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The downturn of the stock markets between the years 2000 and 2002 was a

revealing experience for most investors. These years of falling stock markets made

them realize how risky stock markets are. With this development of the stock

markets in mind, it is desirable to have tools which can help control the risk of an

investment and which provide strategies of how to come to investment decisions.

This thesis is devoted to the specific challenges that a pension fund manager

faces when managing the fund of a certain type of pension plans - defined benefit

plans. It provides an asset-liability management methodology based on the concept

of shortfall constraints and tail conditional expectation constraints. These

constraints are used to present a way of how to restrict the risk of the pension fund

of a defined benefit plan. Based on the idea of shortfall and tail conditional

expectation constraints, a strategy is developed that can support the pension fund

manager in his/her investment decisions.
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CHAPTER I

INTRODUCTION

The downturn of the stock markets between 2000 and 2002 turned out to be a

great challenge for most investors. Over that period, stock market indices declined

steadily. The Dow Jones Industrial Average, for example, lost 24.21% of its value and

dropped from 11, 357.51 at the start of 2000 to 8, 607.52 at the start of 2003 (Dow

Jones & Company, 2006). In the same period, the NASDAQ declined by 66.48% of its

value (NASDAQ, 2006). This development made investors realize how risky stock

markets really are.

Risk can be defined as the uncertainty that exists as to the occurrence of some

event (Greene, 1968, p. 2). The risk that an investor faces is then the uncertainty that

exists as to what return he/she will earn. In this thesis, we will develop tools that can

support investors in their investment decisions and that can help control the investment

risk. In particular, we will discuss how a pension fund manager can handle the

challenges which he/she faces when managing a pension fund. For this purpose, we

need to introduce some terms and notions.

At first, we provide a brief overview of pension plans. Usually, pension plans are

set up by an employer in order to deliver retirement benefits. There also exist other

kinds of pension plans which are not so common: multi-employer plans, and plans
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organized by various levels of government. In this thesis, we will focus on pension plans

organized by an employer.

One criterion to classify pension plans is ”the asset base for the liabilities for

benefits promised to plan participants” (Gajek and Ostaszewski, 2004, p. 5). Then we

can distinguish between the following types of pension plans:

• pension plans without a fund and

• pension plans with a fund.

Pension plans without a fund are also called pay-as-you-go plans. This means that

there is no fund where assets are accumulated for the purpose of paying benefits (cf.

Gajek and Ostaszewski, 2004, p. 5). By contrast, pension plans with a fund - so-called

funded pension plans - do accumulate assets for the purpose of delivering retirement

benefits. In the following, we will not further consider pay-as-you-go plans, but

concentrate on funded pension plans. A detailed discussion about pay-as-you-go plans

and funded pension plans is provided by Gajek and Ostaszewski (2004).

Another criterion to classify pension plans is ”the method of correction of an

imbalance between assets and liabilities” (Gajek and Ostaszewski, 2004, p. 6). Then we

can distinguish between the following types of pension plans:

• defined contribution plans and

• defined benefit plans.

A defined contribution plan is defined as a pension plan for which only the
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contributions are prescribed in advance (and benefits are determined by the

performance of the assets of the plan), whereas a defined benefit plan is defined as a

plan for which benefits are prescribed in advance, and asset performance affects

contribution levels needed to fund benefits (Gajek and Ostaszewski, 2004, p. 6). A

combination of the features of both types of pension plans is also possible: these

pension plans are often referred to as hybrid plans and have become more and more

popular in the US since the 1990s. Examples of typical hybrid designs include pension

equity plans and cash balance plans which are discussed in detail by Green (2003) and

Elliott and Moore (2000), respectively.

Since for a defined contribution plan, the benefits are not fixed in advance, but

only depend on the asset performance, the employees bear the investment risk. For a

defined benefit plan, the employer is responsible to the plan participants for paying the

predeterminate retirement benefits at retirement. Thus, in this case, the investment

risk is borne by the employer.

The characteristic in which we are mainly interested in this thesis is the level of

investment risk that the employer has to bear. Since the employer bears the investment

risk for a defined benefit plan, we will focus on this type of pension plans henceforth.

When offering a funded defined benefit plan, the company should find a way to

manage the additional investment risk. A pension fund manager is often hired for this

purpose. The pension fund manager’s task is then to decide how to invest the

contributions that are made to the pension plan. Furthermore, the manager must make
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sure that the employer can deliver the retirement benefits. To do so, the fund manager

needs to manage the assets of the pension fund against its liabilities. This is often

referred to as asset-liability management. The asset-liability management methodology

which we will discuss in this thesis is based on concepts presented in Leibowitz et al.

(1996).

In chapter II and chapter III, we will develop the concept of shortfall constraints

and tail conditional expectation constraints. We will see how these concepts can help

the pension fund manager control the overall risk of the pension fund.

In chapter IV, the results from chapter II and III will be used to develop a

strategy on which the fund manager can base his/her investment decisions.

Throughout the thesis, examples will be given for several results. These examples

are all based on the same values of the underlying variables such that the graphs can be

compared to each other. The figures have been produced with the computer algebra

system Maple.



CHAPTER II

SHORTFALL CONSTRAINTS

In this chapter, we want to analyze how pension fund managers can control the

overall risk of the pension fund. For this purpose, we need to know how pension fund

managers can measure the risk of the pension fund.

A comprehensive overview of risk measures is provided by Rachev et al. (2005, pp.

187). In the following, we will give a brief summary of this overview. For this purpose,

we will focus on the risk of an investment and denote the random return of the

investment by R. At first, however, we need a formal definition of a risk measure.

Definition 1 (Risk Measure)

A risk measure ρ is a mapping from a set of random variables S to the set of real

numbers R:

ρ : S → R.

Basically, there are two different groups of risk measures: dispersion measures and

safety-first measures. Dispersion measures quantify the dispersion of the random

variable R. This means that a large dispersion represents a high risk, whereas a small

dispersion indicates less risky investments. The most common dispersion measures are

(cf. Rachev et al., 2005):

5
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1. Mean Standard Deviation (σ)

The dispersion measure is the standard deviation σ of the random variable R:

σ(R) =

√
E (R− µ)2,

where µ = E(R) is the expected return of R.

2. Mean Absolute Deviation (MAD)

The dispersion measure is the absolute deviation of R from the mean:

MAD(R) = E (|R− µ|) .

3. Mean Absolute Moment (MAM)

The mean absolute moment is defined as

MAM(R, q) = (E(|R− µ|q))
1
q , q ≥ 1.

4. Gini Index of Dissimilarity (GM)

This dispersion measure is defined as

GM(R,B) = min{E(|R−B|)},

where B is the random return of a benchmark, for example the return of a market

index. The minimum is taken over all joint distributions of (R,B).

5. Mean Entropy (EE)

The dispersion measure is the exponential entropy which is defined as

EE(R) = e−E(ln(f(R))),
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where f(·) is the probability density function of R. This dispersion measure is

only defined for continuous return distributions.

Safety-first risk measures follow a different approach. They use different concepts of

probability theory in order to quantify the risk of falling below a certain return.

Examples of these risk measures include (cf. Rachev et al., 2005):

1. Shortfall Probability (SP )

The safety-first risk measure is the shortfall probability which is defined as

SP (R,m) = P (R < m),

where m is a predetermined minimum acceptable return and P (·) is used to

denote probabilities. In order to control the risk, this probability shouldn’t be too

large.

2. Value-at-Risk (V aR)

The Value-at-Risk is defined as

V aRα(R) = − inf{x|P (R ≤ x) > α},

where α is a predetermined probability. The larger the V aR is, the higher the risk

is.

