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Modeling
Some definitions and Notations

Ground up loss — the actual loss amount prior to modifications. The loss random variable is denoted X .
We generally assume X >0.

Cost per loss — the amount paid by insurer. This includes the zero payments. Denoted Y,

Cost per payment — the amount paid by insurer which includes only the non-zero payments made by the
insurer. It is also called the excess loss random variable or the left truncated and shifted variable.
Denoted Yp

Severity distribution — the distribution loss amount or the cost to the insurer
Frequency distribution — the distribution of the number of losses, or amount paid per unit time

Policy Limit — Maximum amount paid by insurance policy for a single loss, denoted U . If there is a
deductible the policy limitis u—d

Ordinary Deductible — for loss amounts below deductible, d the insurer pays 0 and for loss amounts
above d the insurer pays the difference of the loss amount and deductible.

Maximum Covered Loss — the amount U for which no additional benefits are paid. Denoted U

Case 1: Policy Limit u

X X<u .
Amount paid by insurer= X AU = =min(X,u)
u X>u

Note: X AUis also referred to as Limited loss random variable

Therefore the expected value is:

E[X /\u] :IX- f (x)dx+u -[l— Fy (u)] (for continuous)

0

E[X /\u] = z X; - p(Xj)+u -I:l— F, (u)] (for discrete)

XJ-SU

E[X au]= I[l— Fy (X)]dx :ISX (x)dx (for discrete or continuous)
0 0

Also



u

E[(X /\u)k} :IXK - f (X)dx+uk -[l— Fy (u)] (for continuous)

0

And

Var[X au]=E[ (X au)’ |~(E[X au])’
Case 2: With an Ordinary deductible

Amount paid by insurer = cost per loss = left censored and shifted random variable

0 X=d
YL=(X—d)+={

¥-d Xod =max(X —d,0) =X —(X ad)

Therefore the expected values are:

E[Y ]=E[(X —d),]=[(x—d)- f (x)dx (for continuous)

o —38

E[Y ]=E[(X-d),]=D_(x,-d)- p(xj)(for discrete)

XJ->U

E[YL] = E[(X —d)+] = E[X]— E[X /\d] = T[l— Fy (X)]dx = TSX(X)dX (for discrete or continuous)

d d

Var[(X —d), ]=E[(x -d).*[-(E[(x ~d)_]) =Var(¥,)=E()-(E[\.])

Also note that
E[YZ]=E[(X-d)}]=E[X*]-E| (X Ad)’ |-2d[ E[X]-E[X Ad]]

When considering the expected cost per payment E[X —d |X > d] =E [Yp] =e(d)

E[Y]  E[(X-d).] E[X]-E[X Ad]

E[YP]:P(X >d) 1-F,(d) 1-F(d)
(). I(x—d)-f(x)dx

[P]: 1-F, (d) = p

! f (x)dx

(for continuous)



e[x-a).) =090
E[Yp]z Ll B (for discrete)
1-F(d) Z}J p(x;)
T[l— Fy (%) Jox TSX(x)dx
E[Y,]=4 =4

1 F(d) = S(d) (for discrete or continuous)

The expected cost per payment is also referred to as the mean excess loss, or the mean residual loss or
mean residual lifetime.

Here are some shortcuts that will be useful in the examination:

1. Given X is a uniform distribution on [O, H]and an ordinary deductible d is applied. Then:

2 2
E[Yp] = 9;d and E [Y,f] = @ and the variance is Var [Yp} = @

2. Given X is an exponential distribution with mean ¢ and an ordinary deductible d is applied.
Then:
E|Y, |=0and E LYPZJ = 267 and the variance is Var LYP_‘ =6

3. Given X is a Pareto distribution with parameters & and @ and an ordinary deductible d is
applied (o >1) . Then:

d+o
The pdf of Y, is also Pareto with parameters @ and @' =d + @ . Therefore, E [Yp] = 1
a_

and

1 2(d+6)

e

4. Given X is a single parameter Pareto distribution with parameters & and & and an ordinary
deductible d is applied (& >1) .

