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Modeling 

Some definitions and Notations 

Ground up loss – the actual loss amount prior to modifications. The loss random variable is denoted X . 

We generally assume 0X  . 

Cost per loss – the amount paid by insurer. This includes the zero payments. Denoted 
LY  

Cost per payment – the amount paid by insurer which includes only the non-zero payments made by the 

insurer. It is also called the excess loss random variable or the left truncated and shifted variable. 

Denoted 
pY

 

Severity distribution – the distribution loss amount or the cost to the insurer
 

Frequency distribution – the distribution of the number of losses, or amount paid per unit time 

Policy Limit – Maximum amount paid by insurance policy for a single loss, denoted u . If there is a 

deductible the policy limit is u d  

Ordinary Deductible – for loss amounts below deductible, d the insurer pays 0 and for loss amounts 

above d the insurer pays the difference of the loss amount and deductible. 

Maximum Covered Loss – the amount u for which no additional benefits are paid. Denoted u   

Case 1: Policy Limit u  

Amount paid by insurer = min( , )
X X u

X u X u
u X u


  


 

Note: X u is also referred to as Limited loss random variable 

Therefore the expected value is: 

     
0

1

u

XE X u x f x dx u F u        (for continuous) 

     1
j

j j X

x u

E X u x p x u F u


        (for discrete) 

   
0 0

1 ( )

u u

X xE X u F x dx S x dx       (for discrete or continuous) 

Also 
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     
0

1

u
k k k

XE X u x f x dx u F u           (for continuous) 

And  

       
22

Var X u E X u E X u     
 

 

Case 2: With an Ordinary deductible 

Amount paid by insurer = cost per loss = left censored and shifted random variable 

 
0

( ) max( ,0)L

X d
Y X d X d X X d

X d X d



       

 
 

Therefore the expected values are: 

       ( )L

d

E Y E X d x d f x dx



     (for continuous) 

     ( ) ( )
j

L j j

x u

E Y E X d x d p x



     (for discrete) 

         ( ) 1 ( )L X x

d d

E Y E X d E X E X d F x dx S x dx

 

           (for discrete or continuous) 

             
2 22 2

L L LVar X d E X d E X d Var Y E Y E Y
  

               
 

Also note that 

     
22 2 2( ) 2LE Y E X d E X E X d d E X E X d

                      
 

When considering the expected cost per payment ( )pE X d X d E Y e d           

 
 

 

 
 

   
 

( )

1 1

L

P

X

E Y E X d E X E X d
E Y

P X d F d F d

  
  

  
 

 
 

   

 

( )

1 ( )

d
P

X

d

x d f x dx
E X d

E Y
F d

f x dx







 


 






(for continuous) 
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 
 

 

 

 

( )
( )

1

j

j

j j

x u

P

j

x u

x d p x
E X d

E Y
F d p x





 


 





(for discrete) 

 
 

   

1 ( )

1

X x

d d
P

F x dx S x dx

E Y
F d S d

 

  
 



 
(for discrete or continuous) 

The expected cost per payment is also referred to as the mean excess loss, or the mean residual loss or 

mean residual lifetime. 

Here are some shortcuts that will be useful in the examination: 

1. Given X is a uniform distribution on  0, and an ordinary deductible d is applied. Then: 

2
p

d
E Y

 
    and 

 
2

2

3
P

d
E Y

 
    and the variance is 

 
2

12
p

d
Var Y

 
     

2. Given X is an exponential distribution with mean  and an ordinary deductible d is applied. 

Then: 

pE Y     and 2 22PE Y     and the variance is 2

pVar Y      

3. Given X is a Pareto distribution with parameters  and  and an ordinary deductible d is 

applied ( 1)  . Then: 

The pdf of PY is also Pareto with parameters  and d    . Therefore,  
1

P

d
E Y









and

 

  

2

2
2

1 2
P

d
E Y



 


     

  

4. Given X is a single parameter Pareto distribution with parameters  and  and an ordinary 

deductible d is applied ( 1)  . 

