
INTRODUCTION 

 

This paper deals with three main topics: Generalized Linear Model, Loss 

Reserving Techniques in Property-Casualty Insurance and how 

Generalized Linear Model can be applied to the Loss Reserving Problem 

in Property-Casualty Insurance in order to obtain a “better” result.  

 

In past few decades there has been a large amount of research conducted 

in the field of modeling and prediction theory. Analyst and Scientist from 

different fields such as Investment, Credit Card and Insurance Industry, 

Medical and Biological Sciences and Image Processing conducted notable 

research on these topics. The most important reasons perhaps the 

massive data explosion over the past few years. It is questionable 

whether one should look at this data explosion as a curse or as a 

blessing. But with cutting-edge computing technology the Analysts and 

the Scientists of the above industry took this as a blessing and developed 

some advanced, mathematically sophisticated and practically reliable 

statistical methods. They have innovated techniques like Neural 

Networks, Genetic Algorithm and resurrected Generalized Linear Model. 

As we have mentioned at the beginning, one of the topics we will discuss 

in this paper is the Generalized Linear Model. In the Chapter-I, we will 

talk about the mathematical and statistical aspect of the Generalized 



Linear Model at large. We will see the limitations of the classical linear 

model and the necessity of the invention of the generalized linear model.  

 

Actuarial Science involves the science of financial uncertainty. The 

insurance industry is all about handling financial risk. Management of 

this risk, by predicting the future financial developments, is the main job 

of an Actuary. However, this act of prophecy is not quite easy and needs 

a combination of art and science. Precisely speaking, this prediction is 

dependent on several statistical tools along with the business knowledge 

and actuarial judgment from the Actuary. In Life Insurance the 

uncertainty is based on the life time of the insured or individual. On the 

other hand in Property-Casualty Insurance the uncertainty is emerged 

from the defined “failure” of the insured item or occurrence of a casualty. 

However, we will concentrate only on the P&CI part in this paper.  An 

insured transfers the risk of the losing or damaging a property or 

affecting by a casualty to the insurer. The P&CI is liable to pay the 

insured an amount (based on the policy) of the loss occurred and this is 

called the liability in insurance terminology. As we have mentioned 

already, this loss is uncertain and the financial amount to be paid as 

liability is also unknown. This gives birth of the uncertainty in the all 

other components of the insurance e.g. pricing, rate-making and 

reserving. In the Chapter-II we will discuss the reserving techniques in 



the P&CI. We will define the terms and terminologies used and will 

provide an extensive idea about the P&CI loss reserving techniques.  

 

In the last chapter, we will explore how the Generalized Linear Model can 

be used as a tool for P&CI loss reserving. In Chapter 2 we will see that 

the all traditional methods used for predicting the amount of necessary 

reserve, the ultimate claim value or the loss value are deterministic in 

nature. Due to simplicity they are popular in use but by using those, an 

Actuary will not have the provision for any diagnostic tests and 

estimating confidence intervals. The traditional stochastic methods e.g. 

two-way analysis or minimum biased method do not allow considering 

the interaction between two determining factors. The generalized linear 

model provides different statistical features including diagnostic tests 

and it captures the interaction effects of two determining factors. Unlike, 

classical linear model, the generalized linear model allows considering a 

non-Normal distribution as underlying model distribution. This is a very 

useful flexibility of the generalized linear model, as insurance severity 

data is believed to follow the Gamma distribution. In this chapter, we will 

mostly give a comparative discussion of the above techniques and will 

show the advantages of considering the GLM using a case study based 

on a paper published by Roosevelt Mosely (2004). Data analysis in this 

paper (Roosevelt, 2004) is based on 1992 Auto-Insurance data published 

by the Insurance Research Council (IRC). Guided by this paper we will 



discuss several possible explanatory variables which have potential to 

determine the ultimate settlement value of a reported loss. We will also 

discuss the diagnostic test of the final model. 

 

Like any other model used in reserving technique, the Generalized Linear 

Model is nothing more than a tool used for predicting ultimate loss value 

or determining the reserve. Applying the generalized linear model can not 

replace the actuarial judgment and business knowledge (Roosevelt, 

2004). However, a predictive data analysis such as the generalized linear 

model significantly improves any system and prediction procedure. Last 

but not the least due to its well-built mathematical back-bone it is easier 

for the reserving Actuary to explain his prediction to the management 

and underwriters. 
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CHAPTER I 

GENERALIZED LINEAR MODEL 

In this chapter we will discuss the statistical theory of the Generalized 

Linear Model (referred to as GLM in what follows). In order to present 

the topic in a more mathematically elegant way we will establish some 

required terminologies. We will represent the data by a two 

dimensional array, often known as data matrix, in which rows will be 

indexed as experimental units or uncorrelated observations. On the 

other hand, the columns of the data matrix are known as variates, 

some of which will be regarded as responses or dependents variates 

due to their sensitivity to the explanatory variables or covariates 

which is popularly known as independent variables (McCullagh, 

1989). Covariates can be observed as a quantitative value or as a 

qualitative value. Qualitative variates are usually called factors in 

statistics and take on a finite set of values or labels (McCullagh, 

1989). Dependent variables can be continuous or discrete in nature. 

They may be even observed as factors and take on values from a finite 

set of classes. GLM is essentially an extension of the classical concept 

of multiple linear regression model. So it is important to discuss the 

theory of multiple linear regression model before we proceed any 

further. The first section deals with definition and formation of the 

multiple linear regression model and statistical inference based on the 

same mainly for the expectations. 
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1.1 Multiple Linear Regression Models 

The basic purpose of linear regression model is to find a linear 

relationship between a dependent variable and one or several 

independent variables. In most of the practical problems the number 

of independent variables is more than one in which case the model is 

called multiple linear regression model (Pearson, 1908) (McCullagh, 

1989). Let us discuss a practical problem to understand the basic 

problem addressed by multiple linear regression model. In order to 

predicting the stock price of a insurance company one can consider 

different explanatory variables such as net written premium, loss 

ratio, combined ratio, GAAP earnings of the company along with 

different relevant market variables. The statistician should take care 

of different possibilities of the relationships. Usually stock price at a 

particular time point t has a relation with the value of the above 

independent factors at time point (t-1). For example, the stock value 

assessed at the 4th quarter is likely to be related with the values of the 

above independent variables at the 3rd quarter. Different problem and 

purpose cultivated several kinds of linear models. But as we have 

mentioned before, the basic goal is to find a linear combination 

through which one can predict the dependent variable using the given 

value of explanatory variables. The coefficients of this linear 

combination are called model parameters and primary quantity to 

estimate. Some times it is required to study more than one dependent 
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variable. In which case a combination of the dependent variables are 

considered. In this context, let us digress from our main topic for a 

while for short discussion of general linear model (StatSoft, 2003). The 

emergence of the theory of algebraic invariants in the 19th century by 

outstanding work from mathematicians such as Gauss, Legendre, 

Boole, Cayle and Sylvester cultivated the root of the general linear 

model (StatSoft, 2004). The theory searches to identify those 

quantities in systems of equations which remain unchanged under 

linear transformations of the variables in the system. Invariants are 

extremely useful for classifying mathematical objects because they 

usually reflect intrinsic properties of the object of study.  Similar to 

the most of the discoveries in theoretical mathematics, the success of 

the theory of invariants was far beyond the dreams of its originators. 

The development of the linear regression model in the late 19th 

century and the development of correlation methods shortly 

thereafter, are clearly direct outcomes of the theory of algebraic 

invariants (StatSoft, 2004). Regression and correlational methods, in 

turn, serve as the basis for the general linear model. A very basic 

application of this theory is the result that the correlation between two 

statistical variables is remained unchanged under a linear 

transformation on those two variables. However in this paper we will 

not address this topic any further.  

 

Our approach of discussing the multiple regression model is intended 

to make the extension to GLM natural. Guided by McCullagh and 



 

 

4

Nelder (1989) we will represent the multiple regression model in the 

following form: 

(C1) 2( , )i iY N µ σ! ,which means that the observations are normally and 

independently distributed with mean iµ  for the ith observation and a 

common variance 2σ .  

(C2) 
1

p

j j
j
x

=
=∑η β , which is linear predictor based on the covariates: 

1, , px xK . 

 (C3) =η µ , which is identity link. Once we define the whole model in 

mathematical notations, immediately we will answer what we mean by 

the word link. 

In this description, the data vector Y, the mean vector µ , and the 

linear predictor η , all have n components. It is clear that the above 

set-up of the multiple linear model is a combination of the systematic 

or deterministic component and the stochastic component. As we have 

promised, we will now discuss what we have meant by the link η . In 

the above description we could simply avoid the concept of link 

function, but advent of this concept at this basic set up will ease the 

development of the GLM setup.  