If d <OthenE[Y,]=E[Y, ]=E[X]—d and Var[Y,]=Var[Y_]=Var[X]

If d > & thenY, has two parameter Pareto distribution with parameters « and @ =d

The variance of cost per loss with a deductible d is

Var[ X —d|X >d]:Var[Yp]:E[YPZ]—(E[YJ)Z ZE[(X—d)ZIX >d}—(E[X ~d|x >d])’



Note that

E[vZ]= E[YC] E[xX-o) ] E[(X-d)[x >d]

(X > d) 1-F, (d)
Case 3: Maximum Covered loss U with a policy deductible d <u

Therefore the Cost per Loss Y, is

0 X <d
Y =4X-d d<X<u=(Xau)-(Xnd)
u-d X>u

The expected cost per loss is:

E[Y, ]=E[X Au]-E[X ad]=[(x=d)- f (x)dx+(u—d)-[1-F, j[l Fy (x)]dx
d

The second moment for cost per loss therefore is:

E[v?]=(E[(X Au) |-E[ (X ad)"])-2d (E[X Au]-E[X rd])=

The expected cost per payment is:

c:.!—.c

E[Y,] E[XAu]-E[X Ad]
1-F(d) 1-F(d)

The second moment of cost per payment is:

v ELX

1-F(d)

Case 4: Coinsurance factor « where 0 < « <land/or inflation rate r

With maximum covered loss U and deductible d the amount paid by the insurer is (no inflation):

0 X <d
Y ={a(X-d) d<X<u
a(u—d) X>u

The expected cost per loss is:

f(x)dx+(u—d)”-[1-F,

(u)]



E[Y.]=a(E[X Au]-E[X /\d]):a.i[l— Fy (%) ]dx

The expected cost per payment is:

E[v,] a(E[XAu]-E[X Ad])
1-F, (d) 1-F, (d)

With inflation the expected cost per loss is:

E[YL]:a(1+r)LE[X /\]-_l:—rJ—E"X Ali—rJJ

And the expected cost per payment is:

a(1+1)| E| X A |-E d
=[] — F[El]fr)_ Sl 1?3} el

Other Concepts

E[X /\d]

E[X]

The Loss Elimination ratio is

Bonus Payments

If there is a bonus for loss amounts less than a specific limitU

u—X 0<X<u
Bonus =
0 X>u

Therefore the expected bonus payment is E [BOHUS] =u-—-E [X A u] and if the bonus is equal to a

fraction C of the amount by which the loss is less than U then E [Bonus] = CLU -E [X /\U]J



Franchise Deductible

Franchise deductible is when the insurer pays the full amount a deductible denoted d . Therefore
. . 0 X<d

Amount paid by insurer =
X X>d

Therefore the Expected cost per loss is = IX- fy (X)dx = E[(X —d )+:|+d [1— F, (d )] and the
d

Expected cost per payment =

E[v] _E[(X-d) J+d[1-F(d)]_ E[(X-d) |

El P]:P(X >d) 1-F, (d) 1-F(d)

+d

Compound Distributions
Terminology

N Is the number of claims or the claim count random variable. The distribution is called the claim count
distribution or frequency distribution.

X Is the single or individual loss random variable whose distribution is known as the severity
distribution

S =X+ X, +...4+ X and is the aggregate loss per period and has a compound distribution

N, X, X,,..., X are mutually independent random variables

Var| E[S|N]]=Var[N]-(E[X]) and E|Var[S|N]|=E[N]-Var[X]

If it is a compound Poisson distribution S and the frequency distribution is Poisson with mean A then

E[S]=4-E[X]and Var[S]=1-E| X? |
The distribution of S if N is in the (a,b,l) class

We know that P(N =k)=p,and P(S=j)=f(j).Also P(X =x) = f, (X)

ERCOIARNOIS EFSIATRATS)
P(S=x)= 1 (x)= "2 1,(0)




The distribution of S if N is in the (a, b, 0) class

X

Z(a+2- jj-fx () f. (x )

P(S=x)=fs(x)=1= 1-a-f, (0)

The distribution of S if N is Poisson

ij fo(x—j)

Stop Loss Insurance

If a deductible is applied to aggregate losses the insurance payment is the aggregate loss in excess of the
deductible. The stop loss insurance payment is

0 S<d

Max{S —-d,0}=(S-d), =S_(S/\d)={s_d S>d

The expected value stop loss insurance payment is called the net stop loss premium where
E[(5-d), |=E[S]-E[(SAd)]

Also
E[(s-d), ]=E[(S-a), ]-(d-a)[1-F (a)]~p—E[(S-a), ]+ .- E[(S-b), Jwhere

a<d<bandE||S—(d+1) ||=E[(S-d +J—Ll—lzs (d)|for d>0

10



Model Estimation

Review of Estimators

E[ X |=u, =E[X](X is an unbiased estimator of z,and X has the same mean as X )

2
Var[X] = thls is the variance of the sample mean)

For a parameter [ the estimator is unbiased if ELﬂJ

B
The Bias of the parameter estimator is BIaSL J L J Yo

The Mean Square error or MSE is E[(ﬂ ,B) } (Blas :|) +Var[ J

Non-Parametric Empirical Point Estimation

The random variable X can be a loss random variable or a failure time random variable. It can be
discrete or continuous. A failure time random variable describes the time until a particular even
happens.

