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Measurement error models

1 EIV model: Z = X + u
Examples:

astronomical data
survey or self-reported data: household income, daily calorie intake

2 Berkson model: X = Z + η
Examples:

oven temperature in chemical experiments
lead or air pollutant concentration of a location

3 Literature: Fuller (1987), Cheng and Van Ness (1999),
Carroll et al. (2006)

4 Classical methods: Calibration, deconvolution, instrumental
variable, validation data.
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Errors-in-Variables

Measurement errors in covariates mask the pattern of data.
They cause biased parameter estimation and loss of power in testing.
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Berkson models

1 Examples:
Income data (Kim, Chao and Härdle (2016))
The income data were collected by asking individuals which salary
range categories they belong to, such as between $5,000 and $9,999,
then the midpoint of the range interval $7,500 was used in analysis.
Pollutant exposure measurements
The concentration of atmospheric particulate matter that have a
diameter less than 2.5 micrometers (PM2.5) in an area is reported
hourly or daily as an average measurement, however, the true
exposure for an individual relies on the specific location and the time
of the day.

2 Statistical model: X = Z + η
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Testing problem

Regression model:

Y = µ(X ) + ε, X = Z + η, (1)

where Y is a scalar, X , Z and η are p-dimensional, (ε,Z ,η) are mutually
independent.

1 Literature:
Estimation: Berkson (1950), Huwang and Huang (2000), Wang
(2004), Delaigle, Hall and Qiu (2006), Du et al. (2011), Schennach
(2013) etc.
Hypothesis testing: Koul and Song (2009) (known Fη)

2 We aim to extend the methodology proposed in Koul and Song
(2009)(KS) to the case fη is unknown but when validation data is
available.
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Testing setup

The problem of interest here is to test

H0 : µ(x) = mθ0(x), for some θ0 ∈ Θ and all x ∈ C, versus
H1 : H0 is not true,

based on the primary sample {(Zi ,Yi ), i = 1, ..., n} and an independent
validation sample {(Z̃k , X̃k), k = 1, ...,N}, all satisfying (1).
Since X is not observable in primary data, the calibrated regression is
obtained as

Hθ(z) := E [mθ(X )|Z = z ] =

∫
mθ(y + z)fη(y)dy .

Example:
1 If mθ(X ) = a + bX , then Hθ(Z ) = a + bZ .
2 If mθ(X ) = aX 2, then Hθ(Z ) = aZ 2+aσ2

η.
3 In general, the form of Hθ is different from mθ.
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A minimum distance method

Then the original model can be transformed to

Y = H(Z ) + ξ, E (ξ|Z ) = 0. (2)

The hypothesis testing becomes

H ′0 : H(z) = Hθ0(z), for some θ0 ∈ Θ and all z ∈ C, vs.
H ′1 : H ′0 is not true.
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A minimum distance method

When fη is known.
The form of Hθ(z) is known up to parameter θ.
The Nadaraya-Watson estimator of regression function is

Ĥ(z) =
1

nf̂w (z)

n∑
i=1

Khi (z)Yi .

Under H0, the regression function can also be estimated by

H̃θ(z) =
1

nf̂w (z)

n∑
i=1

Khi (z)Hθ(Zi ).
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Nadaraya-Watson estimator
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Nadaraya-Watson estimator
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A minimum distance method

Koul and Song (AoS, 2009) proposed a m.d. model checking procedure
based on the integrated square distance

Mn(θ) =

∫
C

[
Ĥ(z)− H̃θ(z)

]2
dG(z)

=

∫
C

[ 1
nf̂w (z)

n∑
i=1

Khi (z)[Yi − Hθ(Zi )]
]2

dG(z),

θ̃n = argminθMn(θ).

The asymptotic null distribution:

nhp/2Γ̃−1/2
n

(
Mn(θ̃n)− C̃n

)
→d N1(0, 1).
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A minimum distance method

When fη is unknown. The form of Hθ(z) is unknown, but the
empirical version of η can be obtained by η̃k = X̃k − Z̃k , 1 ≤ k ≤ N. An
estimator of H can be constructed as

Ĥθ(z) =
1
N

N∑
k=1

mθ(z + η̃k).

The m.d. procedure can be modified as

M̂n(θ) =

∫
C

[ 1
nf̂w (z)

n∑
i=1

Khi (z)[Yi − Ĥθ(Zi )]
]2

dG(z),

θ̂n = argminθM̂n(θ).