 

The link function defines a relation between the linear predictor η  with 

the expected value µ  of the data points Y ((McCullagh, 1989)). As we 

have seen in the above setup, the mean and the linear predictor are 

the identical and both of them can assume any real value. But this is 
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not a plausible relationship in all cases. For an example, when we deal 

with binomial distribution we have 0 < µ  < 1 and we need a link that 

should map the interval (0,1) onto the entire real line. For a counting 

distribution, such as Poisson distribution we must have µ  > 0 while η  

could be negative. In this case we will have relation  or log( )e= =ηµ µ η  

which also implies that additive effect contributing to η  will act as a 

multiplicative effect contributing to µ . So precisely speaking, link is a 

function that relates the expected value of the observations to the 

linear predictor (McCullagh, 1989). We will be back to this discussion 

and will state different link functions corresponding to different 

distributions of the exponential family later on in this chapter. 

 

With the setup we have for multiple regression model, the very next 

job is to estimate the parameters ,  1(1)j j pβ = . The theory of least square 

estimation answers this problem of estimating the parameters in a 

linear model. The basic foundation of this theory were founded (Rao, 

2002) by Gauss (1809) and Markoff(1900) and later on significantly 

modified by different statisticians such as Aitken(1935), Bose(1950-

51), Neyman(1938), Rao(1945) to name a few. At this point we will 

discuss the least square estimation method using the Gauss-Markoff 

setup 2( , , )IY X
%
β σ .  

 

Let us consider uncorrelated observations 1, , ny yK  such that: 
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1

2

( )
1(1)

( )

p

i ij j
j

i

E y x
i n

V y
=


= β  =

= σ 

∑  

where β
%
 and 2σ are unknown parameters and ( )ijx = X is a matrix of 

known coefficients. 

If Y andβ
%
 represents the column vector of the variables yi and βj, then 

we can re-write the above set of equations as: 

 2 2β + ε, (ε) = 0, (ε) = ( ) , ( ) σE D E D= σ ⇒ = β =Y X I Y X Y I
% % % %%

 (0.1) 

 

with the usual notations: residuals ε
%
 are differences between the 

observed values and the corresponding values that are predicted by 

the model (StatSoft, 2004), 2σ  as the variance of the dependent 

variables or equivalently variance of the error terms ε
%
 (this is often 

called the residual variance and they represent the variance that is not 

explained by the model; the better the fit of the model, the smaller the 

values of residuals (StatSoft, 2004)), D denotes the dispersion matrix 

(the dispersion matrix or the variance-covariance matrix consists of 

the variances of the variables along the main diagonal and the 

covariance between each pair of variables in the other matrix positions 

(Rao, 2002))and I identity matrix of order n. We need to estimate 

the jβ on the basis of the observed yi. Aitken(1935) has given a more 

general set-up as follows: 

 2( ) , ( ) ,| | 0E D= β = σ ≠Y X Y G G  (0.2) 
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The idea of introducing a known nth order matrix G is to capture any 

possible correlation among the observations of which G = I is a special 

case when there is no correlation. The setup (1.2) can be reduced to 

the setup (1.1) with the transformation 1/ 2−=Z G Y  which leads to: 

 
1/ 2

2

( )

( )

E
D

−= β = β

= σ

Z G X U
Z I

 (0.3) 

Setup (1.3) suggests that it is enough to discuss the parameter 

estimation based on the simple model stated at (1.1) which is denoted 

by 2( , , )β σY X I
%

. We will avoid fathom into any further mathematical 

theory behind this estimation method; rather we will state the result 

of the least square estimation whenever needed in order to find the 

solution for �β
%
. The sum of squares of differences between the 

observations and the expectations is called normal equation which can 

be stated as follows: 

 2
1 1( ) '( ) ( ... )i i im my x x− β − β = − β − − β∑Y X Y X

% %
 (0.4) 

The equation inβ
%
 is obtained by minimizing (1.4) and given as: 

 ' 'β =X X X Y
%

 (0.5) 

The observational equation is in general inconsistent while the normal 

equation necessarily has a solution, as ' ( ' )∈X Y X XM , which states 

that there exists aβ
%
, that satisfies the equation (1.5). We will denote 

such assured solution of (1.5) as β
%
ˆ  which results to: 

 � �( ) '( ) ( ) '( )− β − β ≥ − β − β
% % % %

Y X Y X Y X Y X  (0.6) 
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So � �( ) '( )− β − βY X Y X
% %

is the minimum and it is attained at �β = β
% %

 and unique 

for all such �β
%
. An interesting statistical note can be mentioned at this 

point is �β
%
 that minimizes (1.4) is also the maximum likelihood. This �β

%
 

is known as the least square estimator (Rao, 2002). 

 
As we have seen so far for developing the theory of least square 

estimation and finding out the least square estimator, we do not 

require the Normality assumption what we have made at the very 

beginning of the section at C1. In order to develop the theory of least 

square estimation we need to use only first order and second order 

assumption what we have made. We do not require the normality 

assumption which is in fact an advantage as it is a quite hard to 

realize the actual underlying distribution. Precisely speaking our 

parameter estimation will remain valid even if the underlying 

distribution is not from normal distribution. So the most important 

assumption is the assumption of constant variance which should be 

checked using a statistical method or by simple graphical method. 

One more interesting point to note that thanks to Central Limit 

Theorem (Linear Statistical Inference and Its Applications, Rao, 2002), 

normality assumption can be relaxed in case we are working with the 

sum or the mean a large sample.     

 

At this point we have the multiple linear regression model and we 

know how to estimate the parameters of this model given a set of 

observations. Let us now clarify some intuitive concept of this 
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modeling approach and estimation problem. The parameters of the 

model actually represent the contribution of the corresponding 

explanatory variables in predicting the dependent variable. Here we 

will bring the concept of partial correlation. This concept comes from 

the fact that βj gives the information of how much the corresponding 

explanatory variable Xj is related to the dependent variable Y, after 

suppressing the effect of all other present explanatory variables 

(StatSoft, 2004). However this cultivates the root of one of the most 

important limitations of this setup. We can give an example (StatSoft, 

2004): how much do we agree with the fact the there exists a negative 

correlation between length of hair and height of a person in a 

population? Perhaps it seems that there is no logic as such for this to 

happen. But if we consider the fact that women are in general shorter 

than men in a population and accordingly introduce another 

explanatory variable gender, then the above phenomenon will be 

clarified. 

 

 We will close this section by discussing the concept of R2 measure 

and correlation coefficient related to the multiple linear regression 

model. A small variability (compare to the overall variability) of 

residual values around the regression line depicts a good prediction or 

in other words states that there exists a good relation between X and 

Y. On the other hand if there is a lack of relation between X and Y, 

then the ratio of the residual variance to the overall variance will be 

found to be close to zero, whereas in the former case it was expected 
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to be closer to 1. The term coefficient of determination or R2 is defined 

to be 1 minus this ratio and we expect this value will be in the closed 

interval [0,1] (StatSoft, 2004). R2 is a direct measure of how well the 

model fits the data and a value more than 60% is believed to be a good 

fitness.  In practice, the positive square root of R2 is named as 

correlation coefficient (and popularly used for detecting the degree of 

relation between the independent or explanatory variables X�s  and the 

dependent variable Y. Its value lies between 0 and 1 and this will give 

an overall dependency in the multiple linear regression model. On the 

other hand if we want to see the relationship between the individual 

independent variables and the dependent variable, we need to look at 

the individual β value. For example, a positive tells β us that there is 

positive relation between the dependent variable and the 

corresponding independent variable, whereas a negative value 

implicates a negative correlation. Understandably, if β assumes the 

value 0 then there is no relation between the dependent variable and 

the corresponding independent variable. As matter of fact the 

calculated β for the height of the people in the example we have given 

for predicting the length of hair is expected to be negative.  
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1.2 Assumptions and Limitations of Multiple Linear 

Regression Model 

In this section we will clearly mention the assumptions have to be 

considered for multiple linear regression model and will show the 

consequent limitations of this setup due to the assumptions taken. 

 

In this set up we need to assume that the relationship between 

dependent variable and the independent variables if exists, it would be 

a linear relationship. We can clarify this assumption in two ways. 

First, we can always approximate a second or higher order polynomial 

by a set of straight lines (remember how Archimedes found the area of 

a circle by approximating it by a polygon). So in a system, we can 

consider a complex process as a sum of several simple linear 

processes. But still we are approximating the model or true relation, 

which may be fatal for the prediction. The second approach to handle 

this limitation is to find out a proper transformation to change any 

possible non-linear relation into a linear relationship. At this point we 

should make two very important comments: one, before setting up the 

model the first and foremost thing we should do is to try to 

understand the relationship of the dependent variables, individually, 

with the dependent variable using the bivariate scatter plot. It will 

clearly depict the needed transformation in order to set up the linear 

model. Secondly, when we talk about a linear model it is linear in 

terms of the parameters, not in terms of the independent variables.  If 
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from scatter plot we need to imply that there is no linear relationship 

between a particular independent variable X and Y, rather there is a 

second order relationship, then we should consider another variable, Z 

with the transformation function square (Z = X2) will give a linear 

relationship between Y and Z and we will consider Z in the model.  