If d  then      P LE Y E Y E X d   and      P LVar Y Var Y Var X   

If d  then PY has two parameter Pareto distribution with parameters  and d   

The variance of cost per loss with a deductible d is 

        
2 222

P P pVar X d X d Var Y E Y E Y E X d X d E X d X d                         
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Note that  

   
 

2 2

22
( )

1

L

P

X

E Y E X d
E Y E X d X d

P X d F d


                  

 

Case 3: Maximum Covered loss u with a policy deductible d u  

Therefore the Cost per Loss LY is 

   

0

L

X d

Y X d d X u X u X d

u d X u




       
  

 

The expected cost per loss is: 

               1 1

u u

L X X

d d

E Y E X u E X d x d f x dx u d F u F x dx                   
 

The second moment for cost per loss therefore is: 

                 
2 2 2 22 2 1

u

L X

d

E Y E X u E X d d E X u E X d x d f x dx u d F u                           

The expected cost per payment is: 

 
 
 

   
 1 1

L

P

E Y E X u E X d
E Y

F d F d

  
 

 
 

The second moment of cost per payment is: 

 

2

2

1

L

P

E Y
E Y

F d

      
 

Case 4: Coinsurance factor  where 0 1  and/or inflation rate r  

With maximum covered loss u and deductible d the amount paid by the insurer is (no inflation): 

 

 

0

L

X d

Y X d d X u

u d X u








   
  

 

The expected cost per loss is: 
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        1

u

L X

d

E Y E X u E X d F x dx        
 

The expected cost per payment is: 

 
 
 

    
 1 1

L

P

X X

E X u E X dE Y
E Y

F d F d

   
 

 
 

With inflation the expected cost per loss is: 

   1
1 1

L

u d
E Y r E X E X

r r


    
               

And the expected cost per payment is: 

 
 

 1
1 1

1 1
1 1

L

P

X X

u d
r E X E X

E Y r r
E Y

d d
F F

r r


    

             
   

    
    

 

Other Concepts  

The Loss Elimination ratio is 
 
 

E X d

E X


 

 

Bonus Payments 

If there is a bonus for loss amounts less than a specific limitu  

 
0

Bonus = 
0

u X X u

X u

  



 

Therefore the expected bonus payment is    E Bonus u E X u   and if the bonus is equal to a 

fraction c  of the amount by which the loss is less than u then    E Bonus c u E X u      
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Franchise Deductible 

Franchise deductible is when the insurer pays the full amount a deductible denoted d . Therefore 

0
Amount paid by insurer = 

X d

X X d





 

Therefore the Expected cost per loss is      1X X

d

x f x dx E X d d F d




          and the 

Expected cost per payment = 

 
 

 

   

 

 

 

1

1 1

XL

P

X

E X d d F d E X dE Y
E Y d

P X d F d F d

 
           

   
  

 

Compound Distributions 

Terminology 

N  Is the number of claims or the claim count random variable. The distribution is called the claim count 

distribution or frequency distribution. 

X Is the single or individual loss random variable whose distribution is known as the severity 

distribution 

1 2 NS X X X    and is the aggregate loss per period and has a compound distribution 

1 2, , , , NN X X X are mutually independent random variables 

     E S E N E X   

    
2

Var E S N Var N E X       and    E Var S N E N Var X        

If it is a compound Poisson distribution S and the frequency distribution is Poisson with mean then 

   E S E X  and   2Var S E X       

The distribution of S if N is in the  , ,1a b class 

We know that   kP N k p  and    SP S j f j  . Also  ( ) XP X x f x   

    
       

 

1 0

1

1 0

x

X X S

j

S

X

b
p a b p f x a j f j f x j

x
P S x f x

a f



 
            

 
  

 


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The distribution of S if N is in the  , ,0a b class 

   
   

 
1

1 0

x

X S

j

S

X

b
a j f j f x j

x
P S x f x

a f



 
     

 
  

 


 

The distribution of S if N is Poisson 

     
1

x

S X S

j

f x j f j f x j
x





     

Stop Loss Insurance 

If a deductible is applied to aggregate losses the insurance payment is the aggregate loss in excess of the 

deductible. The stop loss insurance payment is  

      
0

,0
S d

Max S d S d S S d
S d S d


       

 
 

The expected value stop loss insurance payment is called the net stop loss premium where 

     E S d E S E S d


         

Also 

           1 S

b d b a
E S d E S a d a F a E S a E S b

b a b a   

 
                            

where

a d b  and      1 1 SE S d E S d F d
 

               
for 0d   
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Model Estimation 

Review of Estimators 

   is an unbiased estimator of and  has the same mean as X XE X E X X X X       

 
2

this is the variance of the sample meanXVar X
N


     

For a parameter  the estimator is unbiased if ˆE    
 

 

The Bias of the parameter estimator is ˆ ˆBias E      
   

 

The Mean Square error or MSE is    
22

ˆ ˆ ˆE Bias Var          
     

 

Non-Parametric Empirical Point Estimation 

The random variable X can be a loss random variable or a failure time random variable. It can be 

discrete or continuous. A failure time random variable describes the time until a particular even 

happens. 