Then a class of m.d. tests is proposed based on M̂n(θ̂n).
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Assumptions

Define, for x , y ∈ Rp and θ ∈ Θ,

σθ(x , y) := Cov
(
mθ(x + η),mθ(y + η)

)
, σ2

θ(x) := σθ(x , x).

(A1) {(Yi ,Zi ),Zi ∈ Rp, i = 1, ..., n} is an i.i.d. sample with regression
function H(z) = E (Y |Z = z) satisfying

∫
H2dG <∞, where G is a

σ-finite measure with continuous Legesgue density g on C while
{(Z̃k , X̃k), Z̃k ∈ Rp, X̃k ∈ Rp, k = 1, ...,N} is an i.i.d. sample from
Berkson measurement error model X = Z + η.
(A2) 0 < σ2

ε := Var(ε) <∞, τ2(z) = E [(mθ0(X )− Hθ0(Z ))2|Z = z ] is
a.e. (G) continuous on C.
(A3) Both E |ε|2+δ and E |(mθ0(X )− Hθ0(Z )|2+δ are finite for some
δ > 0.
(A4) Both E |ε|4 and E |(mθ0(X )− Hθ0(Z )|4 are finite.
(A5)

∫
σ2
θ(z)dG(z) <∞, for all θ ∈ Θ.
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Assumptions contd.

(F1) The density function fZ is uniformly continuous and bounded away
from 0 in C.
(F2) The density function fZ is twice continuously differentiable in C.
(H1) mθ(x) is a.e. continuous in x , for every θ ∈ Θ.
(H2) The parametric function family Hθ(z) is identifiable with respect to
θ, i.e, Hθ1(z) = Hθ2(z) a.e. in z implies θ1 = θ2.
(H3) For some positive continuous function r on C, and for some
0 < β ≤ 1, |Hθ1(z)− Hθ2(z)| ≤ ‖θ1 − θ2‖βr(z), for all θ1, θ2 ∈ Θ and
z ∈ C.
(H4) For each x , mθ(x) is differentiable with respect to θ in a
neighborhood of θ0 with the derivative vector ṁθ(x) such that for every
sequence 0 < δn → 0,

sup
i,θ

∣∣ 1
N
∑N

k=1[mθ(Zi + η̃k)−mθ0 (Zi + η̃k)− (θ − θ0)T ṁθ0 (Zi + η̃k)]
∣∣

‖θ − θ0‖
= op(1),
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Assumptions contd.

where the supremum is taken over 1 ≤ i ≤ n, ‖θ − θ0‖ ≤ δn.

(H5) The vector function ṁθ0(x) is continuous in x ∈ C and for every
ε > 0, there are nε and Nε such that for every 0 < a <∞, and for all
n > nε,N > Nε,

P
(

max
1≤i≤n,1≤k≤N,(nhp)1/2‖θ−θ0‖≤a

h−p/2‖ṁθ(Zi +η̃k)−ṁθ0(Zi +η̃k)‖ ≥ ε
)
≤ ε.

(H6)
∫
‖Ḣθ0‖2dG <∞ and Σ0 =

∫
Ḣθ0ḢT

θ0
dG is positive definite.

(K) The density kernel K is positive symmetric and square integrable on
[−1, 1]p.
(W1) nh2p →∞ and N/n→ λ, λ > 0.
(W2) h ∼ n−a, where 0 < a < min(1/2p, 4/(p(p + 4))).
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Parameter estimators θ̂n

Theorem 1
Suppose (A1), (A2), (A5), (F1), (H1)–(H3), (K) and (W1) hold. Then
θ̂n →p θ0.

Theorem 2

Under H0, (A1)–(A3), (A5), (F1)–(F2), (H1)–(H6), (K), (W1)–(W2),
√

n(θ̂n − θ0)→d Nq
(

0,Σ−1
0 (Σ1 + λ−1Σ2)Σ−1

0

)
,

where Σ0 is given in (H6) and

Σ1 =

∫ (σ2
ε + τ2(u))Ḣθ0(u)ḢT

θ0
(u)g2(u)

fZ (u)
du,

Σ2 =

∫
σθ0(x , y)Ḣθ0(x)ḢT

θ0 (y)dG(x)dG(y).
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Interpretation

1 KS showed that
√

n(θ̃n − θ0)→d Nq(0,Σ0Σ−1
1 Σ0) when fη is

known.
2 Theorem 2 shows that θ̂n is

√
n-consistent and the asymptotic

covariance matrix is mainly determined by the two terms Σ1 and Σ2.
3 The matrix Σ1 represents the variation in Berkson measurement

error model when fη is known as in KS while Σ2 represents the
contribution due to the estimation of Hθ by Ĥθ using the validation
data.