Sample information for estimating the random variable X is available in the in one of the following
ways:

A random sample of independent n individual observations
Grouped data: the range of the random variable is divided to a series of intervals,

(—0,C4)(Cy, €,); v (€, 4, €, )(C,,0) and the number of observations in an interval (C, ;,C; ) is

n;

3. Censored or truncated data
Case 1: Empirical estimation from a random sample with complete individual data

If the exact values of n observations X, X,,...., X, (where X; is a loss amount given the data is a loss

distribution or it is times of death or failure given it is survival distribution) the data is considered to be

1
complete. A probability of — is assigned for each X; . If there are K distinct numerical values such that
n

these K values or ordered from smallest to largest as Y, <Y, <....<Y, with S;=number of

observations equal to y;ands, +5, +.....+5, =1.

11



number of x;'s that are equal toy; s,
The empirical distribution probability functionis p,(Y;) = =—
n n

T o number of x's <t
The empirical distribution functionis F, (t) =
n

_ number of x's >t
n

The empirical survival functionis S, (t)=1—F, (t)

The risk setat Y, is denotedr;, wherel; =n. If there are S, deaths at time Y, so thereare I, =n—s, at

risk at second death time Y, . If there are S, deaths at time Yy, so thereare I, =n —(S1 +5, ) at risk at

third death time.

The Nelson-Aelon estimate of the cumulative hazard function is

0 t<x
- i1
H(t)=<> = x,<t<x;,j=23..k
T f
K
Zi x, <t
i1 N

The Nelson-Aelon estimate of the survival function is §(X) = e_H(X), and the Nelson-Aelon estimate of

the distribution function is F (x) =1- §(X) :l_e—ﬁ(x)
In order to find the smoothed empirical estimate of the 100p-th percentile ﬁp use the following steps.

1. Order the sample values from smallest to largest.

+1
2. Find an integer g such that g <p< g
n+1 n+1

3. 7, isfound by linear interpolation 77, = [g +1-(n+1) p] X o) +[(n +1)p- g] X g1

Case 2: Empirical Estimation from Grouped Data

! I’lj Cj +Cj_1
The empirical estimate of the mean of X is z ———— |. We assume the loss amounts are

i 2

r k+1 k+1
N G —C
uniformly distributed. The empirical estimate of the k-th moment is: Z —
Fn (k+1)(c;-c)

12



Case 3: Estimation from Censored and truncated data

A truncated observation is data point that is not observed. Left truncation is truncation below
(deductible). A censored observation is an observation that is observed to occur, but whose value is not
known. Right censoring is censoring from above (policy limit).

Data description

If individual is a left truncated data point who has a value d; that satisfies y; ; <d; <;, then we add
that individual to the risk set I, for the next death point Y, and individual Mis right censored data point
who has a value U, that satisfies y; ; <u,, <Y;, then we remove that individual from the risk set r; for

the next data point Y, . This is similar to the following:

N =r,—S, +(the number of individuals who have y; , <d, <, )—(yj_l <u, <Y, ) where s; s

the number of deaths at death point Y,

If truncated or censored observation time is the same as death time Y, that individual is added or

removed after the deaths at death point Yy, and it only affects the risk set r;,;
Therefore:

r, = (number of d's<y, )—(number of X's<y, )—(number of u's<y, ) or

r, =(number of X's > y; )+(number of u's > y; ) —(number of d's >y, )

The Kaplan-Meier/Product Limit Estimator

1 0<t<y,
= Y .
S,(t)= 1_1[{ —?'} Y St<y; j=23..k
k
H[ —i} or 0 t>y,
i=1 f

13



[S ] (geometric extension approximation)

Kaplan Meier Approximation for Large data Sets

First choose a sequence of time points say C, <C, <....<C, . For aninterval (C;,C;,,], the number of
uncensored observed deaths is denoted X;; the number of right censored observations is denoted u;

and dj denotes the number of left truncated observations.