3. Tail Conditional Expectation/Expected Tail Loss (TCE)

We define the tail conditional expectation as

TCEα(R) = E (−R| −R ≥ V aRα(R)) ,
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where V aRα(R) is the Value-at-Risk. This definition is slightly different from the

definition given by Rachev et al. (2005). They define the TCE as

TCEα(R) = E (max{−R, 0}| −R ≥ V aRα(R)). This means that basically only

negative values of R (i.e. positive losses) contribute to TCE. In our approach

however, we allow for contributions of both negative and positive values of R.

The TCE measures the expectation of the loss −R, given that the loss is greater

than or equal to the Value-at-Risk. The larger the TCE is, the higher the risk is.

4. Lower Partial Moment (LPM)

This risk measure depends on two parameters: The first one is a so-called power

index which specifies how risk averse the investor is, whereas with the second one

- the target rate of return - the minimum acceptable return which shouldn’t be

fallen short is set (cf. Rachev et al., 2005, p. 193). The lower partial moment

LPM(·) is then defined as

LPM(R, q, t) = q
√

E(max{t−R, 0}q),

where q is the power index and t is the target rate of return. The larger the LPM

is, the higher the risk is.

There is one major disadvantage when using dispersion measures as risk

measures: they fail to distinguish between upward and downward return fluctuations.

Thus, they do not reflect the common idea of risk as a potential worse. In chapter I,

risk was defined as the uncertainty that exists as to the occurrence of some event
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(Greene, 1968, p. 2). This definition does not differentiate between the upward and

downward fluctuations of the return, either. For the rest of this thesis, however, we

change this definition a little bit. In the following, we will always think of risk as a

potential loss where loss = −return. This means that a positive loss is something bad,

whereas a non-positive loss is a gain, i.e. something positive. Then, upward fluctuations

differ from downward fluctuations. Therefore, we will not use dispersion measures any

more to measure risk.

Following Leibowitz et al. (1996), we will use shortfall probability as risk measure

in this chapter to develop the concept of shortfall constraints. We will see how shortfall

constraints can help avoid unreasonably risky allocations in stocks and bonds/cash.

The Normal Distribution Assumption

Before we introduce the concept of shortfall constraints, we set up a model for the

asset return. This makes it possible to derive formulas for the shortfall constraints.

It is quite common to assume normally distributed asset returns since the normal

distribution is an acceptable approximation of the distribution of historical asset

returns. We note that the probability density function of the normal distribution (cf.

Patel and Read, 1982, p. 18) is given by

f(x) =
1√

2πσ2
e−

1
2(

x−µ
σ )

2

, −∞ < x < ∞,

where µ and σ are the expected return and the standard deviation, respectively. If X is
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a normally distributed random variable with expected return µ and standard deviation

σ, we briefly denote: X ∼ N(µ, σ2).

Besides it is very convenient to work with normally distributed random variables

because they have the following desirable properties:

1. A linear combination of normally distributed random variables is also normally

distributed (cf. Johnson and Wichern, 2002, p. 156).

2. If X is normally distributed with expected value µ and standard deviation σ, then

X−µ
σ

has a standard normal distribution (i.e. a normal distribution with expected

value µ = 0 and standard deviation σ = 1) (cf. Patel and Read, 1982, p. 19).

However, there are also some arguments against the normal distribution

assumption. Fehr (2006) noted that according to Rachev, stock market crashes are

more likely to happen in reality than they would happen if returns were modeled with a

normal distribution:

A stock market crash like the one in October 1987 should occur only once in

1087 years when using the normal distribution, while historically one expects

that such a crash happens every 38 years. This means that if one relies on

the normal distribution, one greatly underestimates these risks. (original in

German, author’s own translation)

Another disadvantage of the normal distribution is that it can produce returns that are

smaller than −1 since the density function is positive for x ∈ R. This does not reflect
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reality. That is why sometimes the log-normal distribution is preferred. The probability

density function of the log-normal distribution with parameters µ and σ is given by (cf.

Klugman et al., 2004, p. 59)

f(x) =

{
1

xσ
√

2π
e−

1
2(

ln(x)−µ
σ )

2

if x > 0,

0 if x ≤ 0.

If we assume that 1 + return ∼ LN(µ, σ), where LN(·) denotes the log-normal

distribution, then 1 + return ≥ 0 since the density function is positive only for x > 0.

That is why it must hold: return ≥ −1. Thus with this distribution, it is possible to

model returns that do not assume values less than −1.

Nevertheless it is often possible to obtain useful results for practical applications

when assuming normally distributed returns (cf. Fehr, 2006). That is why we will use it

when we derive formulas for the shortfall constraints in the following sections.

Although there are some disadvantages, it provides some valuable insights into the

shortfall concept. The intention of our approach is not to reflect reality perfectly, but to

get a better understanding of it:

But we must also remember that whatever model we select it is only an

approximation of reality. This is reflected in the following modeler’s motto

[...]:

All models are wrong, but some models are useful. (Klugman et al., 2004)
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The Asset Return Shortfall Constraint

In the introduction of this chapter, we decided to use shortfall probability to

measure the risk of a pension fund. A small shortfall probability represents a low risk,

whereas a high shortfall probability indicates a high risk. In order to control the risk of

a pension fund, the pension fund manager can restrict the shortfall probability such

that this probability will not exceed a value that the fund manager regards as critical.

This restriction of the shortfall probability is referred to as shortfall constraint.

The asset return shortfall constraint allows for controlling the downside risk of the

asset return. A fund manager, for example, may have the objective to meet a minimum

acceptable asset return of 3% with a probability of 95%. In general, this constraint can

be formulated as follows (cf. Leibowitz et al., 1996, p. 44):

There should be no more than a probability of α that the asset return will be

less than a minimum acceptable asset return of m.

We assume that the fund manager can choose from two different types of

investments: stocks and bonds/cash. The fund manager’s task is then to decide what

percentage to invest in stocks and what percentage to invest in bonds/cash. It is

intuitive that the shortfall constraint will reduce the number of possible

stock/bond/cash portfolio combinations. We will see how this constraint affects the

fund manager’s choice between stocks and bonds/cash after we find the formula for the

asset return shortfall constraint.

In order to derive this formula, we need to introduce some notations:
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• RP : return of the pension fund portfolio,

• RB: return of the bond portion in the portfolio, and

• RE: return of the stock portion in the portfolio.

We assume that RB and RE are normally distributed:

• RB ∼ N(µB, σ2
B), where µB and σ2

B are the expected return and the variance of

RB, respectively.

• RE ∼ N(µE, σ2
E), where µE and σ2

E are the expected return and the variance of

RE, respectively.

Then the following relationships between the random variables RP , RB and RE

hold:

RP = w ·RE + (1− w) ·RB, w ∈ [0, 1], (2.1)

µP = w · µE + (1− w) · µB, (2.2)

σP =
√

w2σ2
E + (1− w)2σ2

B + 2w(1− w)σEσBρEB, (2.3)

RP = w ·RE + (1− w) ·RB ∼ N(µP , σ2
P ). (2.4)

The condition w ∈ [0, 1] means that short positions are not possible (remark: an

investor has a short position if he/she sells a stock or a bond without actually owning it

(this would be the case for w < 0 or w > 1). For this purpose, the investor has to

borrow the stock or the bond from someone else and promise to buy it back and return

it after a predetermined time.).
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Now we can translate the asset return shortfall constraint into a mathematical

expression:

There should be no more than a probability of α that the asset return will be

less than a minimum acceptable asset return of m.

⇔

P (RP < m) ≤ α. (2.5)

The following result gives the formula for the shortfall constraint of the asset

return:

Result II.1 (The Asset Return Shortfall Constraint)

The asset return shortfall constraint P (RP < m) ≤ α is given by the inequality

µP ≥ m− zα · σP . (2.6)

Proof. According to (2.4), RP has a normal distribution with expected value µP (2.2)

and variance σP (2.3). Then RP−µP

σP
∼ N(0, 1) and the following equivalences hold:

P (RP < m) ≤ α

⇔ P

(
RP − µP

σP

<
m− µP

σP

)
≤ α

⇔ Φ

(
m− µP

σP

)
≤ α

⇔ m− µP

σP

≤ zα

⇔ µP ≥ m− zα · σP
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Here, zα denotes the α-percentile of the standard normal distribution and Φ is the

cumulative distribution function of the standard normal distribution.