Sample information for estimating the random variable X is available in the in one of the following 

ways: 

1. A random sample of independent n individual observations 

2. Grouped data: the range of the random variable is divided to a series of intervals, 

0 0 1 1( , )( , ),......, ( , )( , )r r rc c c c c c  and the number of observations in an interval
1( , )j jc c

is 

jn  

3. Censored or truncated data 

Case 1: Empirical estimation from a random sample with complete individual data 

If the exact values of n observations 1 2, ,...., nx x x (where ix is a loss amount given the data is a loss 

distribution or it is times of death or failure given it is survival distribution) the data is considered to be 

complete. A probability of 
1

n
is assigned for each ix . If there are k distinct numerical values such that 

these k values or ordered from smallest to largest as 1 2 .... ny y y   with 
js =number of 

observations equal to 
jy and 1 2 ..... 1ns s s    . 
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The empirical distribution probability function is 
number of 's that are equal to 

( )
i j j

n j

x y s
p y

n n
   

The empirical distribution function is  
number of 'si

n

x t
F t

n


  

The empirical survival function is    
number of 's

1 i
n n

x t
S t F t

n


    

The risk set at 
jy is denoted

jr , where
1r n . If there are 

1s deaths at time 
1y so there are 

2 1r n s  at 

risk at second death time
2y . If there are 

2s deaths at time 
2y so there are  2 1 2r n s s   at risk at 

third death time. 

The Nelson-Aelon estimate of the cumulative hazard function is  

  

1

1

1

1

1

0

, 2,3,...,
j

i
j j

i i

k
i

k

i i

t x

s
H t x t x j k

r

s
x t

r















   










 

The Nelson-Aelon estimate of the survival function is    H x
S x e


 , and the Nelson-Aelon estimate of 

the distribution function is      
1 1

H x
F x S x e


     

In order to find the smoothed empirical estimate of the 100p-th percentile 
p use the following steps. 

1. Order the sample values from smallest to largest. 

2. Find an integer g such that 
1

1 1

g g
p

n n


 

 
 

3. 
p is found by linear interpolation        1

1 1 1p g g
g n p x n p g x


              

Case 2: Empirical Estimation from Grouped Data 

The empirical estimate of the mean of X is
1

1 2

r
j j j

j

n c c

n





 
 

 
 . We assume the loss amounts are 

uniformly distributed. The empirical estimate of the k-th moment is: 
  

1 1

1

1 11

k kr
j j j

j j j

n c c

n k c c

 



 

 
 
  
 

  



13 
 

Case 3: Estimation from Censored and truncated data 

A truncated observation is data point that is not observed. Left truncation is truncation below 

(deductible). A censored observation is an observation that is observed to occur, but whose value is not 

known.  Right censoring is censoring from above (policy limit). 

Data description 

If individual i is a left truncated data point who has a value 
id that satisfies 

1j i jy d y   , then we add 

that individual to the risk set 
jr for the next death point 

jy and individual m is right censored data point 

who has a value mu  that satisfies
1j m jy u y   , then we remove that individual from the risk set 

jr for 

the next data point 
jy . This is similar to the following: 

   1 1 1 1the number of individuals who have j j j j i j j m jr r s y d y y u y           where 
js is 

the number of deaths at death point 
jy  

If truncated or censored observation time is the same as death time 
jy that individual is added or 

removed after the deaths at death point 
jy and it only affects the risk set 

1jr 
 

Therefore: 

     number of 's< number of 's< number of 's<j j j jr d y x y u y   or 

     number of 's number of u's number of d'sj j j jr x y y y       

The Kaplan-Meier/Product Limit Estimator 

 

1

1

1

1

1

1 0

1 , 2,3,...,

1  or 0

j

i
n j j

i i

k
i

k

i i

t y

s
S t y t y j k

r

s
t y

r












 
  

      
 


 

   
  





 

If z denoted the largest observation in the data set. Therefore when estimating  S t for t z : 

1.   0nS t   

2.    n nS t S z  
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3.    
/t z

n nS t S z    (geometric extension approximation) 

Kaplan Meier Approximation for Large data Sets 

First choose a sequence of time points say
0 1 .... kc c c   . For an interval

1( , ]j jc c 
, the number of 

uncensored observed deaths is denoted
jx ; the number of right censored observations is denoted 

ju

and 
jd denotes the number of left truncated observations. 