4 The covariance tends to decay as N/n increases. When N/n→∞,
in other words, when the validation sample size N is sufficiently
large, compared to the primary sample size n, not surprisingly the
above asymptotic covariance degenerates to the case as if fη is
known.
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Connection between θ̂n and θ̃n in linear models

Assume

µ(x) = mθ(x) = θT x , x ∈ C ⊂ Rp, for some θ ∈ Θ ⊂ Rp. (3)

(A6) Eη2 <∞. τ1(z) := E
(
|ε|
∣∣Z = z

)
is a.e. (G) continuous.

(A7) νG :=
∫
C zdG(z) = 0,

∫
C zzT dG(z) is positive definite.

Proposition 1
Suppose (1) and (3) hold with θ = θ0. In addition suppose (A1), (F1),
(K), (W1), (A6) and (A7) hold, then

√
n(θ̂n − θ̃n)→p 0.
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Testing

Theorem 3

Suppose (A1), (A2), (A4), (A5), (F1)–(F2), (K), (H1)–(H6), (W1) and
(W2) hold. Then, under H0,

nhp/2Γ̂−1/2
n

(
M̂n(θ̂n)− Ĉn

)
→d N1(0, 1),

where

ξ̂i = Yi − Ĥθ̂n
(Zi ), Ĉn =

1
n2

n∑
i=1

∫
K 2

hi (z)ξ̂2
i dϕ̂(z),

Γ̂n =
2hp

n2

∑
i 6=j

( ∫
Khi (z)Khj(z)ξ̂i ξ̂jdϕ̂(z)

)2
.
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Testing contd.

Consequently, the null hypothesis is rejected by the test if
T̂n := nhp/2Γ̂

−1/2
n |M̂n(θ̂n)− Ĉn| > zα/2 with the asymptotic size

α > 0.
Surprisingly, the theorem shows that the sample size ratio N/n does
not play a role in the limiting null distribution. This finding is also
reflected in the finite sample simulation study through the empirical
level and power with different choices of N/n.
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Consistency of m.d. tests

Define ρ(ν,Hθ) =
∫

(ν − Hθ)2dG , T (ν) = argminθ ρ(ν,Hθ).

Theorem 4

Suppose (A1), (A2), (A4), (A5), (F1), (F2), (H3), (K), (W1) and (W2)
hold and the alternative hypothesis H1 : µ(x) = m(x), x ∈ C satisfies
that infθ ρ(H,Hθ) > 0 and T (H) is unique. Then |Tn| →p ∞ for any
consistent estimator θn of T (H).
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Power under local alternatives

Let a be a known real-valued function with continuous derivative,
A(z) = E (a(X )|Z = z) and A2(z) = E ([a(X )]2|Z = z), z ∈ C. Assume∫

HθAdG = 0, ∀ θ ∈ Θ. (4)

We consider a sequence of local alternatives

H1,n : µ(x) = mθ0(x) + bn a(x), bn = 1/
√

nhp/2. (5)

Theorem 5

Assume (A1)–(A3), (A5), (F1), (F2), (H1)–(H6), (K), (W1) and (W2)
hold. Then under (4) and (5),
√

n(θ̂n − θ0)→d Nq
(

0,Σ−1
0 (Σ1 + λ−1Σ2)Σ−1

0

)
, where Σ0 is given in

(H6), Σ1 and Σ2 are defined in Theorem 2.
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A finite sample study

Linear and nonlinear regressions for p = 1; linear for p = 2.
K (u) = 0.75(1− u2)I(|u|≤1) for p = 1;
K (u) = 0.752(1− u2

1)(1− u2
2)I(|u1|≤1,|u2|≤1) for p = 2.

Bandwidth w = c(log n/n)1/(p+4), c > 0. We propose to obtain the
optimal w by the unbiased cross-validation criterion, i.e.,

c∗n := argmin0.1≤c≤10 UCV
(

c(log n/n)1/(p+4)
)
,

wopt = c∗n (log n/n)1/(p+4).

where

UCV (w) =
(R(K ))p

nwp +
1

n(n − 1)wp

n∑
i 6=j=1

(K ∗ K − K )
(Zi − Zj

w
)
,

with R(K ) =
∫

K 2(x)dx and K ∗ K (x) =
∫

K (y)K (x − y)dy .
h = σ̂Z n−1/3 for p = 1; h = n−1/4.5 for p = 2.
N/n = 4, 1, 1/4.
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Estimation of θ0 for p = 1

Nonlinear case:

mθ(x) = eθx , θ0 = −1, (6)

where ε ∼ N1(0, 0.22), η ∼ N1(0, 0.22),Z ∼ U[−1, 1].

