields.  
Another advantage of the beta distribution is that it is flexible in the sense that it can be either 
positively or negatively skewed.  This is not true for the gamma or lognormal distributions.   
             The gamma distribution, however has its advantages as well.  If we let γ 3  be the 
skewness, then we have: 

                                         

γ 3 =
E X − µ( )3⎡⎣ ⎤⎦

σ 3

=
E X 3( ) − 3E X 2( )µ + 2µ3

σ 3

=
θ 3α α +1( ) α + 2( ) − 3θ 2α α +1( )αθ + 2α 3θ 3

α
3
2θ 3

=
2αθ 3

α
3
2θ 3

=
2
α

 

This shows that the skewness depends only the value of one parameter, α , and furthermore, 
since α > 0 , the gamma distribution only has positive skewness.  The lognormal distribution also 
only allows for positive skewness (Ramirez & McDonald, 2006). 

Data Description and Research Methodology 

The data sets used in the analysis of the actuarially fair crop insurance premium rates 
were provided by the Katie School of Insurance, and originated from the Statistics, Research, 
and Information Directorate of the Ministry of Food and Agriculture using the data from years 

(11) 
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1992 through 2008.  The data used in this analysis consists of each year’s production, cropped 
area, and yield all broken down by region and district.  The data used here only reflects three 
regions in Northern Ghana: the Northern Region, the Upper West Region, and the Upper East 
Region. 
 In the Northern Region, in years 1992 through 2004, there are thirteen districts, and in 
years 2005 through 2008, there are eighteen districts.  Ten of these regions were combined to 
reduce the number of districts back to thirteen.  In the Upper West Region in years 1992 through 
2004, there are five districts, and in years 2005 through 2008 there are eight districts, five of 
which were combined to reduce the number of districts back to five.  Similarly, in the Upper East 
region in years 1992 through 2004, there are six districts, and in years 2005 through 2008 there 
are eight districts, four of which were combined to reduce the number of districts back to six.  
All of these changes are shown in Table 1. 
 Crop yield is defined as the number of units of crops produced per unit of area cropped, 
or total number of units of crops produced divided by total area cropped.  Assuming there is only 
a finite amount of land that can be cropped, it appears as if crop yields are finite (there can be 
only a finite number of units of crop per unit of land).  Therefore, the choices of parametric 
distributions should be limited to those with either finite support or relatively light right tails, 
meaning the probability of observing a high yield is small.   
            This leads to the three parametric distributions discussed above: Lognormal, Gamma, and 
Beta.  The Lognormal and Gamma distributions both have support on the interval (0,∞), however 
they both have light right tails based on the existence of moments test, which states that the more 
positive moments that exist for a probability distribution, the lighter the right tail (Klugman, 
Panjer, &Willmot, 2008).  For the lognormal distribution, all positive moments exist.  For the 
gamma distribution, all moments k exist such that k > −α .  Similarly, for the beta distribution, 
all k moments exist such that k > −a .  Since α,a > 0 , it implies that all positive, and even some 
negative moments exist for both the gamma and beta distributions (Klugman, Panjer, &Willmot, 
2008).  
            Each distribution is fit to each district’s crop yields by the method of moments and is 
defined in Appendix A. The method of moments estimates the distribution parameters by setting 
the raw sample moments equal to the distribution moments, thus the number of sample moments 
needed is equal to the number of parameters being estimated.  Only the first two moments are 
used in this analysis. 
            After all the data has been fitted to each distribution, all that is left is to find the premium 
rate.  Using Actual Production History, the premium rate depends on the historical expected 
yield.  Let Y be the random variable representing the yield, λ be the coverage level such that 
0 < λ < 1 , and yebe the expected yield based on the historical data.  Then the Actual Production 
History method pays out in the following way according to  

    (12)                  Payment =
λye −Y ,  Y ≤ λye

0,  Y>λye

⎧
⎨
⎪

⎩⎪
   

Therefore expected losses paid out by the insurance are: 
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   (13)          

E Payment( ) = λye − y( ) f y( )dy
−∞

λye

∫
= λye f y( )dy

−∞

λye

∫ − yf y( )
−∞

λye

∫ dy

= λyeFY λye( ) − E Y ,Y < λye( )
= FY λye( ) λye − E Y Y < λye( )⎡

⎣
⎤
⎦

 

The premium rate is then defined as the ratio of expected losses to maximum possible liability, 
or 

              (14)                       PR= 
FY λye( ) λye − E Y Y < λye( )⎡

⎣
⎤
⎦

λye
. 

 

The expectation in the numerator is evaluated using the trapezoidal rule with n=1000.  The 
trapezoidal rule is: 

              (15)      f x( )
a

b

∫ dx ≈
b − a
2n

f x0( ) + 2 f x1( ) + ...+ 2 f xn−1( ) + f xn( )⎡⎣ ⎤⎦  

where a = x0 < x1 < ... < xn = b (Larson, Hostetler, and Edwards, 2002). 
If we look back at equation (14), it can be shown that it is equivalent to  

               (16)                   PR=FY λye( ) 1− E Y Y < λye( )
λye

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

which means that the actuarially fair premium rate is bounded above by the probability the yield 
is less than or equal to the coverage times expected yield.  It is clear from equation (16) that the 
premium rate is between 0 and 1.  But what does the premium rate actually mean?  It means that 
for a base price, β , of a crop, the insured has to pay PR *β  for the insurance for each crop.   