Example 1

As mentioned in the chapter ”Introduction”, we use the same numerical values for the

underlying variables in all examples. These values are given in the pension fund

example in Leibowitz et al. (1996, p. 86). However, the asset return shortfall constraint

only depends on α and m so that we do not need any other values for this example.

We use α = 0.10 and m = −0.07. Then zα = −1.28 and the asset return shortfall

constraint is given by

µP ≥ 1.28σP − 0.07.

In figure 1, p. 16, this asset return shortfall constraint is graphed in the

µP -σP -coordinate system. This graph concurs with the graph for the asset return

shortfall constraint given in Leibowitz et al. (1996).

The line that specifies the asset return shortfall constraint in figure 1, p. 16, is

referred to as the asset return shortfall line. It is given by the equation µP = m− zασP .

The minimum acceptable return m is the y-intercept of the asset return shortfall line.

The ”shortfall constraint probability” α is represented by the α-percentile zα of the

standard normal distribution. The negative value of zα is the slope of the asset return

shortfall line. All portfolios that are represented by a point in the shaded area satisfy



16

Figure 1
The Asset Return Shortfall Constraint

the asset return shortfall constraint. All other portfolios do not fulfill the asset return

shortfall constraint.

We can see that this shortfall constraint reduces the number of portfolios from

which the fund manager can choose. Before the asset return shortfall constraint was

imposed, the fund manager could invest in all the portfolios that lie in the first

quadrant of the µP -σP -coordinate system (we assume that µP > 0; σP > 0 is always
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true). After the asset return shortfall constraint is imposed, the choice is restricted to

the portfolios that are represented by a point in the shaded area.

Sensitivity Analysis for the Asset Return Shortfall Constraint

As we have seen, the number of eligible portfolios is more limited when the asset

return shortfall constraint is imposed, but the fund manager has some possibilities to

adjust the extent of this limitation. Basically there are two ”free” parameters in the

asset return shortfall inequality (2.6) which can be changed by the manager: the

shortfall constraint probability α and the minimum acceptable return m.

At first we assume that α is fixed. Figure 2, p. 18, shows how the asset return

shortfall line reacts to changes in the predetermined minimum return m.

Since m represents the y-intercept of the asset return shortfall line, it is obvious

that an increase in m makes the line moving upwards, whereas a decrease in m makes

the line moving downwards. In this way, the fund manager can influence the number of

portfolios from which he/she can choose. On the one hand, a smaller m increases the

number of possible portfolio choices; on the other hand, however, this results in a

higher risk since now, RP in (2.5) is only required to be smaller than the less stringent

value m with the same shortfall constraint probability α. Therefore, there is a trade-off

between a large number of portfolio choices and a preferably small risk.

Now we assume that m is fixed. Figure 3, p. 19, shows how the asset return

shortfall line reacts to changes in the shortfall constraint probability α.
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Figure 2
The Impact of the Minimum Acceptable Return m on the Asset Return

Shortfall line

In order to analyze the impact of α on the asset return shortfall line, we assume

that α < 0.5. This assumption simplifies the analysis without actually restricting the

choice of α in the shortfall constraint: P (RP < m) ≤ α is only reasonable for small

values of α, for example α = 5%. That is why values of α that are greater than or equal

to 0.5 will not be considered for the rest of the thesis.

If α is increased, the α-percentile zα becomes larger. But zα is less than 0 since we
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Figure 3
The Impact of the Shortfall Constraint Probability α on the Asset Return

Shortfall Line

assume α < 0.5. From the asset return shortfall constraint inequality (2.6),

µP ≥ m− zα · σP ,

we can see that with a larger α, the slope of the asset return shortfall line decreases,

whereas with a smaller α, the slope increases. Again, the fund manager can influence

the number of possible portfolio choices: the smaller the slope is, the larger the choice
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of portfolios is. However, this will increase the risk as well since the shortfall constraint

probability α has to be increased by the fund manager. We note that figure 2, p. 18,

and figure 3, p. 19, concur with the graphs provided by Leibowitz et al. (1996) for this

sensitivity analysis.

The Curve of Possible Stock/Bond Combinations

In the next subsection, we analyze the interaction between the asset return

shortfall constraint and the curve of possible stock/bond combinations. This curve

represents all the portfolios which the pension fund manager can choose from. In

particular, we will focus on the corresponding graph in the µP -σP -coordinate system.

That is why we need a formula for the curve of possible stock/bond combinations in

terms of µP and σP . The following result provides this formula:

Result II.2 (The Curve of Possible Stock/Bond Combinations)

We assume that µE ≥ µB. Then the curve of possible stock/bond combinations

(stock/bond-curve) in terms of µP and σP is given by

µP = ±

√
1

a
σ2

P −
c

a
+

(
b

2a

)2

− b

2a
, µP ∈ [µB, µE], (2.7)

where

a =
σ2

E + σ2
B − 2σEσBρEB

(µE − µB)2
, (2.8)

b =
2(µE + µB)σEσBρEB − 2µBσ2

E − 2µEσ2
B

(µE − µB)2
, (2.9)

c =
µ2

Bσ2
E + µ2

Eσ2
B − 2µEµBσEσBρEB

(µE − µB)2
. (2.10)
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Proof. The formula can be derived by straight-forward calculations:

µP = wµE + (1− w)µP

⇒ w =
µP − µB

µE − µB

, 1− w =
µE − µP

µE − µB

With (2.3), we get

σ2
P = w2σ2

E + (1− w)2σ2
B + 2w(1− w)σEσBρEB

=
(µP − µB)2

(µE − µB)2
σ2

E +
(µE − µP )2

(µE − µB)2
σ2

B + 2
(µP − µB)(µE − µP )σEσBρEB

(µE − µB)2

=

=a︷ ︸︸ ︷
σ2

E + σ2
B − 2σEσBρEB

(µE − µB)2
µ2

P

+

=b︷ ︸︸ ︷
2(µE + µB)σEσBρEB − 2µBσ2

E − 2µEσ2
B

(µE − µB)2
µP

+
µ2

Bσ2
E + µ2

Eσ2
B − 2µEµBσEσBρEB

(µE − µB)2︸ ︷︷ ︸
=c

= aµ2
P + bµP + c

Thus

µ2
P +

b

a
µP =

σ2
P

a
− c

a

⇔
(

µP +
b

2a

)2

−
(

b

2a

)2

=
σ2

P

a
− c

a

⇔ µP = ±

√
1

a
σ2

P −
c

a
+

(
b

2a

)2

− b

2a

It is obvious that µP ∈ [µB, µE] since

µP = wµE + (1− w)µB, w ∈ [0, 1] and µE ≥ µB.
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The Asset Return Shortfall Constraint for w

In chapter IV, we will see that it is useful to have a condition for the asset return

shortfall constraint that restricts the weight w. This is provided by the following result.

Result II.3 (The Asset Return Shortfall Constraint for w)

Let

a = µ2
E + µ2

B − 2µEµB − z2
α

(
σ2

E + σ2
B − 2σEσBρEB

)
, (2.11)

b = 2
(
µEµB + µBm− µ2

B − µEm + z2
ασ2

B − z2
ασEσBρEB

)
, (2.12)

c = µ2
B + m2 − 2µBm− z2

ασ2
B. (2.13)

Then the asset return shortfall constraint P (RP < m) ≤ α is equivalent to the following

conditions if µP ≥ m:

• If a > 0, then w ∈ ((−∞, w1]
⋂

[0, 1])
⋃

([w2, +∞)
⋂

[0, 1]), where

w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the root
√

b2 − 4ac has no real solution, then

w ∈ [0, 1].