The number at risk at time 0,
0 0r d . The number at risk for time interval 

1( , ]j jc c 
is 

 
1

0 0

j j

j i i i

i i

r d x u


 

     

The product limit estimate for the survival probability to the point 
jc is 

10 1

0 1 1

1 1 1
j

j

xx x

r r r





   
       

    

 

A variation on the Kaplan Meier/Product Limit large approach is defined by the following factors: 

0 0P   

 
1

0

j

j i i i

i

P d u x




   and the number at risk at time 
1jc 
is 

j j j jr P d u     

Variance of Survival Probability Estimates 

If there is no censoring or truncation given individual data the empirical estimate of the survival function 

 
number of deaths that occur after time x x

n

nY
S x

n n n
   where xn =the number of survivors to 

time x 

Also the estimator is an unbiased and consistent estimator of  S x and the variance is 

 
   1

n

S x S x
Var S x

n

      

For grouped data for n data points with intervals in the form 
0 1 1 2 1( , ],( , ],...., ( , ],( , )j j jc c c c c c c  the 

variance of  nS x is  

  
        

 

2 2

1 1 1 1

2

1

2 ,j j j j j j j j

n

j j

c c Var Y x c Var m c c x c Cov Y m
Var S x

n c c

   



           
  

 
 
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And  

      1

1

1 1

j j

n n j n j

j j j j

c x x c
S x S c S c

c c c c





 

 
   

 
 

Where 

1 = value between interval ( , ]j jx c c
 

  j

n j

n
S c

n
  

1jY n n    

number of survivors at time j jn c  

1number of deaths in interval ( , ]j j jm c c   

     1 11j jVar Y n S c S c 
   
 

 

       1 11j j j j jVar m n S c S c S c S c 
               

 

     1 1, 1j j j jCov Y m n S c S c S c 
               

 

The estimate for the density function in the interval  1j jc c  is  
   1

1

n j n j

n

j j

S c S c
f x

c c









and the 

variance of the estimator is  
       

 

1 1

2

1

1n j n j n j n j

n

j j

S c S c S c S c
Var f x

n c c

 



      
   

  


 

The Greenwood’s Approximation of the estimated variance of the product limit estimator is  

    
 

2

1

ˆ
j

i
n j n j

i i i i

s
Var S y S y

r r s

    
    

  

The estimated variance of the Nelson Aalen estimate of the cumulative hazard function  jH y is 

   2
1

ˆˆ
j

i
j

i i

s
Var H y

r

  
    
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Confidence Interval for Survival Probability Estimates 

For an estimator ̂ for a parameter  the 95% linear confidence interval for  is  ˆ ˆ1.96 var   

The lower limit for the 95% log transformed confidence interval for  S t is  
1/U

nS t and the upper limit 

is  
U

nS t where 
 

   

ˆ1.96
exp

ln

n

n n

Var S t
U

S t S t

    
     

 

The lower limit for the 95% log transformed confidence interval for  H t is 
 Ĥ t

U
and the upper limit is 

 Ĥ t U where 
 

 

ˆˆ1.96
exp

ˆ

Var H t
U

H t

  
  


 
  

 

Note: 1.96 is found using the normal distribution table provided  

Method of Moments 

For a distribution defined in terms of r parameters  1 2, ,...., r   the method of moments estimator of 

the parameter values is found by solving the r equations: theoretical j-th moment = empirical j-th 

moment, j=1, 2,…., r 

If the estimator has only one parameter  ,then solve for  from the equation theoretical distribution 

first moment = empirical distribution first moment 

If the distribution has two parameters 1 and 2 then we solve the following equations, 

 empirical estimate of E X E X    and 2 2empirical estimate of E X E X       or 

theoretical distribution variance = empirical distribution variance. 

Method of Percentile Matching 

Given a random sample or an interval grouped data sample and a distribution with r parameters, 

choose r percentile points 1,...., rp p and set the distribution ip ’yth percentile equal to the empirical 

estimate for the ip ’th percentile. The r parameter values are found by solving the system of equations. 
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Maximum Likelihood Estimation (MLE) Definition 

Maximum Likelihood Estimation is used to estimate the parameters in a parametric distribution. We are 

trying to find the distribution parameters that would maximize the density or the probability of the data 

set occurring. First we create the likelihood function  L  where  is the parameter being estimated. 

For individual data    
1

;
n

j

j

L f x 


 for a random sample 1 2, ,....., nx x x and for grouped data 

     1

1

; ;
jnr

j j

j

L F c F c  



  
  for r intervals where interval 

1( , ]j jc c 
has 

jn observations 

Maximum Likelihood Estimation for Complete Data (No truncation or Censoring) 

Use the following steps to find the maximum likelihood estimation 

1. Find  L   

2. Find log likelihood    lnl L   

3. Set   0
d

l
d




  

4. Solve for   

Likelihood function for Loss data with policy limit u (right censored data) 

The likelihood function is      
1

; 1 ;
n

m

j

j

L f x F u  


 
      
 
 where m is the number of limit 

payments equal to u (losses greater thanu ) and there are n payments below the limit. 