Another set of assumption what we have discussed in the previous 

section is normality assumption and constant variance assumption on 

residuals (hence the dependent variable, as the residual is defined is 

to be predicted minus actual value of the dependent).Again, classical 

approach of linear regression transform the response variable to 

satisfy these conditions. But these transformations may not exist in 

reality (McCullagh, 1989). More importantly, the response variable 

may assume only positive values, which is very common in insurance 

related data but normal distribution assumes value in the entire real 

line. Also, if the response variable is strictly positive, then the variance 

of the response variable goes to zero as its mean goes to zero. This 

reasoning gives the idea that variance could be a function of the 

mean, not a constant (Anderson et al, 2004).  

The way the multiple linear regression model has been set up in the 

previous section, assumption C1 can not be a valid assumption for 

many insurance risks. The relation can be multiplicative not 

necessarily additive. In which case the assumption stated at C2 is 

certainly violated (Anderson et al, 2004). Finally, we can have problem 

where the assumption C3 should not be assumed. We have already 

mentioned example where the concept of identity link function does 
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not hold. In insurance industry we come across several non-normal 

distributions (for example, severity distribution is usually Gamma or 

Log-Normal distribution) and most of these have strictly positive range. 

Let us recollect again that the residuals are predicted value of the 

dependent variables minus its actual value. This quantity could be 

any value around 0 and in that case if the underlying distribution of 

the dependent variable is strictly positive then we can not relate the 

expected value of the dependent variable with a identity function. This 

is a very severe drawback of multiple linear regression model setup 

that can be addressed by GLM set up. There is another conceptual 

limitation of all these regression techniques: what we can tell from 

these models is whether there exists a relation between dependent 

variable and the independent variables or not; what we can not tell is 

what the actual causal mechanism is. This can be a considerable 

problem when we actually choose explanatory variables to be present 

from the entire class of explanatory variables (McCullagh, 1989).  

 

All most all of these limitations can be address by employing GLM 

technique. Before going detail into the theory of GLM we need to 

discuss a special class of distribution called the exponential family of 

distributions, which is a very important concept for developing the 

theory of GLM. 
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1.3 Family of Exponential Distribution 

Exponential family of distribution is an extremely important and 

useful class of distributions in statistics. This family of distributions is 

mathematically elegant and has nice algebraic properties; at the same 

time all of these distributions occur naturally and quite justified to 

consider as the underlying model distribution. Distributions of this 

family can be continuous as well as discrete. The generic form of the 

density function of the exponential family can be written as 

(McCullagh, 1989): 

 ( )( ; , ) exp{( ) ( , )}
( )y

y bf y c y
a

θ − θθ φ = + φ
φ

 (0.7) 

Where a(.) is positive and continuous, b(.) is twice differentiable with 

the second derivative a positive function, precisely speaking a convex 

function and c(.) is independent of the parameter θ . With a knownφ, 

this is an exponential-family model with canonical parameter θ  and we 

are mainly interested in estimating θ . In caseφis known, it may be a 

two-parameter exponential family;φ is called nuisance parameter as 

2σ  in regression analysis. Normal, gamma, inverse-Gaussian, 

exponential distribution are the example of continuous distributions 

of this family whereas Poisson, Bernoulli, binomial are example of 

discrete distributions within exponential family of distributions. Now 

we will clarify the expression (1.7) with the example of normal 

distribution, as a continuous distribution and Bernoulli as a discrete 

distribution (McCullagh, 1989)  
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Normal Distribution:  

Suppose Y is normally distributed, i.e. Y~N(µ,σ2). Its density can be 

written as (Hardle et al, 2004): 

 2
22

1 1( ; , ) exp{ ( ) }
22

µ σ = − −µ
σπσ

yf y y  (0.8) 

This can be rewritten as: 

 
2 2

2
2 2 2( ; , ) exp{ log( 2 )}

2 2
µ µµ σ = − − − πσ
σ σ σy

yf y y  (0.9) 

From (1.9) we can readily observe that Normal distribution is a 

member of the exponential family of distributions with the 

parameters: 

2 2
2 2

2( ) , ( ) , ( , ) log( 2 )
2 2

µφ = σ θ = φ = − − πσ
σ
ya b c y , 

where ,φ= σ θ =µ . 

 

Now suppose, Y is Bernoulli distributed (The Bernoulli distribution 

can be described as the situations where a "trial" is made resulting in 

either "success" or "failure," such as when tossing a coin or when 

modeling the success or failure of a mechanical procedure (StatSoft, 

2004)) with the probability function (Hardle et al, 2004): 

 1( ) (1 ) −= = µ −µy yP Y y  (0.10) 

which can be viewed as: 

 ( ) ( ) (1 ) exp{ log( )}(1 )
1 1

µ= = −µ = −µ
− µ − µ

y pP Y y y  (0.11) 

using the logit, log( )
1 1

θ

θ

µθ = ⇔ µ =
−µ +

e
e

, we have an exponential family 

with: 
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( ) 1, ( ) log(1 ) log(1 ), ( , ) 0θφ = θ = − −µ = + φ =a b e c y . 

This distribution does not involve any nuisance parameterφ.  

 

Weibull and Log-normal distributions are not in the class of 

exponential family of distributions. 

 

In the next section we will see how this special class of distributions 

plays a very important role in the theory of GLM. 

 

 

1.4 Generalized Linear Model � Setup and Parameter 

Estimation Techniques 

As the name suggests, GLM extends the concept of the classical 

multiple linear regression model. As we have discussed in the section 

1.1, the classical setup of the linear model assumes that the response 

variables is a linear combination of the independent variables and a 

normally distributed error term.  

 '= β+ ε
%%

Y X  (0.12) 

The least squares estimators �β
%
 has been adapted under these 

assumption; But as we have discussed before these assumptions are 

sometimes too ideal to make in practical scenario. If the error term 

follows normal distributions, which is a continuous distribution, then 

that automatically restricts the response variable to be a continuous 

distribution. In that way, classical setup fails when it deals with 
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binary data (Bernoulli distribution) or count data (Poisson 

distribution). Nelder and Wedderburn (1972) introduced the concept of 

GLM which is able to address these limitations and shows how 

linearity could be exploited to unify apparently diverse statistical 

techniques (McCullagh, 1989). Most important feature of GLM is that 

the regression function, i.e. the expectation µ of Y, the response 

variable, is a monotonous function ofη = 'β
%

X . We will denote this 

function that relates µ and η  by G, which is called the link function, 

and usually we use the relation ( )G µ = η (Hardle et al, 2004).  In case of 

normal distribution, i.e. when we use the classical setup of the 

multiple linear regression model, G is taken to be identity function 

(Hardle et al, 2004).  In GLM we consider that the response variable 

can assume any distribution in the family of the exponential 

distributions. It will allow Y to be a non-negative, even discrete 

distribution. The link function will be different for different 

distributions and it will relate the systematic component with the 

random component. In that way the link function plays a very 

important role in GLM set up.   

 

So far we have seen, that GLM comprises of a wide range of 

underlying distributions for different models of which classical linear 

model is a special case. Further the linear model restrictions of 

normality, constant variance and additive forms of the covariates. In 

GLM setup variance is allowed to be function of the expected value of 
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the response variable. Also, the additive form of the covariates will be 

kept only through a transformation. Having said that we need to 

answer what should be that transformation? Or in other words what 

should be the choice of the link function? 

Let us consider the following relations (Hardle et al, 2004):  

 ' , ( )Gη = β µ = ηX  (0.13) 

The link is called canonical link in case we have 'η = β = θX , where θ  is 

the canonical parameter mentioned in the previous section.  With a 

canonical link it becomes easier to solve a theoretical or practical 

problem. Now what link function can we select besides the canonical 

link? There are several specified link functions for different models. 

For example, a binomial link with a canonical logit link is called a logit 

model and with a Gaussian link is called probit model (McCullagh, 

1989). A very useful class of link functions is the class of power 

function popularly known as the Box-Cox transformations. It can be 

defined for all models for which we have a positive mean. This family 

of link functions has the form:  

       if 0
log     if 0 

λµ λ ≠
η = 

µ λ =
 

Let us give the main characteristics of some distribution functions in 

the exponential family (McCullagh, 1989)(Hardle et al, 2004). 

Poisson distribution (P(µ)) 
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Range                    0(1)
b( )                       exp( )

( )                       exp( )
cannonical link      log
variance                 
a( )                        1

∞
θ θ

µ θ θ

µ
φ

 

 

Gamma distribution (G(µ,ν)) 

2

Range                    (0, )
b( )                       -log(- )

1( )                       -

cannonical link      reciprocal
variance                 

1a( )                        

∞
θ θ

µ θ θ

µ

φ ν

 

 

In this paper we will assume that severity distribution follows Gamma 

distribution. Log-normal distribution is another popular distribution 

that can be considered as severity distribution, which unfortunately is 

not a member of the exponential family.  