• If a < 0, then w ∈ [w1, w2]
⋂

[0, 1], where w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the

root
√

b2 − 4ac has no real solution, then there does not exist a w that satisfies the

asset return shortfall constraint.

• If a = 0 and b < 0, then w ∈ (−∞,− c
b
]
⋂

[0, 1].

• If a = 0 and b > 0, then w ∈ [− c
b
, +∞)

⋂
[0, 1].
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• If a = 0, b = 0 and c ≥ 0, then w ∈ [0, 1].

• If a = 0, b = 0 and c < 0, then there does not exist a w that satisfies the asset

return shortfall constraint.

Proof.

P (RP < m) ≤ α

ResultII.1⇐⇒ µP ≥ m− zα · σP

⇔ wµE + (1− w)µB

≥ m− zα

√
w2σ2

E + (1− w)2σ2
B + 2w(1− w)σEσBρEB

It makes sense to assume µP ≥ m (the minimum acceptable return m shouldn’t be

greater than the expected value µP of the portfolio). Then the last inequality is

equivalent to

(wµE + (1− w)µB −m)2

≥
(
−zα

√
w2σ2

E + (1− w)2σ2
B + 2w(1− w)σEσBρEB

)2

⇔
=a︷ ︸︸ ︷

µ2
E + µ2

B − 2µEµB − z2
α

(
σ2

E + σ2
B − 2σEσBρEB

)
w2

+

=b︷ ︸︸ ︷
2
(
µEµB + µBm− µ2

B − µEm + z2
ασ2

B − z2
ασEσBρEB

)
w

+ µ2
B + m2 − 2µBm− z2

ασ2
B︸ ︷︷ ︸

=c

≥ 0

⇔ aw2 + bw + c ≥ 0
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If a > 0, the function f(w) = aw2 + bw + c is a parabola which is opened to the top.

The nulls of this function are w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why

f(w) ≥ 0 ⇔ w ≤ w1 or w ≥ w2. If the root
√

b2 − 4ac has no real solution, the

inequality aw2 + bw + c ≥ 0 is true for all w. If a < 0, the function f(w) = aw2 + bw + c

is a parabola which is opened to the bottom. The nulls of this function are

w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why f(w) ≥ 0 ⇔ w1 ≤ w ≤ w2. If the root

√
b2 − 4ac has no real solution, the inequality aw2 + bw + c ≥ 0 is false for all w. If

a = 0 and b > 0, this function reduces to a straight line, i.e. f(w) ≥ 0 ⇔ w ≥ − c
b
. If

a = 0 and b < 0, we get f(w) ≥ 0 ⇔ w ≤ − c
b
. If a = 0, b = 0 and c ≥ 0, then f(w) ≥ 0,

otherwise f(w) < 0. This completes the proof.

Example 2

For this example, we need the following values of the underlying variables:

Table 1
Values for Example 2

Expected Return Standard
Deviation of

Returns

Correlation with
Bonds

Correlation with
Stocks

Stocks 13.0% 17.00% 0.35 1.00
Bonds 8.0% 6.96% 1.00 0.35

Source: Leibowitz et al. (1996, p.86)

In order to distinguish between the variables in Result II.3 and Result II.2, we use

the subscripts asc (asset return shortfall constraint) and sbc (stock/bond-curve),

respectively. For α and m, we choose α = 0.10 and m = −0.07. With the values in the
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table and the formulas in the results, we get:

aasc = −0.0392, basc = 0.0173, casc = 0.0146.

Thus,

w1/2 = 0.2206± 0.6480

which restricts w to (aasc < 0 and Result II.3)

w ∈ [0, 0.8687].

Since µP = wµE + (1− w)µB, µP is restricted to

µP ∈ [0.08, 0.1234].

Now, we calculate the values for the stock/bond-curve:

asbc = 10.1847, bsbc = −1.6577, csbc = 0.0723.

Then, the stock/bond-curve is given by

µP = ±
√

0.0982σ2
P − 0.0005 + 0.0814.

Figure 4, p. 26, shows both the asset return shortfall constraint µP ∈ [0.08, 0.1234] and

the stock/bond-curve.

In order to analyze what happens in the graph if we change the minimum

acceptable return m and/or the shortfall constraint probability α, we need the following

considerations:
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Figure 4
The Asset Return Shortfall Constraint for w and the Stock/Bond-Curve

We assume that we have found a portfolio with expected value µ∗P and standard

deviation σ∗P (we denote this portfolio by (µ∗P , σ∗P )) that satisfies the asset return

shortfall constraint for a given m∗:

µ∗P ≥ m∗ − zα · σ∗P .

Now we decrease the value of m∗. The new value is denoted by mnew. Then the
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following inequality holds:

µ∗P ≥ m∗ − zασ∗P > mnew − zασ∗P .

This means that the portfolio (µ∗P , σ∗P ) satisfies the asset return shortfall constraint

with mnew, too.

Now we assume that we have found a portfolio (µ̃P , σ̃P ) that satisfies the asset

return shortfall constraint for a given α̃:

µ̃P ≥ m− zα̃σ̃P .

Increasing α̃ yields a new value αnew. Since zα̃ < zαnew , the following inequality holds:

µ̃P ≥ m− zα̃σ̃P > m− zαnew σ̃P .

This means that the portfolio (µ̃P , σ̃P ) satisfies the asset return shortfall constraint

with αnew, too.

These considerations yield the following result:

Result II.4 (Sensitivity Analysis for the Asset Return)

The set of potential portfolios after a decrease of the minimum acceptable return m

and/or an increase of the asset shortfall constraint probability α is a superset of the set

of potential portfolios before m and/or α is changed.

This result can be generalized for any random return R (which does not

necessarily have to be the asset return). This will be quite useful for the sections
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concerning shortfall constraints of the surplus return and the relative return.

Result II.5 (Sensitivity Analysis)

Let R be a random return with expected value µ and standard deviation σ. We assume

that

µ ≥ m− zασ

is the corresponding shortfall constraint. Then the set of potential portfolios after a

decrease of the minimum acceptable return m and/or an increase of the shortfall

constraint probability α is a superset of the set of potential portfolios before m and/or α

is changed.

Proof. Let (µ∗, σ∗) be a portfolio that satisfies the shortfall constraint for a given m∗

and let m∗ > mnew. Then

µ∗ ≥ m∗ − zασ∗ > mnew − zασ∗.

This means that the portfolio (µ∗, σ∗) satisfies the shortfall constraint with mnew, too.

Let (µ̃, σ̃) be a portfolio that satisfies the shortfall constraint for a given α̃ and let

α̃ < αnew. Then

µ̃ ≥ m− zα̃σ̃ > m− zαnew σ̃P .

This means that the portfolio (µ̃, σ̃) satisfies the shortfall constraint with αnew, too.
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Figure 5, p. 29, shows the impact of a change in m on the graph for the values of

the underlying variables given in Example 2. If m is decreased, the two lines of the

Figure 5
The Impact of m on the Asset Return Shortfall Constraint for w

asset return shortfall constraint get closer to each other. This is exactly what Result

II.5 states about changes in m. We would get a very similar figure if we illustrated the

impact of changes in α on the graph.

Before we continue with the next section, it should be noted that we have found
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two different representations for the set of potential portfolios that satisfy the asset

return shortfall constraint in the µP -σP -coordinate system: the area above the straight

line in figure 1, page 16, and the area between the two horizontal lines in figure 4, page

26. At first glance, one might expect a contradiction in this observation, but this is not

the case. Both shortfall constraints produce the same w since the asset return shortfall

constraint for w (Result II.3) was derived from the asset return shortfall constraint in

Result II.1 by equivalences.