Statistical/Data Analysis 

 The following graph shows the change in premium rates for the four distributions in the 
West Gonja District of the Northern region of Ghana.  The graphs of the premium rates of other 
districts are in the Appendix.  In every district, the beta, gamma, and lognormal rates all increase 
together.  The only line that constantly changes shape is the empirical rate line.  This is due to 
the fact that the empirical distribution is a discrete distribution.  Discrete distributions only work 
well when there are only a few values the distribution could take on.  With regard to crop yields, 
a crop yield can almost be any positive number, up to a certain value.  Therefore, a discrete 
distribution modeling crop yields is not very realistic.   
            The gamma and lognormal premium rates are consistency significantly lower than the 
beta rates.  This could be due some positive skewness in the beta distribution or to some high 
kurtosis in the gamma and lognormal distributions.  It is shown above that the skewness for the 
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gamma distribution is 
2
α

.  Thus the highest α  will give the lowest skewness.  The Nanumba 

district has the highest α  of 24.15.  Looking at the Nanumba graph, the gamma line almost sits 
directly on top of the lognormal line, indicating that a low skewness decreases the premium rate.      

Figure 1 
Premium Rates for the West Gonja District for the four distributions. 

    

  

 For each district in Northern Ghana, the Beta premium rates always overprice the gamma 
and lognormal premium rates.  The Lognormal premium rates almost always under price the 
gamma premium rates.  The highest premium rates come in the Bongo district of the Upper East 
region of Northern Ghana.  This is due to several zero yield values observed in the district.  The 
lowest premium rates observed were all in the Northern Region, in the Nanumba, East 
Mamprusi, and Bole districts.  It appears that the low premium rates are due to lower variance, 
which makes sense because a higher variance would mean that there are more observations 
further from the mean.  The higher the variance, the more likely that there are observations 
below the guaranteed yield.  However, in these three districts, there were no observations below 
the guaranteed yields, resulting in a zero premium rate.   

Discussion and Conclusion 

   In this paper it was shown that the Beta, Gamma, and Lognormal distributions could be 
fit to model crop yields.  As it can be seen from the graphs below, the Beta premium rates are 
always more than the Gamma and Lognormal premium rates, and the Empirical rates vary based 
on the size of the yields.   
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 The reasoning behind the expensive Beta rates is unknown, so it can only be speculated.  
One possible reason is the Beta distribution’s lack of a right tail.  Not having a right tail puts 
more probability on the lower values, and increases the c.d.f.  According to equation (16), a 
higher c.d.f. results in a higher premium rate.  This is because the premium rate is proportional to 
both the c.d.f. and 1− E Y Y < λye( ) .  When the c.d.f. increases, E Y Y < λye( )  also increases.   

Recommendations 

 After this analysis, there are other areas that need to be explored.  First, it would be 
beneficial to apply these methods to other distributions not discussed here.  There are other 
distributions discussed in (Norwood, B, M.C. Roberts, & J.L.Lusk, 2004) that can take on more 
values in the skewness-kurtosis plane.              
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Appendix  

Table 1 
Combination of Districts in Northern Region. 
The column on the right contains the combinations.  The center column contains the names used 
in this study.   
 

1992‐2002  2003‐2004  2005‐2008 
Damango  West Gonja  West Gonja 

Central Gonja 
Yendi  East Dagomba  East Dagomba 
Bimbilla  Nanumba  Nanumba North 

Nanumba South 
Gushiegu/Karaga  Gushiegu/Karaga  Gushiegu 

Karaga 
Gambaga  East Mamprusi  East Mamprusi 

Bunkpurugu-Yunyoo 
Savelugu/Nanton  Savelugu/Nanton  Savelugu/Nanton 
Salaga  East Gonja  East Gonja 
Tamale  West Dagomba  Tamale Metropolitan 
Bole  Bole  Bole 

Sawla-Tuna-kalba 
Saboba/Chereponi  Saboba/Chereponi  Saboba/Chereponi 
Tonlon/Kumbugu  Tonlon/Kumbugu  Tonlon/Kumbugu 
Walewale  West Mamprusi  West Mamprusi 
Zabzugu/Tatale  Zabzugu/Tatale  Zabzugu/Tatale 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Table 2 
 Combinations of Districts in Upper West Region. 
The column on the right contains the combinations.  The center column contains the names used 
in this study.   
 

1992‐2002  2003‐2004  2005‐2008 
Wa  Wa  Wa West 

Wa East 
Wa Municipal 

Lawra  Lawra  Lawra 
Tumu  Sisala  Sisala West 

Sisala East 
Jirapa  Jirapa‐Lambussie  Jirapa‐Lambussie 
Nadowli  Nadowli  Nadowli 
 

Table 3 
 Combinations of Districts in Upper East Region. 
The column on the right contains the combinations.  The center column contains the names used 
in this study.   
 

1992‐2002  2003‐2004  2005‐2008 
Builsa  Builsa  Builsa 
Kassena/Nankana  Kassena/Nankana  Kassena/Nankana 
Bongo  Bongo  Bongo 
Bolgatanga  Bolgatanga  Bolga 

Talensi Nagdam 
 

Bawku East  Bawku East  Bawku Municipal 
Garu Tempane 

Bawku West  Bawku West  Bawku West 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Figure 2 
Premium Rates for the four distributions in the 24 districts in Northern Ghana. 
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