 

Once we have a model set up we need to estimate the model 

parameters given observations or Y values. As we have mentioned in 

section 1, that least square estimator in classical setup of the multiple 

linear regression is the maximum likelihood estimator for normally 

distributed errors, in GLM set up we have Y that follows exponential 

family of distributions and we can still work on the maximum-

likelihood for the GLM. The added advantage is that by using generic 

set up of exponential family of distributions, we can find the 
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properties of different distribution at the same time. In the rest of this 

section we will discuss about the parameters estimation procedure in 

the GLM setup.  

 

In order to develop the estimation technique we need to specify some 

properties of the density function f clearly. f will be considered as the 

density function with respect to Lebesgue measure in case of 

continuous distribution and counting measure in case of a discrete 

distribution (Rao, 2002)(Hardle et al, 2004). With these specifications 

we can write 

 ( , , ) 1f y dy
∞

−∞

θ φ =∫  (0.14) 

With the exchange of differentiation and integration (which is possible 

for a nice function), we have, 

 ( , , ) ( , , ) 0f y dy f y dy
∞ ∞

−∞ −∞

∂ ∂θ φ = θ φ =
∂θ ∂θ∫ ∫  (0.15) 

 { log ( , , )} ( , , ) { ( , , )}f y f y dy E l y
∞

−∞

∂ ∂= θ φ θ φ = θ φ
∂θ ∂θ∫ , (0.16) 

with the usual notation log( ( , , )) ( , , )f y l yθ φ = θ φ , for the log-likelihood.  

The partial derivative of the log-likelihood wrt toθ , is called score. For 

score we have the following relation, 

 
2

2
2{ ( , , )} { ( , , )}E l y E l y∂ ∂θ φ = − θ φ

∂θ ∂θ
 (0.17) 

Now consider the density function as that of the exponential family of 

distributions, what we have specified at (1.7) and we will have, 



 

 

21

 2'( ) ''( ) '( ){ } 0 and also, { } { }
( ) ( ) ( )
b b bE E E
a a a
− θ − θ − θ= = −

φ φ φ
Y Y  (0.18) 

Equations at (1.18) finally lead to the following expressions, 

 
( )= '( ),

( )= ''( ) ( )
E b
Var b a

µ = θ
θ φ

Y
Y

 (0.19) 

We can readily observe that the expectation of Y depends on θonly, 

where as the variance of the response variable depends on the 

nuisance parameter as well. Usually we assume that the quantity 

( )a φ is the same with all observations. As we have said earlier, the 

estimated value of the model parameter beta will maximize the 

likelihood function of the response variable for given values of the 

effects (Hardle et al, 2004). Let us consider the observations vector, Y 

and their expectation µ for given values of effects. Under the GLM set 

up, the log-likelihood of Y will be 

 1

i

( , , ) ( , , )

( )

n

i i
i

t
i

l l Y

G x
=

µ φ = θ φ

µ = β

∑Y

also, 

 (0.20) 

where ( ) ( , )t
i i ixθ = θ η = θ β  and on the right hand side it is the summation 

of the individual log-likelihood contribution for each observation i. In 

order to clarify this theoretical description we will give example with 

2( , )i iY N µ σ! , for which we have, 

 2
22

1 1( , , ) log ( )
22

i i i il Y Y
 
 θ φ = − −µ
  σπσ 

 (0.21) 

The sample likelihood will look like  
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 2
22

1

1 1( , , ) log ( )
22

n

i i
i

l n Y
=

 
 µ σ = − −µ
  σπσ 

∑Y  (0.22) 

Needless to mention, maximizing log-likelihood wrt β
%
 under normal Y 

is equivalent to minimizing the least square criterion as the objective 

function.  

 

We will discuss one more example in this context with a discrete 

distribution. Let us suppose Y follows Bernoulli distribution and has 

probability mass function as shown in (1.10) and (1.11). Then the 

individual log-likelihood will look like (Hardle et al, 2004) 

 ( , , ) log( ) (1 ) log (1 )i i i i i i il Y Y Yθ φ = µ + − −µ  (0.23) 

That leads to: 

 
1

( , , ) { log( ) (1 ) log (1 )}
n

i i i i i
i

l Y Y
=

µ φ = µ + − −µ∑Y  (0.24) 

In case we do not know the distribution of Y, but the first two 

moments are known, we can use the quasi-likelihood instead of 

likelihood. We will only specify the form of the quasi-likelihood which 

is as follows  

 

( )

( ) , ( ) ( ) ( )

1 ( )( , , )
( ) ( )

y

E Var a V

s yl y ds
a V sµ θ

= µ = φ µ

−θ φ =
φ ∫

Y Y

 (0.25) 

This concept was introduced by Wedderburn (1974) and is believed to 

be a major break-through in the development and applicability of 

GLM.  This concept shows that we need to know how the variance of 

each observation changes with its mean value but it is not necessary 

to specify the distribution in its entirety.  
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We will close this section by discussing an algorithm for estimating β
%
. 

From the individual likelihood function, log( ( , , )) ( , , )f y l yθ φ = θ φ and for 

the generic form of the density function of the exponential family of 

distributions, we have (Anderson et al, 2004) 

 
1

( )( , , ) ( , )
( )

n
i i i

i
i

Y bl c Y
a=

 θ − θµ φ = + φ φ 
∑Y  (0.26) 

In order to maximize (1.26) wrt β
%
, we need to take the first order 

derivative wrt each βj and set the equations to zero: 

 0,      1(1)
j

l j p∂ = =
∂β

 (0.27) 

In case we have explicit expressions for iθ  in terms of βj, 1(1)j p= , we 

can simply substitute these expressions in the log-likelihood function 

and complete the differentiation. However, it is simpler to apply the 

chain rule instead, which gives (Anderson et al, 2004): 

 
1

( ) ( , ) . . .
( )

n
i i i i i i

i
ij j i i i

Y bl c Y
a=

 θ − θ ∂θ ∂µ ∂η∂ ∂= + φ ∂β ∂θ φ ∂µ ∂η ∂β 
∑  (0.28) 

Now with the relationships: 

1

1'( ) "( )
"( )
1( ) '( )
'( )

i i
i i i

i i i

i i
i i i

i i i
p

i
i j ij ij

j j

b b
b

g g
g

X X
=

∂µ ∂θµ = θ ⇒ = θ ⇒ =
∂θ ∂µ θ
∂η ∂µη = µ ⇒ = µ ⇒ =
∂µ ∂η µ

∂ηη = β ⇒ =
∂β∑

 

(1.28) will take the form: 
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1

( ) 1 1 ,                   1(1)
( ) "( ) '( )

       ( ) ,                     1(1)
( ) '( )

ij

j j
ij

ji j

j
j jp

j
j i ji

i

yl y x i p
x a b g

y x i p
V g x

=

−µ∂ δ= ⋅ ⋅ ⋅ =
∂β δ φ θ µ

ω
= −µ =

µ β

∑

∑
∑

   (0.29) 

Finding solution of these equations needs iterative numerical 

techniques like Newton-Raphson algorithm (Anderson et al, 2004). 

 

We will discuss other modeling issues such as selection of explanatory 

variables, goodness of fit and residual analysis in later chapters in 

terms of a particular insurance (claim) data. 
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CHAPTER II 
PROPERTY AND CASUALTY LOSS RESERVE 

 
 

A Property and Casualty insurance company is different than any 

other financial institutions in terms of its liability for claims, which is 

the top-most priority for an insurance company. For an insured, the 

purpose of insurance is to get back a portion (depending on the 

particular policy) of the loss from the insurer and the insurer is liable 

for that financial indemnification. Measuring the exact financial 

indemnification is something truly complex and given the fact that 

claim investigation happens over a short or long period of time, it 

becomes even more complicated. Loss Reserve can be defined as an 

insurer�s liability for claims (and/or future claims). More precisely the 

term describes the actuarial process of estimating an insurer�s 

liabilities for loss and loss adjustment expenses (Wiser, 2001). 

Interestingly, there is no single method or procedure that can give a 

true estimation of loss reserve. An Actuary needs a combination of 

business sense, judgment and statistical techniques to estimate loss 

reserve. It is, in fact, very important to estimate with good accuracy as 

the financial condition and stability of an insurance company is not 

possible to assess without knowing the loss reserve estimate (Wiser, 

2001). Our main topic of discussion in this chapter is loss reserving 

procedure for a property-casualty insurance company. In order to do 

that in systematic way, we need to define some terms and state some 

principles. With a common framework we will focus on different 
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techniques, traditional and non-traditional, for loss reserve 

estimation. In this section we will compare different loss reserving 

techniques in property and casualty insurance industry. The first 

sections will clarify different definitions and principles.  