The number at risk at time O, I, = d0 . The number at risk for time interval (Cj , Cj+1] is

] -1

=>.d - > (% +u)

i=0

I
o

X.
The product limit estimate for the survival probability to the point C; is Kl—ﬁ][ —ﬁJ . -Ll—’—_l
Iy h rj—l

A variation on the Kaplan Meier/Product Limit large approach is defined by the following factors:

P, =0

._\

j—

P d, —u, —x and the number at risk at time C

is I, =Pj+adj—,8uj

j+1
|:0

Variance of Survival Probability Estimates

If there is no censoring or truncation given individual data the empirical estimate of the survival function

number of deaths that occur aftertimex Y n, .
S, (x)= =— =% where Nn,_=the number of survivors to

n n n

time x

Also the estimator is an unbiased and consistent estimator of S (X) and the variance is

vars, (x)] - IS0

For grouped data for N data points with intervals in the form (c,,c ], (c,,C,]. ..., (CH’ Cj], (Cj ,) the

variance of S, (X)is

Var[Sn (x)] _ (Cj _Cj—l)zvar [Y]+(X—le)2[\:]a([£rf£ +)2]ng —Cj_l)(X—Cj_l)COV[Y,mJ

14



And

Where

X = value between interval (c; ,,c;]

n.
Sn(CJ):FJ

n, = number of survivors at time C;

m, = number of deaths in interval (c, ,,C;

varfY]=n-5(c,,)[1-5(c,.)]
var[m,]=n(6,.)-5(e)) [ 1-5(6,2)+5(c)

cou[m |- 1-5(c,,) | 3(e,.) (s,

5,(6,.)-5,(5)

C;—Cj,

[81(612)=51() [{21-8(612)+54 (e

n(c, —CH)Z

and the

The estimate for the density function in the interval (Cj_1 —C; ) is f, (X) =

variance of the estimator is Var [ fn (X)] =

The Greenwood’s Approximation of the estimated variance of the product limit estimator is

Vér[Sn(yj )] Z[Sn (¥, )T :1 r(r

=

The estimated variance of the Nelson Aalen estimate of the cumulative hazard function H (yj ) is

15



Confidence Interval for Survival Probability Estimates

For an estimator éfor a parameter @ the 95% linear confidence interval for @is 0+1.96 var(é)

The lower limit for the 95% log transformed confidence interval for S (t)is S, (t)llU and the upper limit

| U 1.96,Var[ S, (t)]
s S (1) where U =exp) TS, (0]

The lower limit for the 95% log transformed confidence interval for H (t) is and the upper limit is

H (1)
u
1.96,Var| H (t)]

H(t)

H (t)-U where U =exp

Note: 1.96 is found using the normal distribution table provided

Method of Moments

For a distribution defined in terms of I parameters (6’1, 02,...., ¢9r)the method of moments estimator of

the parameter values is found by solving the I equations: theoretical j-th moment = empirical j-th
moment, j=1,2,...., r

If the estimator has only one parameter @ ,then solve for € from the equation theoretical distribution
first moment = empirical distribution first moment

If the distribution has two parameters 6, and &, then we solve the following equations,
E[ X |0 ] =empirical estimate of E[X ]and E[ X*|6 | =empirical estimate of E[ X* |or

theoretical distribution variance = empirical distribution variance.
Method of Percentile Matching

Given a random sample or an interval grouped data sample and a distribution with r parameters,

choose r percentile points pi,...., P, and set the distribution p;’yth percentile equal to the empirical

estimate for the P, ’th percentile. The r parameter values are found by solving the system of equations.

16



Maximum Likelihood Estimation (MLE) Definition

Maximum Likelihood Estimation is used to estimate the parameters in a parametric distribution. We are
trying to find the distribution parameters that would maximize the density or the probability of the data

set occurring. First we create the likelihood function L(@)where 0 is the parameter being estimated.

n
For individual data L(H) = H f (Xj;é’) for a random sample X, X,....., X, and for grouped data

r nj

L(H) = H[F (Cj ; 49) -F (Cj_l; 9)] for rintervals where interval (Cj , CH] has n; observations
j=1
Maximum Likelihood Estimation for Complete Data (No truncation or Censoring)
Use the following steps to find the maximum likelihood estimation
1. Find L(0)
2. Find log likelihood |(8)=InL(8)
d
3. set —1(6)=0
do
4. Solve for 6

Likelihood function for Loss data with policy limit U (right censored data)

The likelihood function is L(H) = Llﬂ[ f (Xj;Q)J-[l— F (u; 9):|m where M is the number of limit
j=1

payments equal to U (losses greater thanU ) and there are N payments below the limit.