Likelihood function for Loss data with Policy Deductible d (left truncated data) 

Loss data can be available in 2 forms 

1. Insurance payments >0 denoted 1 2, ,....., ky y y  

2. Actual loss amounts greater than the deductible, 1 2, ,....., kx x x  

This means that i ix y d  therefore 

  
 
 

 
 1 1

; ;

1 ; 1 ;

k k
j j

j j

f x f y d
L

F d F d

 


  


 

 
   
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Likelihood function for Loss data with Policy Deductible d and Maximum Covered Loss u  

If there n observed payments 1 2, ,....., ny y y that satisfy 0 iy u d   and n loss amounts 

1 2, ,....., nx x x where 
i ix y d  the likelihood function is: 

 

   

 

   

 

1 1

; 1 ; ; 1 ;

1 ; 1 ;

n n
m m

j j

j j

n m n m

f x F u f y d F u

L
F d F d

   


 

 

 

   
             

    
       

 
 

Where m is the amount of observed limit payments equal to u d therefore there will be m

corresponding losses u  

Maximum Likelihood of Exponential Distribution with parameter   

For complete individual data without truncation or censoring the MLE estimator for parameter  is the 

sample mean 
1

ix x
n

  for a random sample of observations
1 2, ,....., nx x x  

For an exponential distribution with a data set with m limit payments and policy limit u the MLE of the 

MLE for the mean of X is 
total of all payment amountsˆ

number of non censored payments

ix mu

n



 


 

For an exponential distribution with a policy deductible the MLE for the mean of ground up loss is (given 

data available was insurance payments 1 2, ,....., ky y y )  

total of all insurance payment amountsˆ
number of insurance payments

iy

n
  


 

Maximum Likelihood Estimation Shortcuts for Distributions in Exam C Table (given no 

Truncation or Censoring) 

For a random sample 1 2, ,....., nx x x of the following distributions: 

For an inverse exponential Distribution with parameter  the MLE of  is 
1

i

n

x


 

For a Pareto distribution with parameters ,  where is given the MLE of  is 

   
1

ln ln
n

i

i

n

x n 


 
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For a Weibull Distribution with parameters ,  where is given the MLE for  is 

1

1

1ˆ
n

i

i

x
n






 
  
 
  

For a Inverse Pareto distribution with parameters ,  where is given the MLE of  is 

   
1

ln ln
n

i i

i

n

x x


  
 

For a Inverse Weibull Distribution with parameters ,  where is given the MLE for  is 

1

1

ˆ
1n

i i

n

x









 
 
 
 
 
 


 

For a Normal Distribution with mean  and variance 2 the MLE of  is ˆ x  ,the sample mean. For a 

Normal Distribution with mean  and variance 2 the MLE of 2 is  
22

1

1
ˆ ˆ

n

i

i

x
n

 


   ,the biased 

form of the sample variance. 

For a Lognormal Distribution with parameters  and 2 the MLE of  is  
1

1
ˆ ln

n

i

i

x
n




  ,the sample 

mean. For a Normal Distribution with mean  and variance 2 the MLE of 2 is  
22

1

1
ˆ ˆln

n

i

i

x
n

 


  

,the biased form of the sample variance. 

For a Gamma distribution with parameters ,  where is given the MLE of  is
1ˆ

ix
n




   

For a Inverse Gamma distribution with parameters ,  where is given the MLE of  is ˆ
1

i

n

x


 


 

For a Poisson distribution with parameter  the MLE of  is 
0

1ˆ
j

k

k

kn
n




  where the total number of 

observations is 0 1 .... jn n n n     

For a Binomial Distribution with parameters ,m q if the sample variance is larger than the sample mean, 

then the binomial distribution is not a good fit for the data. If m is known or given for a data set 
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0 1, ,... mn n n he moment estimate and the MLE of q are both 

0

0

1 total number of heads
ˆ

total number of coin tosses

m

k

k

m

k

k

kn

q
m

n





 



 

Maximum Likelihood Estimation for Grouped Data 

The data given is grouped into 4 categories 

Category 1:  data value 
ix that has no truncation or censoring 

Category 2: data value iu , no deductible but policy limit iu  

Category 3: data value ix before a deductible id and no policy limit 

Category 4: policy limit payment i iu d with deductible id and maximum covered loss iu  