 

2.1 Definitions and Principles of Loss Reserving in P&CI 

�The Statement of Principles Regarding Property and Casualty Loss and 

Loss Adjustment Expense Reserve�, adopted by the Board of Directors, 

Casualty Actuarial Society in May, 1998 is an excellent source for 

knowledge and information about the principles applicable to the loss 

reserve estimation and the related definitions. By saying loss, we will 

mean loss combined with loss adjustment expenses. As we have 

mentioned before there is no single strict formula or technique to find 

the actual amount of loss reserve; instead an Actuary needs to use 

different deterministic and stochastic techniques to capture the 

uncertainty of the loss reserve along with actuarial judgment and 

regular communication with the underwriters in order to predict an 

acceptably accurate loss reserve. We will present this section guided 

by the statement we have mentioned at the very outset of the section.  

 

2.1.1 Definitions 

Dates are very important in the analysis of reserves as losses develop 

over time. There are several stop gaps in the process of an accident, 

report of the accident to the insurer, it�s entry in the data base and 



 

 

27

final settlement of the claim amount. We also excerpt definitions of 

some important dates from the aforesaid statement.  

 

Accident Date is the date on which the accident occurs (CAS, 1998). 

Report Date is the date on which the accident is reported to the 

insurer for the first time (CAS, 1998). 

Recorded Date is the date on which the data is first recorded in the 

insurer�s statistical database (CAS, 1998). 

Accounting Date: Accounting date defines the group of claims for 

which liability may exist. It is a date specified for statistical and 

financial reporting purpose (CAS, 1998). 

Valuation Date: Transactions made through this date will be included 

in the database for evaluating the reserve. Valuation date could be 

prior, identical or after the accounting date (CAS, 1998). 

 

We need to define the following terms. 

The Carried Loss Reserve is the carried loss reserve is defined as the 

amount shown in an already published statement or in an internal 

statement of financial condition (CAS, 1998). 

Indicated Loss Reserve is the amount resulted from the application of 

a particular loss reserving evaluation procedure is called indicated 

loss reserve. This amount must be different for different valuation date 

with a given accounting date (CAS, 1998). 

Case Reserve is the sum up value for specific known claims set by the 

claim adjusters or by formula (Wiser, 2001). Case reserve does not 
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allow future development. Adjuster�s estimates aggregate of the 

estimates made by claims personnel for individual claims on the basis 

of facts of particular claims. On the other hand, formula reserves are 

established for a classified group of claims. This can be applied to the 

same homogeneous class of claims using the average claim values or 

representative statistical factors. Incidentally, in this paper we come 

across to this concept several times.  

 

Development is the changes that happen to the value of the claim 

amount over time (Wiser, 2001). Incurred development is the 

difference between the estimated incurred loss costs at two different 

valuation dates. Paid development is defined to be the observed 

increase in the amount of claim payments for loss in succeeding 

valuation dates. There is a provision for future development of known 

claims for the incurred development of the claims that occurred on or 

before the accounting date and are still open. They could be both 

increasing and decreasing in nature.  There is also a provision for the 

reopened claims reserve for future payments on closed claims that 

reopened for some reasons unseen at the time they were named 

closed.  

We will discuss the concept of Incurred But Not Reported (IBNR) claims 

and reserve now. Usually IBNR consists of two components � one 

referred as pure IBNR, which are due to the claims that incurred but 

not reported. Other part is the provision for the claims that incurred 

as well as reported but not yet recorded, these are claims in transit. 
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The claim reporting procedure has an important effect on the IBNR; 

however practically it is not always possible to see these two 

components separately (Wiser, 2001) (CAS, 1998). The IBNR reserve 

should give the ultimate value of the IBNR claims with possible 

development that could happen after reporting. 

Two other very important terms are Allocated Loss Adjustment 

Expenses (ALAE) and Unallocated Loss Adjustment Expenses (ULAE). 

In general, ALAE include the expenses such as attorney�s fees along 

with other legal expenses associated with specific claims. ULAE is the 

adjustment expenses are the remaining claim expenses such as 

salaries, utilities, rent connected with the claim adjustment function 

but not readily assignable to specific claims. 

 

2.1.2. Principles 

As we have mentioned already, the Casualty Actuarial Society has 

published a statement of principles regarding P&C loss and loss 

adjustment expenses in the �The Statement of Principles Regarding 

Property and Casualty Loss and Loss Adjustment Expense Reserve�. 

We excerpt the four principles from this statement: 

���  

1. An actuarially sound loss reserve for a defined group of 

claims as of a given valuation date is a provision, based on 

estimates derived from reasonable assumptions and 

appropriate actuarial methods for the unpaid amount 
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required to settle all claims, whether reported or not, for 

which liability exists on a particular accounting date. 

2. An actuarially sound loss adjustment expense reserve for 

a defined group of claims as of a given valuation date is a 

provision, based on estimates derived from reasonable 

assumptions and appropriate actuarial methods, for the 

unpaid amount required to investigate, defend, and effect 

the settlement of all claims, whether reported or not, for 

which loss adjustment expense liability exists on a 

particular accounting date. 

3. The uncertainty inherent in the estimation of required 

provisions for unpaid losses or loss adjustment expenses 

implies that a range of reserves can be actuarially sound. 

The true value of the liability for losses or loss adjustment 

expenses at any accounting date can be known only when 

all attendant claims have been settled. 

4. The most appropriate reserve within a range of 

actuarially sound estimates depends on both the relative 

likelihood of estimates within the range and the financial 

reporting context in which the reserve will be presented. 

Although specific reserve requirements may vary, the same 

basic principles apply in each context in which the reserves 

are stated, including statutory balance sheets, statements 

of opinion on loss reserves, and reports to shareholders or 

securities regulators. 

� �� 
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Loss reserve is defined to be a provision for its related 

liability and it can be treated as a combination of five 

components which may not be individually quantified. 

The five components are case reserve, provision for 

future development on known claims, reopened claim 

reserve, provision for claim incurred but not reported, 

provision for claim in transit � which is incurred and 

reported but not recorded.  

A loss reserve can be divided into two parts � known claims and 

unknown claims. 

The first three components are combined to generate the known 

claims which mean the amounts required for the future payments of 

claims that have already been reported. 

The last two components are combined to create IBNR reserve. In 

practice often the strict definition of IBNR is violated and future 

developments of known claims, unreported claims, unrecorded claims 

and reopened claims are combined together to IBNR.  

 

2.1.3 Considerations 

We will close this section by discussing the important considerations 

required to be taken care of by reserve analysts. In order to present a 

statistically and actuarially sound reserve analysis it is necessity to 

understand the trends and changes that may affect the database. In 

the next section we will discuss exploratory data analysis and these 
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considerations play very important role in that. These changes could 

occur from several ways: from changes in underwriting, data handling 

and processing, accounting to changes happen in social, political and 

legal ground (CAS, 1998). A sound knowledge of policy provisions is 

also very important factor for a good analysis. Organization of data 

with respect to time unit is called data organization which is a basic 

requirement. It is done on the basis of the dates that we have defined 

earlier. Defining IBNR is another important factor in the sense what to 

include and what not to include in IBNR (Wiser, 2001).  

Classification � Homogeneity: Loss reserving analysis can be 

significantly improved by applying clustering techniques on the data 

base and divide the entire experiences in several subgroups on the 

basis of similar claim experience and settlement patterns, identical 

loss distribution. The reasoning behind such clustering is to minimize 

the distortion and deviation effects present in data (CAS, 1998). In 

next chapter we will explore this in a good extent. Another related 

concept is Credibility which is the measure of the accuracy of the 

predictive value attached to a prediction (CAS, 1998). Understandably, 

credibility is increased by increasing the homogeneous classes in the 

database. However dividing entire database into classes naturally 

reduces the number of data point in each class. Further division of 

those classes into smaller classes reduces the data point again. This 

may cause problem in prediction (Wiser, 2001). So there should be 

optimization between the number of homogeneous classes and the 
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data points in each of them. In case the company data base is small, 

analyst should consider industry data before clustering.  

Without data no statistical analysis is possible; so it is a sheer 

requirement to have proper financial data for a sound reserve 

analysis. Another very important factor to be considered carefully is 

the data emergence pattern: usually liability claims has greater delay 

in record than property claim (CAS, 1998). Delay between the accident 

date and recording date, however, depends on the line of business 

(LoB) as well the insurer. 

We will now discuss Settlement Pattern which is perhaps, the most 

important concept for the purpose of this paper. Settlement pattern 

relates to the development occurs between the time of the report of a 

claim and the time when it is finally settled; precisely speaking the 

development occurs between reporting date and the settlement date. 

This development affects the reserving methods in a significant extent. 