Likelihood function for Loss data with Policy Deductible d (left truncated data)

Loss data can be available in 2 forms

1. Insurance payments >0 denoted Y,, Y,,....., Y,

2. Actual loss amounts greater than the deductible, X, X,,....., X,

This means that X, =Yy, +d therefore

c f(xi0) _p fly+did)
S ¥ bwrarr dH)_Hl—F(d;H)

j=1 j=1

17



Likelihood function for Loss data with Policy Deductible d and Maximum Covered Loss U

If there N observed payments Y,,Y,,....., Y, that satisfy 0 <y, <u—d and nloss amounts

X;s Xy .eeeey X, Where X, =Y, +d the likelihood function is:

L(@)zuif(xj;@)J.[lF(u;e)]m =Ujf(yj +d;9)J-[1—F(u;0)]m

[1-F(@o)] " [1-F(@o)]

Where m is the amount of observed limit payments equal to U—d therefore there will be m
corresponding losses > U

Maximum Likelihood of Exponential Distribution with parameter ¢
For complete individual data without truncation or censoring the MLE estimator for parameter @is the

n

For an exponential distribution with a data set with M limit payments and policy limit U the MLE of the

MLE for the mean of X is in +mu total of all payment amounts
I = =
n number of non censored payments

For an exponential distribution with a policy deductible the MLE for the mean of ground up loss is (given

data available was insurance payments Y, Y,,....., ¥, )

b L Yi _ total of all insurance payment amounts
n number of insurance payments

Maximum Likelihood Estimation Shortcuts for Distributions in Exam C Table (given no
Truncation or Censoring)

For a random sample X, X,,....., X, of the following distributions:

For an inverse exponential Distribution with parameter @ the MLE of fis

n
Zi
X
For a Pareto distribution with parameters «, @ where @ is given the MLE of « is

n

iZl:ln(xi+¢9)—nln(0)

18



R 1 <& %
For a Weibull Distribution with parameters 7,0 where 7 is given the MLE for @is 6 = (— . Z ij

For a Inverse Pareto distribution with parameters «, @ where @ is given the MLE of « is

n

iZl:ln(xi +60)->_In(x

For a Inverse Weibull Distribution with parameters 7,8 where 7 is given the MLE for @is
A

n

n

27

= X

>
Il

For a Normal Distribution with mean x and variance ° the MLE of s is 1 =X ,the sample mean. For a

1 ~
— Z ,u the biased
n

=1

Normal Distribution with mean g and variance ° the MLE of o’ is &° =

form of the sample variance.
For a Lognormal Distribution with parameters 1z and & the MLE of s is 1= ZIH the sample

2 1 )2
mean. For a Normal Distribution with mean z and variance o the MLE of o%is 6° == E (Inx, —f)
i=1

,the biased form of the sample variance.

~ 1
For a Gamma distribution with parameters «, @ where « is given the MLE of fis@ = —- in
nNo

A N
For a Inverse Gamma distribution with parameters o, @ where ¢ is given the MLE of fis@ = —1

2,

A 1d
For a Poisson distribution with parameter A the MLE of Ais A = —Z knk where the total number of
k=0

observationsis N =N, + N, +....+N;

For a Binomial Distribution with parameters m, g if the sample variance is larger than the sample mean,

then the binomial distribution is not a good fit for the data. If M is known or given for a data set
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Ny, Ny, ...N, he moment estimate and the MLE of q are both

1¢{ " _ total number of heads
m - -
m Z N, total number of coin tosses

Maximum Likelihood Estimation for Grouped Data
The data given is grouped into 4 categories

Category 1: datavalue X; that has no truncation or censoring

Category 2: data value U; , no deductible but policy limit U,

Category 3: data value X, before a deductible d;and no policy limit

Category 4: policy limit payment U; —d, with deductible d;and maximum covered loss U,
C, =the sum of x's in Category 1

C, =the sum of u;'s in Category 2

C, =the sum of x, —d,'s in Category 3

C, =the sum of u, —d's in Category 4

n, = number of data points in Category i (i =12,3,4)

C, +C,+C,+C,
n +n,

The MLE for an exponential distribution with mean A is A=

For a single parameter Pareto distribution with parameters «, @ where @ is given:

X.
Category 1: z, =In (Z'J

u.
Category 2: V. =1In [E'J

>

o

Category 3: W, = In[ iJ
1
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c

Category 4: Y, =In Ld—'J

n +n,
C,+C,+C,+C,

The MLE of iscx = where the C and n factors are defined the same as earlier

For a Weibull Distribution with parameters 7,8 where 7 is given:
Category 1: z, =X/, for x.that is not censored or truncated

Category 2: v, =Uu/, for u;that is right censored(limit payment) and not truncated(no deductible)

C +C,

A
] and if the data is separated to four categories:
nl

The MLE for Qis éz[

Category 1: z; = X/, for x;that is not censored or truncated
Category 2: v, =u., for u.that is right censored(limit payment) and not truncated(no deductible)
Category 3: W, =X —d/

Category 4: y, =u; —d/

C1+C2+C3+C4]%

The MLE for Qis 0 =
n1+n3
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Credibility

Given a random variable X from a random sample X,, X,,..., X, the goal of credibility theory is

to estimate the mean of X
Limited Fluctuation Credibility Theory

If the random sample being analyzed is W and there is nindependent observations W, ,W,,...,\W,
available. Also the mean of W is xz and the variance is o then full credibility standard is satisfied

when PD\N —,u‘ < k,u} > P is satisfied where K is some fraction of 4 .

Range parameter k: usually k = 0.05

Probability Level P: usually P =0.90

Full credibility standard is satisfied when PUV_V—,u‘ < k,u] > P is satisfied

Once P and k are chosen we find a value y such that P[—y <Z< y] = P where Z is the standard normal

distribution. Therefore if P =0.90, then y =1.645

2
Then chose N, = (%j

Therefore, for a random variable W, full credibility is given to W if the following conditions are satisfied

Var
1. nzn, —(Wz) =N, - (square of coefficient of variation) where n is the number of
EW)
observations of W
Var[W]
2. The sum of all observed W values 2 Ny ————
E(w]

Full Standard of Credibility for Compound distributions

Let compound distribution random variable be S. S has two components N (Frequency) and Y (Severity).
Severity is a non-negative random variable that can be continuous or discrete. Usually S represents
aggregate claims (per period) while N represents number of claims (per period or per policy holder) and
Y represents size of claim.
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We know that mean of variance of S is E[S] = E[N ] E[Y] and

var[s]=Var[N]-(E[Y])" +E[N]-Var[Y]
Therefore

1. Number of observations of S needed n>n, -

Var([S]
2. Sum of all observed S’s 21, -
E[S]
_ ar[S]-E[N] Var|S]
3. Total number of observed claims>n, =N

If S has a compound Poisson distribution i.e. N is Poisson with mean A, N and Y are mutually

independent and S has compound Poisson with mean AE [Y] therefore the standard of full credibility

forSis
. Var[S] n, Var[Y]
1. Number of observations of S needed N> n;-———= = 2 1+ >
(E[s]) (E[Y])
Var|S] Var[Y]
2. Sum of all observed S’s > n, - =n,- E[Y]+
E[S] E[Y]

3. Total number of observed claims>n, E [Y]

Var|(S|-E[N Var|Y
[] E[ ]zno_{H [ ]J
Full Credibility Standard for Poisson Random Variable N (Number of Claims)

Var(N n
1. Number of observed values of N needed = number of periods needed n > no[ ( )J = 70

E(N)
2. >N
Total number of claims needed

0

Partial Credibility

The credibility premium P =ZW +(1—Z)M where W is the sample mean and M is the manual

premium. Z is called the credibility factor where

7_ info available
info needed for full credibility
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For example to satisfy condition 1 the partial credibility factor is

3 number of observations available
number of observations needed for full credibility

P[A]=P[ANB]+P[ANB']=P[ AB|-P[B]+P| A
P[ANB] _ P[AB]-P[B]
P[A]  P[AB]-P[B]+P[A[B']-P[B]

B']-P[B']and

P[B|A]=
Predictive Probability
P[B|A]=P[B|C]-P[C|A]+P[BIC']-P[C'|A]
E[Y]=P[Y|C]-P[C]+P[Y|C']-P[C]

E[Y|B]=P[Y|C]-P[C|B]+P[Y

c']-P[C’

B]
E[Y]:Zm:E[Y\cj]-P[cj]and E[Y|B]=2E[Y‘CJ-P[CJ.|BJ

j=1
The initial assumption for the distribution (with parameter ® ) is called the prior distribution and the

pdf/pf is denoted 7r(t9) . The distribution can be continuous or discrete.