The next figure, figure 6, page 31, shows that if we use the same values for the

underlying variables and for α and m (for this example, we chose α = 0.10 and

m = −0.07 and the values in Table 1), both versions of the asset return shortfall

constraint restrict µP in the same way. Here, version 1 and version 2 refer to Result II.3

and Result II.1, respectively. Since w ∈ [0, 1], the expected value µP must be greater

than or equal to 0.08 for both shortfall constraints (because µP = wµE + (1− w)µB,

µE = 0.13, and µB = 0.08). The upper bound is determined by the intersection of the

asset return shortfall constraint lines and the stock/bond-curve, but both versions

intersect with the stock/bond-curve in the same point.
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Figure 6
The Two Versions of the Asset Return Shortfall Constraint and the

Stock/Bond-Curve

The Liability Model

Up to now, we have only considered managing a pension fund in an asset-only

framework. However, a pension fund consists of both assets and liabilities. That is why

it is necessary to pay attention to the liability position of the fund as well.

A quite common measure for the liabilities of a pension fund is the accumulated

benefit obligation (ABO). The Financial Accounting Standards Board (FASB, 1985)
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defines the ABO as of a date as the actuarial present value of benefits attributed by a

pension benefit formula to employee service rendered prior to that date and based on

current and past compensation levels. With the ABO it is possible to calculate the

surplus or deficit of a pension plan:

surplus = current value of plan assets− ABO

if this difference is non-negative or

deficit = current value of plan assets− ABO

if the difference is negative.

Although it can be considered as an approximation of the termination liability of

a pension plan, the ABO has one major disadvantage. It does not reflect future salary

increases. To solve this problem, the projected benefit obligation (PBO) is introduced.

The PBO is defined as the actuarial present value of benefits attributed by a pension

benefit formula to employee service rendered prior to that date and based on current,

past and future compensation levels (cf. FASB, 1985). Basically the PBO is an ABO,

but it includes the additional uncertainty of future pay increases. That is why many

pension investors prefer it to the ABO since the approximation of the termination

liability tends to be better. When we establish a model for the liabilities in the next

subsection, we will see that it consists of two parts where the first one can be regarded

as the ABO part. The other part represents the additional PBO features.

It should be noted that there are other liability measures that comprise even more



33

uncertain events in the future. The ”total benefit obligation”, for example, includes the

future service of current participants of the pension plan. These measures try to make

the liability model more realistic, but it would be very difficult to manage the assets

against the liabilities since the uncertainty inherent in the liabilities would be too large

(cf. Leibowitz et al., 1996).

The Liability Model

In order to include liabilities for asset-liability management, we need a model for

the liability return in addition to the model for the asset return that we have already

introduced. For the liability model suggested by Leibowitz et al. (1996) we need some

notations:

• RL: return of the liabilities,

• RB: return of the bond portion in the portfolio,

• RE: return of the stock portion in the portfolio, and

• ε: error term.

As for the asset return shortfall constraint, we assume that all the underlying

random variables are normally distributed. Because RL will be a linear combination of

RB and RE, we only need distribution assumptions for RB, RE and ε (as we have noted

in the section ”The Normal Distribution Assumption”, the linear combination of

normally distributed random variables is normally distributed again):
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• RB ∼ N(µB, σ2
B), where µB and σ2

B are the expected return and the variance of

RB, respectively.

• RE ∼ N(µE, σ2
E), where µE and σ2

E are the expected return and the variance of

RE, respectively.

• ε ∼ N(0, σ2
ε) and ε is uncorrelated with either stock or bond returns, i.e. ρBε = 0

and ρEε = 0.

Then the liability model can be formulated as follows:

RL − µL = a · (RB − µB) + b · (RE − µE) + ε, (2.14)

where a ∈ R, b ∈ R and µL is the expected liability return.

Since RL is a linear combination of normally distributed random variables, it is

also normally distributed with expected value µL and variance σ2
L:

RL ∼ N(µL, σ2
L). (2.15)

It is obvious that µL must be the expected return of the liabilities since

RL − µL = a · (RB − µB) + b · (RE − µE) + ε

⇒ E(RL − µL) = E(a · (RB − µB) + b · (RE − µE) + ε)

⇒ E(RL)− µL = a · (E(RB)− µB︸ ︷︷ ︸
=0

) + b · (E(RE)− µB︸ ︷︷ ︸
=0

) + E(ε)︸︷︷︸
=0

⇒ E(RL)− µL = 0

⇒ E(RL) = µL.
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Here, E(·) is used to denote the expected return of a random variable. The main

problem is to find a formula for the variance σ2
L of the liability return, i.e. to find an

expression of σ2
L in terms of known quantities. Leibowitz et al. (1996, pp. 82) give a

detailed derivation which is summarized in the following:

At first, the equation (2.14) is split in two pieces:

RL − µL = a · (RB − µB)︸ ︷︷ ︸
=:RI

+ b · (RE − µE) + ε︸ ︷︷ ︸
=:RN

,

where

• RI is ”the portion of the liability return due solely to the change in interest

(discount) rates, with the benefit schedule held constant” (Leibowitz et al., 1996,

p. 82). RI has an expected return of

µI = a · E(RB − µB) = 0 (2.16)

and a variance of

σ2
I = a2 · E

(
(RB − µB)2

)
= a2 · σ2

B. (2.17)

• RN is ”the portion of the liability return due to ’noise’ - that is, any change in the

benefit payment schedule itself” (Leibowitz et al., 1996, p. 83). RN has an

expected return of

µN = b · E(RE − µE) + E(ε) = 0 (2.18)
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and the covariance between RN and RE is

σEN = E(RN(RE − µE))− E(RN)E(RE − µE)

= E(RN(RE − µE))

= E
(
b(RE − µB)2

)
+ E(ε(RE − µE))

= bσ2
E

since ε is uncorrelated with RE. Thus,

σEN = bσ2
E. (2.19)

From (2.17) and (2.19), we get

a =
σI

σB

, (2.20)

b =
σEN

σ2
E

=
σEσNρEN

σ2
E

=
σN

σE

· ρEN . (2.21)

Finally, we need a formula for σIN :

σIN = E(RIRN)− E(RI)E(RN) = E(RIRN)

= abE((RB − µB)(RE − µE)) + a E((RB − µB)ε)︸ ︷︷ ︸
=0

= abσEB,

or, after plugging in a (2.20) and b (2.21),

σIN = σIσNρENρEB. (2.22)
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Now

RL − µL = a · (RB − µB)︸ ︷︷ ︸
=RI

+ b · (RE − µE) + ε︸ ︷︷ ︸
=RN

⇒ RL − µL = RI + RN

⇒ E((RL − µL)2) = E((RI + RN)2)

⇒ σ2
L = E(R2

I) + E(R2
N) + 2E(RIRN)

(2.18)
= σ2

I + σ2
N + 2σIN

Using (2.22), we get

σ2
L = σ2

I + σ2
N + 2σIσNρENρEB. (2.23)

The following result gives a summary of the important parts of the preceding derivation:

Result II.6 (The Liability Model)

If RB ∼ N(µB, σ2
B), RE ∼ N(µE, σ2

E), ε ∼ N(0, σ2
ε), and ε is uncorrelated with RB and

RE, then for the liability model

RL − µL = a · (RB − µB)︸ ︷︷ ︸
=:RI

+ b · (RE − µE) + ε︸ ︷︷ ︸
=:RN

(2.24)

the following holds:

1. RL ∼ N(µL, σ2
L) (2.15),

2. σ2
L = σ2

I + σ2
N + 2σIσNρENρEB (2.23),

3. a = σI

σB
(2.20), and

4. b = σN

σE
· ρEN . (2.21)
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Before we started to derive formulas for the liability distribution and the liability

model, we noted that the PBO is basically an ABO, but with some additional features.

Is this represented by our liability model? The answer is yes. Actually the liability

model describes the liability return of a PBO:

According to Leibowitz et al. (1996, p. 41), ”the future events reflected in the

ABO are primarily demographic (mortality, age at retirement), rather than economic

(salary increases)”. That is why the bond portion part RI in (2.24) represents the

uncertainty inherent in the ABO.