Reserve Method for the LoBs for which claims are settled quickly, are 

less affected by this, however liability such as bodily injury may take a 

significant time before the settlement (Wiser, 2001). For the purpose of 

paper, we will see the possible complexities of settlement patterns in 

the next section as well as in the next chapter. Development pattern is 

required to be carefully studied as an insurer�s claims method affects 

the way the case reserve develop for a group of claims. Also, any 

possible changes in claims practice may affect the consistency of 

historical developments. In case reserves have been established at the 

present value, the development history should be restated to remove 
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the effect of discounting (For a detail discussion, see page 274, Loss 

Reserving, Wiser, 2001).   

As we have mentioned already, the entire reserve analysis is based on 

data. More data we have, the analysis becomes easier. Frequency and 

severity play important roles here. The same amount of loss may be 

occurred due to few large claims or due to many small claims (Wiser, 

2001). Evaluation of low frequency with high severity is challenging 

and should be done with extensive analysis. Adjustments should be 

made for never-before high expected severity claims. 

Other affecting factors in reserving analysis are: Aggregate Limits, 

Salvage, Subrogation and Collateral Sources, Presence of Reinsurance, 

Generally Accepted Accounting Principles (GAAP), Portfolio transfers, 

Commutations and Structured Settlements, Pools and Associations, 

Operational Changes, Changes in Contracts, External Influences, 

Reasonableness, Standard of Practice (CAS, 1998). It is Actuary�s or 

Reserving Analyst�s duty to select the most appropriate reserving 

estimation method for a particular line of business or a group of 

claims. Usually they examine the indicators in more than one method 

for a group of claims.  

 

In the next section we will discuss the reserve estimation strategy 

based on this definitions, principles and considerations.  

 

 

2.2 P&CI Reserve Estimation Strategy 
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The entire reserve estimation strategy can viewed as four steps (Wiser, 

2001) namely  

• Exploratory Data Analysis 

• Application of different estimation techniques 

• Evaluation of the resulted estimation 

• Diagnostics � Monitoring results 

In this section, we will thoroughly discuss the above four steps. We 

will discuss several numerical examples to clarify the concepts and 

definitions.  

 

Exploratory Data Analysis 

Exploration of data is a very important to begin the reserving analysis; 

it gives the analyst the idea of which loss reserving method will be 

appropriate and what would be the interpretation of results. 

Exploration of data starts by finding the trends and changes that can 

potentially affect the database. As we have discussed in detail or 

sometimes mentioned, there are so many things that could affect the 

data. Changes in LoB, geographical territory, policy provision, 

purchasing reinsurance, reinsurance limits and attachment point, 

changes in external environment such as legal, political and social 

changes, economical changes such as increasing or decreasing 

inflation rate, modifications in companies data management system 

can be determining factors and should be considered carefully for 

reserving analysis (Wiser, 2001). Besides these considerations, the 

analyst should check the factors such as rate of development, 
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smoothness of development, presence of large loss, volume of data. 

Conclusions should be made about appropriate projection 

methodologies, anomalies in the data, questions to ask to the 

management. As we have mentioned earlier the organization of data 

with respect to the time unit is important. Let us take the following 

paid loss data (Wiser, 2001) by the date of loss occurrence. From 

accounting exhibit the amount of loss paid in the year 2000 can be 

gathered. The following table shows how the loss is split over the 

accident years since 1994. 

 

 

 

 

 

 

 

In the same way we could have a similar table for the year 1999, 

where it is known from accounting department that the total loss 

payment in 1999 is $ 73,972,000. The following table (Wiser, 2001) 

shows the payments made on different calendar years. 

  (in 1,000) 
Paid on 2000 Losses  $     11,346  
Paid on 1999 Losses  $     16,567  
Paid on 1998 Losses  $     19,935  
Paid on 1997 Losses  $     11,956  
Paid on 1996 Losses  $      5,985  
Paid on 1995 Losses  $      3,211  
Paid on 1994 Losses  $      2,274  

Total paid loss in 2000  $ 71,274  
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We will introduce a 

special kind of data 

organization method for these amounts over loss year or accident 

year. Construction of loss triangle helps understanding the 

comparability of loss amount over years. We will show accumulated 

loss payments (or cumulative) on a given loss year. The following 

triangle will show how the losses in each year are developed to its 

ultimate value. Naturally, if the number of development years is more, 

then the ultimate amount will found to be convergent, that means 

further development will be negligible. There are many other kind loss 

triangles we can construct; we will discuss some them in this section. 

 

Cumulative Paid Loss Triangle (Wiser, 2001) 

 

Accident Year 12 24 36 48 60 72 84 

1994  $ 22,603   $ 40,064   $ 54,301   $ 64,114   $ 71,257   $ 75,950   $ 78,224  

1995  $ 22,054   $ 43,970   $ 58,737   $ 71,841   $ 78,076   $ 81,287    

1996  $ 20,166   $ 39,147   $ 51,319   $ 60,417   $ 66,402      

1997  $ 19,297   $ 37,355   $ 50,391   $ 62,347        

1998  $ 20,555   $ 42,898   $ 62,832          

1999  $ 17,001   $ 33,568            

2000  $ 11,346              

 

 

  (in 1,000) 
Paid on 1999 Losses  $     17,001 
Paid on 1998 Losses  $     22,343 
Paid on 1997 Losses  $     13,036 
Paid on 1996 Losses  $     9,098  
Paid on 1995 Losses  $      6,235  
Paid on 1994 Losses  $      4,693  
Paid on 1993 Losses  $      1,566  

Total paid loss in 1999  $ 73,972 
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Loss triangle based on cumulative incurred loss gives good idea of any 

possible inadequate case reserves, fluctuation of loss over the years. 

We will discuss this using the following table (Wiser, 2001): 

 

 

 

Cumulative Incurred Loss Triangle 

Accident 
Year 12 24 36 48 60 72 84 

1994  $ 58,641   $ 74,804   $ 77,323   $ 77,890   $ 80,728   $ 82,280   $ 82,372  

1995  $ 63,732   $ 79,512   $ 83,680   $ 85,366   $ 88,152   $ 87,413    

1996  $ 51,779   $ 68,175   $ 69,802   $ 69,694   $ 70,041      

1997  $ 40,143   $ 67,978   $ 75,144   $ 77,947        

1998  $ 55,665   $ 80,296   $ 87,961          

1999  $ 43,401   $ 57,547            

2000  $ 28,800              

 

If we compare the losses incurred from the first column of the above 

table, we can say that there was a low incurred loss in 1997 which 

developed substantially in 48 months. It could be resulted by 

inadequate case reserve or delayed loss processing. It will give analyst 

warning about what to do with the year 2000 losses, which is 

significantly low. If we compare this table with the previous one of 

cumulative paid loss triangle, we can see, 1997 low incurred loss is 

well anticipated by a low payment. But, the drop in incurred loss from 

1996 to 1997 is 20%, where as this drop in paid loss is only 5%, on 

the basis of first hand reporting. In that way we may be interested in 

compare these changes in incurred losses or paid losses over the 

years. We introduce incremental incurred loss triangle and 
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incremental paid loss triangle, based on the data on previous two loss 

triangle tables.  

Incremental Incurred Loss Triangle 

Accident Year 12 24 36 48 60 72 84 

1994  $ 58,641   $ 16,163   $   2,519   $      567   $   2,838   $   1,552   $        92  

1995  $ 63,732   $ 15,780   $   4,168   $   1,686   $   2,786  -739   

1996  $ 51,779   $ 16,396   $   1,627  -108  $      347      
1997  $ 40,143   $ 27,835   $   7,166   $   2,803        

1998  $ 55,665   $ 24,631   $   7,665          
1999  $ 43,401   $ 14,146            

2000  $ 28,800              

From this table we can have an idea of increment in incurred loss in 

two successive periods. Interesting to note, the amount for 1997 

during the period 12 months and 24 months, this increment is 

$27,835,000. 1998 has a similar comparably large annual 

development. These two facts automatically lead to the suspicion that 

there should be a processing delay in the company at the year end 

1998. As we have discussed in beginning of this section, the analyst 

should consult the managements and underwriting team to find the 

reason of this anomaly (Wiser, 2001).  

 

We can look at the incremental paid loss triangle in a same way. The 

following triangle shows the increment is paid loss in every successive 

12-month period. We will notice that the payments during the second 

annual development period are close to the amount paid in the first 

annual development period. 

Incremental Paid Loss Triangle (Wiser, 2001) 

 Accident Year 12 24 36 48 60 72 84 

1994 $22,603 $17,461 $14,237 $9,813 $7,143 $4,693 $2,274 

1995 $22,054 $21,916 $14,767 $13,104 $6,235 $3,211   

1996 $20,166 $18,981 $12,172 $9,098 $5,985     
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1997 $19,297 $18,058 $13,036 $11,956       

1998 $20,555 $22,343 $19,934         

1999 $17,001 $16,567           

2000 $11,346             

 

In this way we can have several kind of loss triangles based on the 

different type of data. Before closing the discussion on exploratory 

data analysis, we will discuss few of them. 