The model distribution X is a conditional distribution (given ® = @) with pdf/pf fx\@ (X|® = 49). For a

data set of random observed values from distribution of X and a specific &, the model distribution is

The Joint distribution of X and © has pf/pdf f, ,(x,8)= f (X|6’)-7r(9) and for a data set

fy o (X Xprean X, 0) = F(x|6)- F(x,[6)-- f (x,|0)- 7 (6)

The marginal distribution of X is f, (X) =I f (x|9)-7r(0)and for a data set
fy (Xl,X2 ..... Xn)zz f (X1|9) f (X2|6’)--- f (Xn|9)-7r(0) (for continuous ® ) and
o (X0 %000 X,) :I f (X1|0) f (X2|t9)-~- f (Xn |9)-7z(6?)d6? (for discrete ® )
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_ fro(X0)

fx (x)

The posterior distribution of ® given X = Xhas pdf/pf ojx (9|X)

Given data X, X,,..., X, , the predictive distribution of X . has pdf/pf

n+l

fxnﬂ‘X (Xn+l|xl, Xoyeoes Xn) =.[ fxm\(a (Xn+1|¢9)-7r®‘X (49|X1, XZ,...,Xn)deor continuous and

fxnﬂ‘X (Xn+1|X1, Xy yeees Xn) = Z fxm‘@ (Xn+1 |49)-7r®‘x (¢9|x1, Xoyeues Xn)for discrete
Bayesian Credibility Shortcuts

1. If model distribution is exponential with mean A and the prior distribution in inverse gamma
with parameters «, @ then:

When a single data value is given the mean of marginal distribution of X is 1 and the
a —
posterior distribution is inverse gamma with parameters o' = a +1and @' = @+ X and the
- . O+X
predictive mean is
a

When there are n data values the posterior distribution is inverse gamma with parameters
O+ %
a+n

2. If model distribution is Poisson with mean A and the prior distribution in gamma with
parameters «, @ then:

o' =a+nand 0’ =60+ ) X and the predictive mean is

When a single data value is given the mean of marginal distribution of X is negative binomial
with = and =6 and the posterior distribution is gamma with parameters &' = &+ Xand

, 0
0+1
When there are n data values the posterior distribution is gamma with parameters
. 0
0('20{+lei and 0' =
ng +1

In both cases the predictive distribution is negative binomial with ' =« + in and

and the predictive mean is the same as the mean of the posterior distribution

B'=

né+1
If @ =1in the prior distribution the prior distribution becomes exponential with the marginal
distribution X becomes geometric.

3. If the model distribution is binomial with parameters m, g and the prior distribution is beta with
parameters a,b,1 then:
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When a single data value is given the posterior distribution is beta with parameters a+x and
b+m-x

When n data values are given the posterior distribution is beta with parameters a + in and

b+ nm—in and the predictive mean will be Mx (posterior mean)

If model distribution is inverse exponential with parameter A and the prior distribution in
gamma with parameters ¢, @ then:

When a single data value is given the marginal distribution of X is inverse Pareto with I =« and
the same @ and the posterior distribution is gamma with parameters o' = o +1and

1 11 0 +X
— = —+—and the predictive mean is

g 60 x a

When there are n data values the posterior distribution is gamma with parameters ¢’ =a +n
1 1 1

and —=—+ Z—
0 0 Xi

If the model distribution is Normal with mean A and variance o and the prior distribution is
Normal with mean g and variance ¢ then:

For a single data value of x, the posterior distribution is normal with mean

For n data values the posterior distribution for A is Normal with mean

: 1 - . .
and varlance—:L . Also the predictive mean is the same as the posterior mean.
n
Tt
-«

If the model distribution is Uniform with on the interval [0, l] and the prior distribution is single

parameter Pareto with parameters «, @ then:

If there are n observations X, X,,..., X, and M = max(xl, Xyyenns Xn,«9) then the posterior

distribution is single parameter Pareto with &' =a+Nang &' =M ¢the Bayesian premium is
(a+n)M

2(a+n-1)
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Buhlmann Credibility

The initial structure for Buhmann credibility is the same as Bayesian credibility model. Therefore the
model distribution X is a conditional distribution (given ® = @) with pdf/pf fx‘(9 (X|® = Q)The initial
assumption for the distribution (with parameter ® )is called the prior distribution and the pdf/pf is

denoted 72'(9) . The distribution can be continuous or discrete.