1 the sum of 's in Category 1iC x  

2 the sum of u 's in Category 2iC   

3 the sum of 's in Category 3i iC x d   

4 the sum of 's in Category 4i iC u d   

 number of data points in Category 1,2,3,4in i i   

The MLE for an exponential distribution with mean  is 1 2 3 4

1 3

ˆ C C C C

n n


  



 

For a single parameter Pareto distribution with parameters ,  where is given: 

Category 1:  ln i
i

x
z



 
  

 
 

Category 2: ln i
i

u
v



 
  

 
 

Category 3: ln i
i

i

x
w

d

 
  

 
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Category 4: ln i
i

i

u
y

d

 
  

 
 

The MLE of  is 1 3

1 2 3 4

ˆ
n n

C C C C





  
where the C and n factors are defined the same as earlier 

For a Weibull Distribution with parameters ,  where is given: 

Category 1:  , for that is not censored or truncatedi i iz x x  

Category 2: , for that is right censored(limit payment) and not truncated(no deductible)i i iv u u  

The MLE for  is 

1

1 2

1

ˆ C C

n




 

  
 

and if the data is separated to four categories: 

Category 1:  , for that is not censored or truncatedi i iz x x  

Category 2: , for that is right censored(limit payment) and not truncated(no deductible)i i iv u u  

Category 3:  
i i iw x d    

Category 4: 
i i iy u d    

The MLE for  is 

1

1 2 3 4

1 3

ˆ C C C C

n n




   

  
 
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Credibility 

Given a random variable X from a random sample 1 2, ,..., nX X X the goal of credibility theory is 

to estimate the mean of X  

Limited Fluctuation Credibility Theory 

If the random sample being analyzed is W and there is n independent observations 
1 2, ,..., nW W W

available. Also the mean of W is and the variance is 
2

 then full credibility standard is satisfied 

when P W k P    
 

is satisfied where k is some fraction of . 

Range parameter k: usually k = 0.05 

Probability Level P: usually P = 0.90 

Full credibility standard is satisfied when P W k P    
 

is satisfied 

Once P and k are chosen we find a value y such that  P y Z y P    where Z is the standard normal 

distribution. Therefore if 0.90,P   then 1.645y   

Then chose 

2

0

y
n

k

 
  
 

 

Therefore, for a random variable W, full credibility is given to W if the following conditions are satisfied 

1. 0 02

( )

( )

Var W
n n n

E W

 
   

 
(square of coefficient of variation) where n is the number of 

observations of W 

2. The sum of all observed W values 
 
 0

Var W
n

E W
  

Full Standard of Credibility for Compound distributions 

Let compound distribution random variable be S. S has two components N (Frequency) and Y (Severity). 

Severity is a non-negative random variable that can be continuous or discrete.  Usually S represents 

aggregate claims (per period) while N represents number of claims (per period or per policy holder) and 

Y represents size of claim. 
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We know that mean of variance of S is      E S E N E Y  and 

          
2

Var S Var N E Y E N Var Y     

Therefore 

1. Number of observations of S needed 
 

  
0 2

Var S
n n

E S
   

2. Sum of all observed S’s 
 
 0

Var S
n

E S
   

3. Total number of observed claims
   

  

 

    
0 02 2

Var S E N Var S
n n

E S E Y E N


 


 

If S has a compound Poisson distribution i.e. N is Poisson with mean , N and Y are mutually 

independent and S has compound Poisson with mean  E Y  therefore the standard of full credibility 

for S is 

1. Number of observations of S needed 
 

  

 

  
0

0 2 2
1

Var S Var Yn
n n

E S E Y

 
    
 
 

 

2. Sum of all observed S’s 
 
 

 
 
 0 0

Var S Var Y
n n E Y

E S E Y

 
     

 

 

3. Total number of observed claims
   

  

 
 0 02

1
Var S E N Var Y

n n
E YE S

 
    

 

 

Full Credibility Standard for Poisson Random Variable N (Number of Claims) 

1. Number of observed values of N needed = number of periods needed 0
0 2

( )

( )

nVar N
n n

E N 

 
  

     

 

2. 

 Total number of claims needed  
0n  

Partial Credibility 

The credibility premium (1 )P ZW Z M   where W is the sample mean and M is the manual 

premium. Z is called the credibility factor where  

 
inf

inf

o available
Z

o needed for full credibility
  
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For example to satisfy condition 1 the partial credibility factor is 

number of observations available
Z

number of observations needed for full credibility
  

 

         P A P A B P A B P A B P B P A B P B               and

 
 

 

   

P A B P BP A B
P B A

P A P A B P B P A B P B

   
               

 

Predictive Probability 

P B A P B C P C A P B C P C A                         

     E Y P Y C P C P Y C P C             

E Y B P Y C P C B P Y C P C B                         

 
1

m

j j

j

E Y E Y C P C


        and 
1

m

j j

j

E Y B E Y C P C B


            

The initial assumption for the distribution (with parameter ) is called the prior distribution and the 

pdf/pf is denoted    . The distribution can be continuous or discrete. 