N/n = 4 (n,N) (60,240) (100,400) (200,800) (300,1200) (400,1600)
|BIAS(θ̂n)| 0.0010 0.0030 0.0008 0.0017 0.0007
RMSE(θ̂n) 0.0716 0.0552 0.0393 0.0311 0.0274

N/n = 1 (n,N) (60,60) (100,100) (200,200) (300,300) (400,400)
|BIAS(θ̂n)| 0.0012 0.0036 0.0021 0.0015 0.0009
RMSE(θ̂n) 0.0768 0.0591 0.0424 0.0338 0.0293

N/n = 1/4 (n,N) (60,15) (100,25) (200,50) (300,75) (400,100)
|BIAS(θ̂n)| 0.0063 0.0048 0.0027 0.00014 0.0008
RMSE(θ̂n) 0.0954 0.0730 0.0503 0.0417 0.0355

θ̃n n 60 100 200 300 400
|BIAS(θ̃n)| 0.0029 0.0044 0.0012 0.0009 0.0005
RMSE(θ̃n) 0.0686 0.0552 0.0392 0.0325 0.0264

Table 1 : Performance of θ̂n, θ̃n in the nonlinear case (6) with p = 1.

Pei Geng Berkson measurement errors 25 / 34



Estimation of θ0 for p = 2

mθ(x) = θ1x1 + θ2x2, θ0 = (θ1, θ2)T = (1, 1)T . (7)

Zi1 and Zi2 are generated independently from U[−1, 1]

ηi1 and ηi2 are generated from N1(0, 0.12) and N1(0, 0.22),
respectively.
ε follows N1(0, 0.22).
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Estimation of θ0 for p = 2

N/n = 4 (n,N) (60,240) (100,400) (200,800) (300,1200) (400,1600)
|BIAS(θ̂n,1)| 0.0007 0.0031 0.0007 0.0004 0.0009
RMSE(θ̂n,1) 0.1069 0.0911 0.0515 0.0434 0.0345
|BIAS(θ̂n,2)| 0.0020 0.0003 0.0034 0.0020 0.0004
RMSE(θ̂n,2) 0.1048 0.0863 0.0511 0.0428 0.0356

N/n = 1 (n,N) (60,60) (100,100) (200,200) (300,300) (400,400)
|BIAS(θ̂n,1)| 0.0012 0.0032 0.0009 0.0003 0.0009
RMSE(θ̂n,1) 0.1064 0.0895 0.0516 0.0434 0.0345
|BIAS(θ̂n,2)| 0.0004 0.0014 0.0032 0.0016 0.0001
RMSE(θ̂n,2) 0.1049 0.0844 0.0516 0.0427 0.0355

N/n = 1/4 (n,N) (60,15) (100,25) (200,50) (300,75) (400,100)
|BIAS(θ̂n,1)| 0.0042 0.0041 0.0015 0.0002 0.0005
RMSE(θ̂n,1) 0.1073 0.0916 0.0516 0.0435 0.0344
|BIAS(θ̂n,2)| 0.0040 0.0040 0.0012 0.0002 0.0009
RMSE(θ̂n,2) 0.1079 0.0882 0.0518 0.0429 0.0357

θ̃n n 60 100 200 300 400
|BIAS(θ̃1)| 0.0070 0.0005 0.0028 0.0021 0.0011
RMSE(θ̃1) 0.1162 0.0952 0.0560 0.0497 0.0339
|BIAS(θ̃2)| 0.0023 0.0006 0.0012 0.0022 0.0002
RMSE(θ̃2) 0.1086 0.0877 0.0513 0.0438 0.0357

Table 2 : Performance of θ̂n, θ̃n in the linear case with p = 2 = q
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Empirical level and power for p = 1

The nonlinear regression as in (6) is chosen as the null models to
obtain the empirical level.
Three alternative models are chosen to demonstrate the power
performance.

Model 0: Y = e−X + ε.

Model 1: Y = e−X − 0.2X 2 + ε.