In order to understand inadequacy in case reserve, loss triangle based 

on the paid loss as a percent of incurred loss is very helpful to observe 

(Wiser, 2001). In this triangle the paid loss is divided by the 

corresponding reported loss for each development age. With the same 

data we have used so far we have the following triangle. 

 

Loss Triangle Based on Paid Loss as a Percent of Incurred Loss 

Accident Year 12 24 36 48 60 72 84 

1994 38.54% 53.56% 70.23% 82.31% 88.27% 92.31% 94.96% 

1995 34.60% 55.30% 70.19% 84.16% 88.57% 92.99%   

1996 38.95% 57.42% 73.52% 86.69% 94.80%     

1997 48.07% 54.95% 67.06% 79.99%       

1998 36.93% 53.42% 71.43%         

1999 39.17% 58.33%           

2000 39.40%             

 

The 1997 accident year has a high ratio at the first development year 

which indicated an anomaly with the other historical data.  

Besides severity, claim counts are also very important factor for the 

reserving analysis. The following triangle shows the historical data for 

all reported claim counts by development period.  

Reported Claim Counts Triangle (Wiser, 2001) 
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Accident Year 12 24 36 48 60 72 84 

1994 32751 41201 41618 41755 41773 41774 41774 

1995 33736 39528 39926 40044 40072 40072   

1996 27067 32740 33084 33183 33209     

1997 24928 29796 30074 30169       

1998 25229 31930 32281         

1999 17632 21801           

2000 15609             

 

From the above triangle we can conclude that for this particular book 

of business, all claims are found to be reported in a 24 months period. 

Another important observation is the decreasing number of claims 

from the year 1994 through the year 2000, which is the lowest in the 

year 2000. An analyst should fix the changes required to be made in 

order to anticipate this change. The triangle of similar kind can be 

formed on the basis of closed with-payment claim counts, closed 

without-payment counts. In case there is any unusual pattern in 

these statistics, analyst can make investigate further. Often it is 

crucial to observe the triangle based on closed claim as a percentage 

of reported claims and the triangle based on the open claims. These 

two triangles give excellent idea of trends and patterns in claim 

settlements for a particular line of business. If there is a large 

deviation on the number of open claims in two consecutive years or in 

two consecutive development years, the components of the business 

are required to be examined (Wiser, 2001). A high number of open 

claims could be a real challenge for estimating the reserve.  

Another type of loss triangle can be formed using the average amount 

reserved on open claims and changes in average open claim. These 

kind of triangles tell the analyst, whether there is a movement of case 
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reserves with reasonable inflationary increases. The following two 

triangles give some idea. 

 

 

 

Average Open Claim Amount Triangle (Wiser, 2001) 

Accident Year 12 24 36 48 60 72 84 

1994  $      5,339   $ 11,671   $ 16,499   $ 21,029   $ 28,782   $ 47,240   $ 60,722  

1995  $      5,254   $ 13,137   $ 19,405   $ 22,285   $ 29,820   $ 35,209    

1996  $      5,894   $ 13,334   $ 17,939   $ 16,832   $ 14,722      

1997  $      3,501   $ 14,190   $ 21,798   $ 28,896        

1998  $      6,258   $ 13,941   $ 22,026          
1999  $      8,206   $ 14,324            

2000  $      4,629              

Changes in Average Open Claim 

Accident Year 12 24 36 48 60 72 84 

                

1994-1995 -1.59% 12.56% 17.61% 5.97% 3.61% -25.47%   

1995-1996 12.18% 1.50% -7.55% -24.47% -50.63%     

1996-1997 -40.60% 6.42% 21.51% 71.67%       

1997-1998 78.75% -1.75% 1.05%         

1998-1999 31.13% 2.75%           

1999-2000 -43.59%             

 

In the same way, analyst should check the triangles based on average 

closed claims payments and triangle based on the changes in two 

consecutive accident years and consecutive development year. These 

triangles allow the analyst to decide whether the claim reserve is 

consistent with the inflationary increase in settlements. 

Closed claims as a percent of open claims form triangle that gives the 

ratio of claims closed in the period to claims open at the beginning of 

the period. It is another important measure of the financial condition 

and liabilities of the claim department. 
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We will close our discussion about the data exploration at this point 

and move to the next step of reserving technique called loss reserve 

estimation procedures. 

 

 

Loss Reserve Estimation Procedures 

The entire purpose of the data exploration is to find out the suitable 

reserving techniques that will capture the trends and changing 

patterns of the historical data and will help to predict a good estimate 

of the reserve. Based on the triangles we have discussed previously, 

we will discuss different method of projection of reserves of the 

ultimate values. An important point need to remember that all this 

techniques are nothing but a tool for the projections and must be 

supplemented by the experience and business knowledge of the 

actuary and the reserve analyst. We will discuss three different 

methods for estimate the ultimate loss: 

• Expected Loss Ratio Method 

• Chain-Ladder Method 

• Bornhuetter-Ferguson Method. 

 

A very basic and simple method for ultimate loss estimation is the 

Expected Loss Ratio Method. Main advantages of this method are its 

simplicity in calculations and its applicability to a new line of business 

or a business with comparably less amount data (Loss Development 
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Model, Jim Sohenfelt, 2004). We describe the method using a simple 

example.  

  (a) (b) (c)=(a)*(b) 
Accident Years Earned Premium ELR Ultimate Developed Loss 

2000  $           50,000  65% 32500 
2001  $           75,000  70% 52500 
2002  $           95,000  67% 63650 
2003  $         120,000  75% 90000 

 

Now the basic question remained is how to determine the ELR? In 

most of cases it is determined from previous experiences, industry 

data for similar line of businesses and the selection need to be done 

carefully. Dependency to a subjective factor like ELR is a big 

disadvantage of this method. Also this method suggests no form 

solution in case ELR seems unreliable with the actual loss 

developments.  

 

The most widely used method for loss reserving is Chain-Ladder 

Method. The chain-ladder method was emerged as a deterministic 

method and we will discuss that deterministic model. However several 

developments have been taken place on the stochastic version of the 

chain-ladder method. One good feature of this method is it intuitively 

captures the growth of the data flow. The data as organized earlier are 

considered to project the undeveloped loss year to its expected 

ultimate level. We need to assume that the data will be developed as 

previous years. We will mainly discuss the triangular method for paid 

loss development and the method is similar for the other triangles.  
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Let us consider the paid loss development triangle we have shown 

earlier. 

Accident Year 12 24 36 48 60 72 84 

1994  $ 22,603   $ 40,064   $ 54,301   $ 64,114   $ 71,257   $ 75,950   $ 78,224  

1995  $ 22,054   $ 43,970   $ 58,737   $ 71,841   $ 78,076   $ 81,287    

1996  $ 20,166   $ 39,147   $ 51,319   $ 60,417   $ 66,402      

1997  $ 19,297   $ 37,355   $ 50,391   $ 62,347        

1998  $ 20,555   $ 42,898   $ 62,832          

1999  $ 17,001   $ 33,568            

2000  $ 11,346              

 

As we have mentioned earlier, one strong prerequisite of this kind of 

analysis is uniformity or homogeneity of the data over the years. The 

above triangle indicates significant dip in the recent years. So the 

analyst should investigate the reason behind this and need to take the 

right measure in order to bring uniformity. At the same time if we can 

some how normalize this fluctuations in total loss paid, then we can 

have a credible estimate. In the following table we have given that idea 

of development factors based on each accident year. The method is 

popularly known as Chain-Ladder Method. This will, in some extent, 

remove the volume difference effect over the years (Wiser, 2001).  

Accident Year 12 24 36 48 60 72 84 

1994      1.000       1.773      1.355      1.181      1.111      1.066      1.030  

1995      1.000       1.994      1.336      1.223      1.087      1.041   

1996      1.000       1.941      1.311      1.177      1.099     

1997      1.000       1.936      1.349      1.237       

1998      1.000       2.087      1.465         

1999      1.000       1.974           

2000      1.000              

 

This triangle gives the development of each accident year. From the 

above triangle we have the complete development for the year 1994. 

But from the year 1995 onwards we have one less development factor 
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for each year. Another thing to notice is the in the discount factors the 

fluctuations are not significant or in other words development factors 

are more uniform compare to the volume of the paid loss. We will now 

try to find a way to estimate the incomplete development factors e.g. 

for the 2000 the first development factor (12 months to 24 months). A 

common way is to consider different kind of average of the age-to-age 

factors and combine it with business knowledge of the actuary to 

finally settle into a development factor. We will one such example 

based on the example we have started in the following tables. 