Under Buhlmann credibility the conditional distributions of X,’s given ® = @is considered to be i.i.d

(independent and identically distributed). Therefore:

E[ X,|®=0]= 1(0)is the hypothetical mean

Var| X;|©=6]=v(6)is the process variance

E(X)=E|E[X|®]|=E[ 1(®)]= sis the pure premium or collective premium
Var[E [ X, |®ﬂ =Var|[ 11(®) | =ais the variance of the hypothetical mean VHM

E LVar [Xi |®]J =E [V(@)] =V is the expected process variance or EPV

Also

Var[X;]=v+a

V2 n
From this we calculate the Buhimann Credibility Premium to be ZX + (1—Z)u where Z = P where
n+

\Y
k = —. Z is called the Buhlmann Credibility factor. If a=0then Z =0.
a

The Buhlmann Straub model

The difference between the original Buhlmann model and the Buhlmann Straub model is that the

conditional variances of X, given © = & might not be the same. Therefore for a given measuring

v(9)

\'%
exposure M, where M=m, +Mm, +....+ M, the process variance VaI’I:Xi |® = 9] =
m.

E(Xi ) = ELy(@)J = pis the pure premium or collective premium

Var Ly(@)J = a is the variance of the hypothetical mean VHM
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E LV(@)J =V is the expected process variance or EPV

Also Var[Xi]=a+i
m.

Empirical Bayes Credibility Methods

Our objective is still to apply the Buhlmann or Buhlmann-Straub models to determine the credibility
premium based on observed claim data only using the following information:

1. Insurance Portfolio has r policy holders where 1 =1,2,3....,r

2. For policy holder idata on N, exposure periods is available where j=1,2,3....n,

3. For policyholder iand exposure period | there are m;, exposure units with an average observed
claim of Xij per exposure unit

4. The total claim observed for policyholder 1in exposure period | is m; Xij and the total claim

N
observed for policy holder iin all n, exposure periods is Z:minij
j=1

N
5. The total number of exposure units for policyholder iis m, = Z m;
j=1

R 1
6. The average observed claims per exposure unit for policyholder iis X; = _zmij Xij
m; =2

.
7. The total number of exposure units for all policyholders is m = Zmi
i=1
8. The average claim per exposure period for all policyholders is
- 1&  o  total observed claims for all policyholders in all periods
X==YmX = poTicy P
m iz

total number of exposure periods for all policyholders
9. Policyholder i has risk parameter variable ®; where each ©); s iid.

10. E[Xij |®i =l9i]=,u(0i)and Var[xij |®i :Q}:%

11. E|_/,t(®i )J = U, VarL,a(@i )_| =aand E\_V(@i )J =V
12. The credibility premium for the next exposure period for policyholder iis Z; Xi +(1-Z,)u
m

where Z, = y
m +—

a
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Empirical Bayes Estimation for Buhimann model (Equal Sample Size)

Since N, =N, =....=N, =Nand mM; =1lunder the Buhimann model use the following information to find

the premium:

2. The estimated prior mean [ = X

. 1 \ -\ 1,
3. The estimated process variance is V = ZZ(X” - Xi) = —Zvi where

0,=—=3(X,~X,)

-1 =}
. Lo oz
4. The estimated variance of the hypothetical meanis a = —1Z:(Xi - X )2 ——
r_ i=1 n
~ m. n A A
5. Z,=—"—= OandifaSOthenZ=O

v
m+-— N+
a a

Empirical Bayes Estimation for the Buhlmann Straub Model (Unequal Sample Size)

Use the following information to find premium:

1. a=X
N e e
2. V= mij(xij_xi)
S0y
i=1
S — { mi(ii—i)z—o(r—nJ
m—izr:m.2 =
miz
0 7= m ___n
%
m+— N+-—
a a
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Semi parametric Empirical Bayesian Credibility

Consider a case where X represents the number of claims for a period of time. Use the following

information to find the premium:

1. E[X|®]=u(0)=06

2. Var[X|@]=v(0)=06
3. u=v
4. Var[X]=v+a

5. From this we calculate the Buhlmann Credibility Premium to be ZX + (1—Z) u where

n Vv
Z =——where K =—. Z is called the Buhlmann Credibility factor
n+Kk a
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