The model distribution X is a conditional distribution (given   ) with pdf/pf  X
f x 


  . For a 

data set of random observed values from distribution of X and a specific , the model distribution is 

         1 2 1 2

1

, , ,
n

n i nX

i

f x x x f x f x f x f x    




      

The Joint distribution of X and   has pf/pdf      , ,Xf x f x      and for a data set 

         , 1 2 1 2, , , ,X n nf x x x f x f x f x          

The marginal distribution of X is      Xf x f x     and for a data set 

         1 2 1 2, , ,X n nf x x x f x f x f x        (for continuous ) and 

         1 2 1 2, , ,X n nf x x x f x f x f x d        (for discrete ) 
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The posterior distribution of   given X x has pdf/pf  
 

 
, ,X

X

X

f x
x

f x


  


  

Given data
1 2, , , nx x x , the predictive distribution of 

1nX 
has pdf/pf

     
1 1

1 1 2 1 1 2, , , , , ,
n n

n n n nX X X X
f x x x x f x x x x d   

 
  

  for continuous and 

     
1 1

1 1 2 1 1 2, , , , , ,
n n

n n n nX X X X
f x x x x f x x x x  

 
  

  for discrete 

Bayesian Credibility Shortcuts 

1. If model distribution is exponential with mean  and the prior distribution in inverse gamma 

with parameters ,  then: 

When a single data value is given the mean of marginal distribution of X is 
1



 
and the 

posterior distribution is inverse gamma with parameters 1    and x    and the 

predictive mean is 
x




 

When there are n data values the posterior distribution is inverse gamma with parameters 

n    and ix    and the predictive mean is 
ix

n










 

2. If model distribution is Poisson with mean  and the prior distribution in gamma with 

parameters ,  then: 

When a single data value is given the mean of marginal distribution of X is negative binomial 

with r  and    and the posterior distribution is gamma with parameters x    and 

1





 


  

When there are n data values the posterior distribution is gamma with parameters 

ix    and 
1n





 


  

In both cases the predictive distribution is negative binomial with ir x   and 

1n





 


and the predictive mean is the same as the mean of the posterior distribution 

If 1  in the prior distribution the prior distribution becomes exponential with the marginal 

distribution X becomes geometric. 

 

3. If the model distribution is binomial with parameters m, q and the prior distribution is beta with 

parameters a,b,1 then: 
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When a single data value is given the posterior distribution is beta with parameters a+x and 

b+m-x 

When n data values are given the posterior distribution is beta with parameters ia x and 

ib nm x  and the predictive mean will be m (posterior mean) 

4. If model distribution is inverse exponential with parameter  and the prior distribution in 

gamma with parameters ,  then: 

When a single data value is given the marginal distribution of X is inverse Pareto with r  and 

the same  and the posterior distribution is gamma with parameters 1    and 

1 1 1

x 
 


and the predictive mean is 
x




 

When there are n data values the posterior distribution is gamma with parameters n   

and 
1 1 1

ix 
 


   

5. If the model distribution is Normal with mean  and variance 2 and the prior distribution is 

Normal with mean  and variance  then: 

For a single data value of x, the posterior distribution is normal with mean 

2

2

1 1

x 

 

 

 
 

 
 

 
 

and variance 

2

1

1 1

 

 
 

 

 

For n data values the posterior distribution for  is Normal with mean 

2

2

1 1

i
x 

 

 

 
  

 
 

 
 



and variance

2

1

1n

 

 
 

 

. Also the predictive mean is the same as the posterior mean. 

 

6. If the model distribution is Uniform with on the interval  0, and the prior distribution is single 

parameter Pareto with parameters ,  then: 

If there are n observations 1 2, , , nx x x and M = 1 2max( , , , , )nx x x  then the posterior 

distribution is single parameter Pareto with n    and M  the Bayesian premium is 

 

 2 1

n M

n







 
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Buhlmann Credibility 

The initial structure for Buhmann credibility is the same as Bayesian credibility model. Therefore the 

model distribution X  is a conditional distribution (given   ) with pdf/pf  X
f x 


  The initial 

assumption for the distribution (with parameter )is called the prior distribution and the pdf/pf is 

denoted    . The distribution can be continuous or discrete. 