The stock portion part together with the error term (the ”noise” RN in the

liability return) can be considered as the uncertainty in the liability schedule.

The following summarizes this interpretation of the liability model:

RL − µL = a · (RB − µB)︸ ︷︷ ︸
=RI

+ b · (RE − µE) + ε︸ ︷︷ ︸
=RN

⇔

RL − µL = RI︸ ︷︷ ︸
uncertainty in the ABO

+ RN︸ ︷︷ ︸
uncertainty in the liability schedule

The noise factor N of a liability is defined as the portion of the liability volatility

unexplained by interest rates. For a PBO, this is the percentage of unexplained liability

volatility inherent in future salary increases. With results from Ezra (1991), Leibowitz

et al. (1996, p. 68) calculate a noise factor of 7% for the PBO. Of course an ABO has a

noise factor of 0% in the liability model since there is no uncertainty in the liability

schedule.
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The Surplus Return Shortfall Constraint

In the preceding section ”The Liability Model”, we have defined the surplus as

the difference between the current value of the plan assets and the ABO, where the

ABO can be substituted by any measure for the liability of a pension plan. Since we

have introduced a liability model for the PBO, the PBO will replace the ABO in the

definition:

surplus = current value of plan assets− PBO.

Again, a negative surplus means a deficit in the pension plan.

At the beginning of this chapter, we have derived a formula for the asset return

shortfall constraint. Although asset-only objectives are sometimes justified, it is often

necessary to consider both the risk of the assets and the risk of the liabilities. Only if a

fund manager accounts for both risks, can he/she control the overall risk of the pension

fund.

This suggests using the surplus return to control the risk. In order to define it, we

need some notations:

• Ai: value of the assets at time i ∈ {0, 1},

• Li: value of the liabilities at time i ∈ {0, 1},

• Si: surplus at time i ∈ {0, 1},

• F0 = A0

L0
: funding ratio at time 0,

• RA: return of the assets with expected value µA, and variance σ2
A, and
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• RL: return of the liabilities with expected value µL and variance σ2
L.

With these notations we can define the surplus return:

Definition 2 (The Surplus Return)

The surplus return RS is given by the equation

RS =
S1 − S0

L0

. (2.25)

At first glance it might be unreasonable to use L0 instead of S0 in the

denominator. However, if we used S0, it would be possible that the denominator be 0

since S0 could assume a value of 0.

Usually L0 is preferred to A0 because one wants to compare the surplus with the

liabilities rather than with the assets.

For the next result, we do not need any distribution assumptions for the asset

return and liability return.

Result II.7 (Properties of the Surplus Return)

The following properties hold for the surplus return RS:

RS = F0 ·RA −RL, (2.26)

µS = F0 · µA − µL, (2.27)

σ2
S = F 2

0 σ2
A + σ2

L − 2F0σAσLρAL, (2.28)

where RA = wRE + (1− w)RB, w ∈ [0, 1], µS and σS are the expected return and the
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standard deviation of RS, respectively. The correlation ρAL is given by

ρAL =
wσEρEL + (1− w)σBρBL

σA

, where (2.29)

ρEL =
σI

σL

ρEB +
σN

σL

ρEN and (2.30)

ρBL =
σI

σL

+
σN

σL

ρENρEB. (2.31)

Proof. The derivations for these formulas are given in Leibowitz et al. (1996, pp. 80)

and are summarized in the following:

RS =
S1 − S0

L0

=
(A1 − L1)− (A0 − L0)

L0

=
(1 + RA)A0 − (1 + RL)L0 − A0 + L0

L0

=
A0RA − L0RL

L0

= F0RA −RL

⇒ µS = E(F0RA −RL) = F0µA − µL

σS = V ar(F0RA −RL) = F 2
0 σ2

A + σ2
L − 2F0σAσLρAL

The formulas for ρAL, ρEL and ρBL can be derived as follows:

σAL = Cov(RA, RL) = Cov(wRE + (1− w)RB, RL)

= wCov(RE, RL) + (1− w)Cov(RB, RL) = wσEL + (1− w)σBL

⇒ ρAL =
σAL

σAσL

=
wσEσLρEL + (1− w)σBσLρBL

σAσL

=
wσEρEL + (1− w)σBρBL

σA
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σBL = E((RL − µL)(RB − µB))

= aE((RB − µB)2) + bE((RE − µE)(RB − µB)) + E(ε(RB − µB))

⇒ σBL =
σI

σB

σ2
B +

σN

σE

ρENσEB + 0

⇒ ρBLσLσB = σIσB +
σN

σE

ρENρEBσBσE

⇒ ρBL =
σI

σL

+
σN

σL

ρENρEB

σEL = E((RL − µL)(RE − µE))

= aE((RB − µB)(RE − µE)) + bE((RE − µE)2) + E(ε(RE − µE))

⇒ σEL =
σI

σB

σEB +
σN

σE

ρENσ2
E + 0

⇒ ρELσLσE = σIσEρEB + σNσEρEN

⇒ ρEL =
σI

σL

ρEB +
σN

σL

ρEN

Since the surplus return combines the asset return and the liability return in one

quantity, it qualifies for our goal to manage the assets and liabilities of a pension fund

simultaneously.

The surplus return shortfall constraint is quite similar to the asset return shortfall

constraint. It allows for controlling the downside risk of the surplus return which again

is measured by the corresponding shortfall probability. A fund manager, for example,

may have the objective to meet a minimum acceptable surplus return of 3% with a

probability of 95%. In general, this constraint can be formulated as follows (cf.

Leibowitz et al., 1996, p. 44):
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There should be no more than a probability of α that the surplus return will

be less than a minimum acceptable surplus return of m.

Thus, the mathematical expression for the surplus return shortfall constraint is

P (RS < m) ≤ α. (2.32)

Now we can derive the formula for the shortfall constraint. The next result gives

formulas in terms of µS and σS and in terms of µA and σA. The second version allows

for graphing the surplus return shortfall constraint in a µA-σA-coordinate system. This

is a big advantage since we can graph the shortfall constraint against the

stock/bond-curve in the µA-σA-coordinate system.

Result II.8 (The Surplus Return Shortfall Constraint)

Let RE ∼ N(µE, σ2
E), RB ∼ N(µB, σ2

B), and RL ∼ N(µL, σ2
L). Then

RS = F0RA −RL ∼ N(µS, σ2
S),

and the surplus return shortfall constraint is given by

µS ≥ m− zα · σS. (2.33)

An equivalent expression for this constraint is given by the two inequalities

µA ≥
µL + m

F0

, (2.34)

aσ2
A + bµA + cµ2

A ≤ d, (2.35)
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where

a = z2
αF 2

0 , (2.36)

b =
2F0σLσBρBLz2

α

µE − µB

− 2F0σLσEρELz2
α

µE − µB

+ 2F0µL + 2F0m, (2.37)

c = −F 2
0 , (2.38)

d = µ2
L + m2 + 2µLm− z2

ασ2
L −

2F0z
2
ασLσEρELµB

µE − µB

+
2F0σLσBρBLz2

αµE

µE − µB

. (2.39)

The formulas for ρEL and ρBL are given by (2.30) and (2.31).

Proof. Since RE ∼ N(µE, σ2
E) and RB ∼ N(µB, σ2

B), the asset return

RA = wRE + (1− w)RB is also normally distributed: RA ∼ N(µA, σ2
A). Thus,

RS = F0RA−RL ∼ N(µS, σ2
s) because it is a linear combination of normally distributed

random variables.