Model 2: Y = e−X + 0.2 sin(2X ) + ε.

Model 3: Y = e−X I(X≤0.4) + e−0.4I(X>0.4) + ε.
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Empirical level and power for p = 1

N/n = 4 (n,N) (60,240) (100,400) (200,800) (300,1200) (400,1600)
Model 0 0.043 0.042 0.048 0.045 0.047
Model 1 0.153 0.183 0.462 0.724 0.878
Model 2 0.113 0.196 0.438 0.680 0.866
Model 3 0.163 0.288 0.689 0.936 0.990

N/n = 1 (n,N) (60,60) (100,100) (200,200) (300,300) (400,400)
Model 0 0.043 0.045 0.052 0.044 0.048
Model 1 0.170 0.199 0.481 0.722 0.861
Model 2 0.130 0.201 0.437 0.680 0.870
Model 3 0.187 0.325 0.668 0.922 0.990

N/n = 1/4 (n,N) (60,15) (100,25) (200,50) (300,75) (400,100)
Model 0 0.062 0.054 0.059 0.055 0.053
Model 1 0.185 0.227 0.464 0.724 0.851
Model 2 0.146 0.217 0.464 0.672 0.856
Model 3 0.228 0.339 0.690 0.914 0.985

T̃n n 60 100 200 300 400
Model 0 0.074 0.060 0.044 0.043 0.055
Model 1 0.145 0.219 0.469 0.680 0.849
Model 2 0.144 0.230 0.474 0.705 0.902
Model 3 0.180 0.291 0.646 0.880 0.986

Table 3 : Empirical levels and powers of T̂n and T̃n tests for the nonlinear null model
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Empirical level and power for p = 2

The linear regression as in (7) is chosen as the null models to obtain
the empirical level.
Three alternative models are chosen to demonstrate the power
performance.

With θ0 = (0.5, 1)T and X = (X1,X2)T ,

Model ∅ : Y = θT
0 X + ε,

Model I : Y = θT
0 X + 0.2X1X2 + ε,

Model II : Y = θT
0 X + 0.5 sin(2X1X2) + ε,

Model III : Y = θT
0 XI(θT

0 X≤0.5) + 0.5I(θT
0 X>0.5) + ε.
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Empirical level and power for p = 2

N/n = 4 (n,N) (60,240) (100,400) (200,800) (300,1200) (400,1600)
Model ∅ 0.045 0.038 0.042 0.050 0.048
Model I 0.205 0.470 0.865 0.968 0.996
Model II 0.066 0.129 0.303 0.519 0.686
Model III 0.222 0.488 0.901 0.984 0.997

N/n = 1 (n,N) (60,60) (100,100) (200,200) (300,300) (400,400)
Model ∅ 0.048 0.035 0.043 0.053 0.049
Model I 0.218 0.468 0.859 0.970 0.996
Model II 0.073 0.128 0.313 0.521 0.688
Model III 0.223 0.476 0.884 0.979 0.998

N/n = 1/4 (n,N) (60,15) (100,25) (200,50) (300,75) (400,100)
Model ∅ 0.060 0.047 0.044 0.056 0.045
Model I 0.234 0.497 0.883 0.975 0.996
Model II 0.086 0.159 0.347 0.558 0.716
Model III 0.242 0.522 0.867 0.971 0.995

T̃n n 60 100 200 300 400
Model ∅ 0.042 0.036 0.042 0.056 0.047
Model I 0.199 0.464 0.869 0.975 0.997
Model II 0.058 0.124 0.302 0.516 0.690
Model III 0.212 0.477 0.902 0.984 0.997

Table 4 : Empirical levels and powers of T̂n and T̃n tests under linear null model,
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Summary

In Berkson measurement error regression, a minimum distance
model checking method is adapted when validation data is available.
The consistency and asymptotic normality of the proposed
estimators are derived.
The limiting distributions of the m.d. tests under the null and
certain local alternatives are also established.
A finite sample study shows reasonable performance of both
estimation and test.
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Onging and future work

Logistic regression with EIV models
Suppose the response Y is a binary variable. The Logistic regression
can be used to model the probability of Y and covariate X .

P(Y = 1|X ) =
eα+βT X

1 + eα+βT X

Z = X + u

Time varying coefficient autoregressive models with EIV models

xt = f1(xt−d )xt−1 + f2(xt−d )xt−2 + ...+ fp(xt−d )xt−p + εt

zt = xt + ut
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Thank you!
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