Under Buhlmann credibility the conditional distributions of iX ’s given   is considered to be i.i.d 

(independent and identically distributed). Therefore: 

 iE X         is the hypothetical mean 

 iVar X v       is the process variance 

   E X E E X E             is the pure premium or collective premium 

 iVar E X Var a          is the variance of the hypothetical mean VHM 

 iE Var X E v v          is the expected process variance or EPV 

Also 

 iVar X v a   

From this we calculate the Buhlmann Credibility Premium to be (1 )ZX Z   where 
n

Z
n k




where 

v
k

a
 . Z is called the Buhlmann Credibility factor. If 0a  then 0Z  . 

The Buhlmann Straub model 

The difference between the original Buhlmann model and the Buhlmann Straub model is that the 

conditional variances of iX given   might not be the same. Therefore for a given measuring 

exposure im where 1 2 .... nm m m m    the process variance 
 

i

i

v
Var X

m


       

   iE X E       is the pure premium or collective premium 

 Var a     is the variance of the hypothetical mean VHM 
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 E v v    is the expected process variance or EPV 

Also  i
i

v
Var X a

m
   

Empirical Bayes Credibility Methods
 

Our objective is still to apply the Buhlmann or Buhlmann-Straub models to determine the credibility 

premium based on observed claim data only using the following information: 

1. Insurance Portfolio has r policy holders where 1,2,3....,i r  

2. For policy holder i data on 
in exposure periods is available where 1,2,3.... ij n  

3. For policyholder i and exposure period j there are 
ijm exposure units with an average observed 

claim of 
ijX per exposure unit 

4. The total claim observed for policyholder i in exposure period j is 
ij ijm X and the total claim 

observed for policy holder i in all in exposure periods is 
1

in

ij ij

j

m X


  

5. The total number of exposure units for policyholder i is 
1

in

i ij

j

m m


  

6. The average observed claims per exposure unit for policyholder i is 
1

1 in

i ij ij

ji

X m X
m 

   

7. The total number of exposure units for all policyholders is 
1

r

i

i

m m


  

8. The average claim per exposure period for all policyholders is 

1

1 total observed claims for all policyholders in all periods

total number of exposure periods for all policyholders

r

i i

i

X m X
m 

   

9. Policyholder i has risk parameter variable i where each i is iid. 

10.  ij i i iE X        and 
 i

ij i i

ij

v
Var X

m


      

11.  iE      ,  iVar a     and  iE v v     

12. The credibility premium for the next exposure period for policyholder i is (1 )i i iZ X Z  

where i
i

i

m
Z

v
m

a




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Empirical Bayes Estimation for Buhlmann model (Equal Sample Size) 

Since 
1 2 .... rn n n n    and 1ijm  under the Buhlmann model use the following information to find 

the premium: 

1. 
1

1 n

i ij

j

X X
n 

  and 
1 1 1

1 1r r n

i ij

j i j

X X X
r r n  

 


   

2. The estimated prior mean ˆ X   

3. The estimated process variance is 
 

 
2

1 1 1

1 1
ˆ ˆ

1

r n r

ij i i

i j i

v X X v
r n r  

  

  where 

 
2

1

1
ˆ

1

n

i ij i

j

v X X
n 

 

  

4. The estimated variance of the hypothetical mean is  
2

1

ˆ1
ˆ

1

r

i

i

v
a X X

r n

  

  

5. 
ˆ ˆ

ˆ ˆ

i
i

i

m n
Z

v v
m n

a a

 

 

and if ˆˆ 0 then 0a Z   

 

Empirical Bayes Estimation for the Buhlmann Straub Model (Unequal Sample Size) 

Use the following information to find premium: 

1. ˆ X   

2. 

 
 

2

1 1

1

1
ˆ

1

inr

ij ij ir
i j

i

i

v m X X

n  



 





 

3.  
2

2 1

1

1
ˆ ˆ( 1)

1

r

i ir
i

i

i

a m X X v r

m m
m





 
    

 



 

4. 
ˆ ˆ

ˆ ˆ

i
i

i

m n
Z

v v
m n

a a

 

 
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Semi parametric Empirical Bayesian Credibility 

Consider a case where X  represents the number of claims for a period of time. Use the following 

information to find the premium: 

1.  E X        

2.  Var X v       

3. v   

4.  Var X v a   

5. From this we calculate the Buhlmann Credibility Premium to be (1 )ZX Z   where 

n
Z

n k



where 

v
k

a
 . Z is called the Buhlmann Credibility factor 

 