Derivation of the shortfall constraint:

P (RS < m) ≤ α

⇔ P

(
RS − µP

σP

<
m− µS

σS

)
≤ α

⇔ Φ

(
m− µS

σS

)
≤ α

⇔ m− µS

σS

≤ zα

⇔ µS ≥ m− zα · σS

Here, zα denotes the α-percentile of the standard normal distribution and Φ is the

cumulative distribution function of the standard normal distribution.
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Now we have to express this constraint in terms of µA and σA, i.e. we have to

replace µS and σS in (2.33) by (2.27), and (2.28), respectively:

µS ≥ m− zασS

⇔ F0µA − µL ≥ m− zα

√
F 2

0 σ2
A + σ2

L − 2F0σAσLρAL

⇔
√

F 2
0 σ2

A + σ2
L − 2F0σAσLρAL ≤

µL + m− F0µA

zα

(−zα > 0 for α < 0.5)

⇔ µL + m− F0µA

zα

≥ 0 and(√
F 2

0 σ2
A + σ2

L − 2F0σAσLρAL

)2

≤
(

µL + m− F0µA

zα

)2

zα<0⇐⇒ µA ≥
µL + m

F0

and(√
F 2

0 σ2
A + σ2

L − 2F0σAσLρAL

)2

≤
(

µL + m− F0µA

zα

)2

⇔ µA ≥
µL + m

F0

and

z2
α(F 2

0 σ2
A + σ2

L − 2F0σAσLρAL) ≤ (µL + m− F0µA)2︸ ︷︷ ︸
(∗)

It holds:

µA = wµE + (1− w)µB = w(µE − µB) + µB

⇒ w =
µA − µB

µE − µB

, (1− w) =
µE − µA

µE − µB

Now we find an expression for ρAL with known variables. According to 2.29, we have

ρAL =
wσEρEl + (1− w)σBρBL

σA

⇒ ρAL =

(
µA − µB

µE − µB

σEρEL +
µE − µA

µE − µB

σBρBL

)
· 1

σA
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After plugging this result in (∗), we get

z2
α

[
F 2

0 σ2
A + σ2

L − 2F0σL

(
µA − µB

µE − µB

σEρEL +
µE − µA

µE − µB

σBρBL

)]
≤ (µL + m− F0µA)2

⇔
=a︷ ︸︸ ︷

z2
αF 2

0 σ2
A + µA

=b︷ ︸︸ ︷(
2F0σLσBρBLz2

α

µE − µB

− 2F0σLσEρELz2
α

µE − µB

+ 2F0(µL + m)

) =c︷︸︸︷
−F 2

0 µ2
A

≤ µ2
L + m2 + 2µLm− z2

ασ2
L −

2F0z
2
ασLσEρELµB

µE − µB

+
2F0σLσBρBLz2

αµE

µE − µB︸ ︷︷ ︸
=d

⇔ aσ2
A + bµA + cµ2

A ≤ d

In order to graph the surplus return shortfall constraint in a µA-σA-coordinate

system, we need to express the expected return µA as a function of σA:

aσ2
A + bµA + cµ2

A ≤ d

c<0⇔
(

µA +
b

2c

)2

− b2

4c2
≥ d

c
− a

c
σ2

A

⇔ µA ≥ +

√
d

c
+

b2

4c2
− a

c
σ2

A −
b

2c
or

µA ≤ −
√

d

c
+

b2

4c2
− a

c
σ2

A −
b

2c

Thus, the surplus return shortfall constraint can be written as

µA(σA) ≥
√

d

c
+

b2

4c2
− a

c
σ2

A −
b

2c
or (2.40)

µA(σA) ≤ −
√

d

c
+

b2

4c2
− a

c
σ2

A −
b

2c
(2.41)

and

µA(σA) ≥ µL + m

F0

. (2.34)
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Example 3

For this example, we need the following values of the underlying variables:

Table 2
Values for Example 3

Expected Return Standard
Deviation of

Returns

Correlation with
Bonds

Correlation with
Stocks

Assets:
Stocks 13.0% 17.00% 0.35 1.00
Bonds 8.0% 6.96% 1.00 0.35

Liabilities:
Basic Schedule 8.0% 15.00% 1.00
Noise 0.00% 7.00% 0.25

Source: Leibowitz et al. (1996, p.86)

Then, σL, ρBL, and ρEL can be calculated by using (2.23), (2.31), and (2.30):

σL = 0.171, ρBL = 0.913, ρEL = 0.409. (cf. Leibowitz et al., 1996, p.86)

For α, F0, and m, we choose α = 0.10, F0 = 1, and m = −0.07. With these values, we

get

a = 1.6384, b = −0.0471, c = −1, d = −0.0176

and

µL + m

F0

= 0.06.

Thus, the surplus return shortfall constraint for the µA-σA-coordinate system can be

written as
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µA ≥
√

0.0182 + 1.6384σ2
A − 0.0236 or

µA ≤ −
√

0.0182 + 1.6384σ2
A − 0.0236

and

µA ≥ 0.06.

This is illustrated in figure 7, p. 48.

Figure 7
The Surplus Return Shortfall Constraint

However, σ2
A ≥ 0, and that is why we get from the first inequality of this shortfall
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constraint

µA ≥
√

0.0182 + 1.6384σ2
A − 0.0236 ≥

√
0.0182 + 1.6384 · 0− 0.0236 = 0.1113.

Therefore, the shortfall constraint reduces to

µA ≥
√

0.0182 + 1.6384σ2
A − 0.0236

which is illustrated in figure 8, p. 49.

Figure 8
The Surplus Return Shortfall Constraint without Redundant Equations
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Sensitivity Analysis for the Surplus Return Shortfall Constraint

The sensitivity analysis for the surplus return shortfall constraint is a little bit

more complicated than the sensitivity analysis for the asset return shortfall constraint.

The reason is that we want to see how the graph in the µA-σA-coordinate system (and

not in the µS-σS-coordinate system) reacts to changes in the minimum acceptable

return m and the shortfall constraint probability α.

The pension fund manager can adjust the surplus return shortfall constraint by

increasing or decreasing the minimum acceptable return m or the shortfall constraint

probability α. Thus, the amount of risk can be varied and fitted to a desirable risk

level. As noted above, the surplus return shortfall constraint qualifies better for

asset-liability management since it comprises both the asset return and the liability

return. Since the surplus return shortfall constraint

µA(σA) ≥
√

d

c
+

b2

4c2
− a

c
σ2

A −
b

2c
or

µA(σA) ≤ −
√

d

c
+

b2

4c2
− a

c
σ2

A −
b

2c

and

µA(σA) ≥ µL + m

F0

has too many variables that can vary (remark: a, b, c, and d are given by (2.36), (2.37),

(2.38), and (2.39)), it is impossible to determine directly the impact of a change in m or

α on the graph. However, we can apply Result II.5 to the surplus return RS.

The effects on the graph that Result II.5 implies are illustrated in figure 9, p. 51
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and figure 10, page 52. Since we are only interested in portfolios in the first quadrant,

only the curves of the shortfall constraint in this quadrant are displayed.

Figure 9
The Impact of m on the Surplus Return Shortfall Constraint
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Figure 10
The Impact of α on the Surplus Return Shortfall Constraint

The Surplus Return Shortfall Constraint for w

As for the asset return shortfall constraint, this representation of the surplus

return shortfall constraint in the µA-σA-coordinate system is not unique. In the next

result, an equivalent condition for the surplus return shortfall constraint in terms of w

is provided:



53

Result II.9 (The Surplus Return Shortfall Constraint for w)

Let

a = F 2
0

[
µ2

E + µ2
B − 2µEµB − z2

α(σ2
E + σ2

B − 2σEσBρEB)
]
, (2.42)

b = F0

[
2µBµL − 2mµE + 2mµB + 2F0µEµB − 2µ2

BF0 − 2µLµE

+z2
α(2F0σ

2
B − 2F0σEσBρEB + 2σL(σEρEL − σBρBL))

]
, (2.43)

c = µ2
L + m2 + µ2

BF 2
0 + 2µLm− 2µBF0µL − 2mF0µB

−z2
α(F 2

0 σ2
B + σ2

L − 2F0σLσBρBL). (2.44)

Then the surplus return shortfall constraint P (RS < m) ≤ α is equivalent to the

following conditions if µS ≥ m:

• If a > 0, then w ∈ ((−∞, w1]
⋂

[0, 1])
⋃

([w2, +∞)
⋂

[0, 1]), where

w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the root
√

b2 − 4ac has no real solution, then

w ∈ [0, 1].