 

 

Accident Year 12 24 36 48 60 72 84

1994             1.000       1.773      1.355      1.181      1.111      1.066        1.030  

1995             1.000       1.994      1.336      1.223      1.087      1.041    

1996             1.000       1.941      1.311      1.177      1.099     

1997             1.000       1.936      1.349      1.237       

1998             1.000       2.087      1.465         

1999             1.000       1.974           

2000             1.000              
                
Average   1.9508 1.3632 1.2046 1.0991 1.0535 1.0299
Avg last 3   1.9991 1.3749 1.2125 1.0991     
Avg last 4   1.9846 1.3651 1.2046       
Weighted Avg   1.9480 1.3640 1.2050 1.0990 1.0530 1.0300
Harmonic Mean   1.949 1.362 1.204 1.099 1.053 1.03

  

We define weighted Average as average of the development factors 

with weighted by the amount of incurred loss. Harmonic Mean is 

defined as the nth root of n historical factors. 

 

The way we define the above averages, they are combination of 

stability (i.e. using the entire data) and responsiveness (i.e. capturing 
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more recent development). In the following table we will give a 

selection that the analyst has made in this particular case for the loss 

development factors keeping all judgments in mind.  

Accident Year 12/24 24/36 36/48 48/60 60/72 72/84 84/ultimate 
1994 1.7725 1.3554 1.1807 1.1114 1.0659 1.0299 1.053
1995 1.9937 1.3358 1.2231 1.0868 1.0411 1.03   
1996 1.9412 1.3109 1.1773 1.0991 1.06     
1997 1.9358 1.349 1.2373 1.1       
1998 2.087 1.4647 1.21         
1999 1.9745 1.35           
2000 1.96             

 

With the above choice of the development factors for the first 

incomplete development, the next job is to complete the entire range of 

the incomplete cells i.e. to forecast the development for each 

subsequent year. The following triangle shows these developments. 

Accident Year 12/24 24/36 36/48 48/60 60/72 72/84 84/ult DevToUlt 
1994 1.7725 1.3554 1.1807 1.1114 1.0659 1.0299 1.053 1.053 
1995 1.9937 1.3358 1.2231 1.0868 1.0411 1.03 1.053 1.085 
1996 1.9412 1.3109 1.1773 1.0991 1.06 1.03 1.053 1.150 
1997 1.9358 1.349 1.2373 1.1 1.06 1.03 1.053 1.265 
1998 2.087 1.4647 1.21 1.1 1.06 1.03 1.053 1.530 
1999 1.9745 1.35 1.21 1.1 1.06 1.03 1.053 2.066 
2000 1.96 1.35 1.21 1.1 1.06 1.03 1.053 4.049 

 

A detailed explanation of these development factors for different years 

can be found in the �Loss Reserving� chapter by Ronald F Wiser. There 

are several advantages and disadvantages of the chain-ladder method.  

Advantages 

• It is more objective; this method does not involve components 

like expected loss ratio or ELR and needs less actuarial 

judgment. 
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• As losses develop with the time, the estimate gets closer to the 

actual realization. 

Disadvantages 

•  A logical flaw in the chain ladder method is, if there is no loss 

paid yet for a accident year, then the method will predict the 

ultimate loss for that year as zero. 

• The method can be significantly misleading for a particular LoB 

or nature of an insurance company. If the payment of losses 

distributed mostly in the early years of the entire loss payment 

span, then this method will predict a very high ultimate loss. On 

the hand if loss payment is less in the early years then chain 

ladder will give an underestimation.  

• As we have constructed the final triangle and filled up the 

incomplete cells, it has been assumed that the relationships 

between losses over different development periods is 

multiplicative, which need not to be true necessarily. 

 

Third method namely Bornhuetter-Ferguson (BF) Method is kind of 

combination of the above two methods. More precisely the advantages 

of the ELR Method and Chain-Ladder Method are combined into this 

method (Shoenfelt, 2004). As we have mentioned before, the chain-

ladder method is pretty much dependent on historical data. In that 

sense, this method sometimes produces inappropriate and unreliable 

results for a new LoB with small amount of historical data or a book of 

business that experiences occasional large losses. The chain-ladder 



 

 

49

method is even inappropriate for the business where losses are 

reported over a long period of time with mere amount of losses 

reported in first few development years (excess insurance and 

reinsurance). In order to project the ultimate losses of such 

businesses we need to have a method that addresses the stability as 

well as responsiveness. The BF method estimates ultimate loss by 

considering the sum of the actual reported loss and expected future 

incurred development. Expected future incurred development is 

dependent on the expected losses as well as selected loss development 

factors. The basic idea of BF Method can be described as (Shoenfelt, 

2004): 

Developed Loss = what is actually paid (incurred) + what we need to 

pay for a given ELR 

The following example will clarify the BF Method: 

  BF Method using Incurred Loss Development 
Accident Year 
2002 

      
(a) Earned Premium  $        25,000,000 
(b) Expected Loss Ratio 73%
(c)=(a)x(b) Expected Ultimate Loss  $        18,250,000 
(d) Cumulative Loss Devel. Factor / Incur. Loss Devel. 1.214
(e)= 1 - 1/(d) Unreported % 17.63%
(f) Actual Incurred Loss as of Dec 31st 2002  $        13,000,000 
      
(f) + (c) x (e) Estimated Ultimate Loss       16,217,051.07 

 

The fascinating part of the BF estimated ultimate loss formula is that 

the expected loss ratio is less important as the experience develops 

and experience is more crucial as we walk down the line. However, a 

disadvantage remains as the method is still affected by the changes in 

claim practices such as speed of claim payments. 
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Evaluation of the resulted estimation 

As we have clearly mentioned at the beginning that there is no single 

formula or technique to predict the ultimate loss or estimate the 

reserve; rather several techniques are employed and each of them 

provides a different estimates. An actuary needs to decide which one 

to believe or whether he needs to take the average or weighted average 

of these estimates. This selection, at least for the traditional methods, 

depends heavily on the Actuary�s judgment and experience. We will 

draw another example from �Loss Reserving� chapter by Ronal F 

Wiser. 

 

Estimated Ultimate Losses by Accident Years and Methods 
 
Year Paid Dvlmnt Incrd Dvlmnt Avg Paid Avg Incurred BF Mathod Rsrv Dvlmnt Avg Selected 

1995 82370 83452 79092 82454 83188 82676 82205 83452 

1996 88657 88323 84686 87989 88310 87643 87601 88323 

1997 76888 70323 71454 69982 70821 70232 71617 70323 

1998 75643 80573 74565 79456 80253 81563 78676 80573 

1999 102342 93542 91399 92399 92056 93542 94213 93542 

2000 69344 66345 65212 65898 66286 66328 66569 66345 

2001 45938 44763 53757 53893 44821 46001 48196 44821 

Total 541182 527321 520165 532071 525735 527985 529077 527379 

 

 

In the example the authors showed that the analyst would choose the 

incurred loss development for all the years except the most recent.  

For the most recent year BF method has been chosen as incurred loss 

data is not matured yet. As a next step of the evaluation process the 

Actuary or the analyst needs to conduct some more tests and observe 

some more results. For an example they can compare the available 
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ELR with the projected ELR (i.e. ELR calculated using the projected 

loss and given earned premium). A significant disparity for any 

particular year seeks attention of the Actuary. Other measures like 

incurred loss as a percentage of ultimate loss, case reserve as a 

percentage of ultimate loss can be considered to verify the consistency 

in the estimation.  

 

 

 

 

Diagnostics � Monitoring results 

Once the Actuary selected an estimate from several possibilities, his 

immediate job is to monitoring his prediction. Depending on the book 

of business and company policies, the data is available in monthly 

basis, quarterly basis or yearly basis. The Actuary can compare his 

predicted result with the actual developments. In case there is 

significant abnormality and disparity between the actual initial 

development and the predicted result, an investigation is required. 

However, there is no statistical method for the diagnostic test of the 

above deterministic methods. A deterministic method does not have 

the provision of conducting diagnostic checks and calculating 

confidence intervals. So a significant amount of research has been 

conducted to create alternative methods which are equivalent to the 

above techniques and at the same time stochastic in nature. A 

publication by A. E. Renshaw and R. J. Verrall (1998) provides an 
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excellent literature on this topic and this paper shows such equivalent 

stochastic model for the chain-ladder method.  As discussed in this 

paper, we can see a stochastic claim reserving model as a combination 

of three components: 

• Specification of a parameterized model structure 

• A means to utilize the available loss data to fit into the model 

along with the diagnostic tests 

• Finally, a mean to put back the estimated result to the loss 

triangle (precisely speaking, to the incomplete part of the run-off 

triangle). 

 

We will close our discussion about loss reserving techniques and in 

the next chapter we will focus on the main question of this work. 

Using a published data analysis we will discuss how GLM could be 

used to predict the ultimate claim settlement value and hence can be 

used as a tool for loss reserving techniques. We will see some 

fascinating mathematical results, diagnostic tests of the model 

(goodness of fit) and discuss a case-study. 

 