• If a < 0, then w ∈ [w1, w2]
⋂

[0, 1], where w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the

root
√

b2 − 4ac has no real solution, then there does not exist a w that satisfies the

surplus return shortfall constraint.

• If a = 0 and b < 0, then w ∈ (−∞,− c
b
]
⋂

[0, 1].

• If a = 0 and b > 0, then w ∈ [− c
b
, +∞)

⋂
[0, 1].

• If a = 0, b = 0 and c ≥ 0, then w ∈ [0, 1].
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• If a = 0, b = 0 and c < 0, then there does not exist a w that satisfies the surplus

return shortfall constraint.

Proof. In the proof for Result II.8 we showed that

µS ≥ m− zασS

⇔ z2
α(F 2

0 σ2
A + σ2

L − 2F0σAσLρAL) ≤ (µL + m− F0µA)2

Since we assume µS = F0µA − µL ≥ m the second condition µA ≥ µL+m
F0

is always true.

Then

z2
α(F 2

0 σ2
A + σ2

L − 2F0σAσLρAL) ≤ (µL + m− F0µA)2

⇔ z2
α

[
F 2

0 (w2σ2
E + (1− w)2σ2

B + 2w(1− w)σEσBρEB) + σ2
L

−2F0σL(wσEρEL + (1− w)σBρEB)]

≤ µ2
L + m2 + w2µ2

EF 2
0 + (1− w)2µ2

BF 2
0 + 2µLm− 2wµLµEF0

−2(1− w)µBF0µL − 2mF0µEw − 2mF0(1− w)µB + 2F 2
0 w(1− w)µEµB

⇔ F 2
0

[
µ2

E + µ2
B − 2µEµB − z2

α(σ2
E + σ2

B − 2σEσBρEB)
]
· w2

+F0

[
2µBµL − 2mµE + 2mµB + 2F0µEµB − 2µ2

BF0 − 2µLµE

+z2
α(2F0σ

2
B − 2F0σEσBρEB + 2σL(σEρEL − σBρBL))

]
· w

+µ2
L + m2 + µ2

BF 2
0 + 2µLm− 2µBF0µL − 2mF0µB

−z2
α(F 2

0 σ2
B + σ2

L − 2F0σLσBρBL) ≥ 0

⇔ aw2 + bw + c ≥ 0
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If a > 0, the function f(w) = aw2 + bw + c is a parabola which is opened to the top.

The nulls of this function are w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why

f(w) ≥ 0 ⇔ w ≤ w1 or w ≥ w2. If the root
√

b2 − 4ac has no real solution, the

inequality aw2 + bw + c ≥ 0 is true for all w. If a < 0, the function f(w) = aw2 + bw + c

is a parabola which is opened to the bottom. The nulls of this function are

w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why f(w) ≥ 0 ⇔ w1 ≤ w ≤ w2. If the root

√
b2 − 4ac has no real solution, the inequality aw2 + bw + c ≥ 0 is false for all w. If

a = 0 and b > 0, this function reduces to a straight line, i.e. f(w) ≥ 0 ⇔ w ≥ − c
b
. If

a = 0 and b < 0, we get f(w) ≥ 0 ⇔ w ≤ − c
b
. If a = 0, b = 0 and c ≥ 0, then f(w) ≥ 0,

otherwise f(w) < 0. This completes the proof.

By using µA = wµE + (1− w)µB, we can find the values of µA for which the

surplus return shortfall constraint is satisfied. Figure 11, page 56, illustrates this and

the fact that the surplus return shortfall constraints in Result II.9 (marked version 2 in

the graph) and Result II.8 (marked version 1 in the graph) produce the same restriction

for µA. This is the case because both shortfall curves have the same intersection point

with the stock/bond-curve.
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Figure 11
The Two Versions of the Surplus Return Shortfall Constraint and the

Stock/Bond-Curve

The Relative Return Shortfall Constraint

Up to now, we have considered shortfall constraints in an asset-only framework

and in a surplus framework. In this section, we will generalize the idea of these shortfall

constraints. This means that another shortfall constraint, the relative return shortfall

constraint, will be introduced. We will see that the asset return shortfall constraint and

the surplus return shortfall constraints are special cases of the relative return shortfall



57

constraint.

The relative return consists of two parts. Basically, two different portfolios are

considered: the pension fund portfolio and the benchmark portfolio against which the

fund manager has to manage the pension fund portfolio. The relative return is then

defined as the difference of the two portfolio returns:

relative return = fund portfolio return− benchmark portfolio return.

Sometimes it is not possible to get high returns because the market conditions do

not allow for them. Then it is not appropriate to say that the pension fund manager

did a bad job just because the return of the pension fund is low. That is why a different

measure is needed to assess the manager’s performance. It is clear that if the relative

return is large, the pension fund was managed well relatively to the benchmark

portfolio since then the fund portfolio return is large compared to the benchmark

portfolio return. If the relative return is small or even negative, the manager didn’t

manage the fund so well. Thus, the relative return measures the performance of the

pension fund manager in comparison to a predetermined benchmark. In a way, the

relative return as a measure of performance is more independent of the market since it

is difficult to get high values for both the fund portfolio return and the benchmark

portfolio return if the market conditions are unprofitable.

As for the asset and surplus return shortfall constraint, the pension fund manager

may self-impose a relative return shortfall constraint for managing the pension fund. It

is also possible that the constraint is externally imposed on the fund manager, for
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example by the company that hired the manager.

In order to control the risk of a low relative return, the fund manager can use a

corresponding shortfall constraint. The objective may be to meet a minimum

acceptable relative return of 3% with a probability of 95%. In general, this constraint

can be formulated as follows (cf. Leibowitz et al., 1996, p. 44):

There should be no more than a probability of α that the relative return will

be less than a minimum acceptable relative return of m.

Again, some notations are needed to translate this shortfall constraint into a

mathematical expression. For the relative return shortfall constraint, we assume that

there is still one stock, but two different bonds to choose from. These bonds have the

same expected return, but the standard deviation of the benchmark bond may differ

from the standard deviation of the pension fund bond.

• RA: return of the fund portfolio, where µA and σA are the expected return and

the standard deviation of RA, respectively.

• Ra: return of the benchmark portfolio, where µa and σa are the expected return

and the standard deviation of Ra, respectively.

• RB: return of the bond portion in the fund portfolio, where µB and σB are the

expected return and the standard deviation of RB, respectively.

• Rb: return of the bond portion in the benchmark portfolio, where µb and σb are

the expected return and the standard deviation of Rb, respectively.
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• RE: stock return, where µE and σE are the expected return and the standard

deviation of RE, respectively.

• RD: relative return, where µD and σD are the expected return and the standard

deviation of RD, respectively.

Then the following relationships hold:

RA = wARE + (1− wA)RB, wA ∈ [0, 1], (2.45)

Ra = waRE + (1− wa)Rb, wa ∈ [0, 1], (2.46)

RD = RA −Ra = (wA − wa)RE + (1− wA)RB − (1− wa)Rb. (2.47)

Now we assume that µB = µb. Then the expected return µD and the variance σ2
D of the

relative return RD are given by

µD = (wA − wa)µE + (1− wA)µB − (1− wa)µb

= (wA − wa)(µE − µB), (2.48)

σ2
D = (wA − wa)

2σ2
E(1− ρ2

EB)

+[(wA − wa)σEρEB + (1− wA)σB − (1− wa)σb]
2. (2.49)

For the derivation of the variance formula, more calculations are needed. Leibowitz et

al. (1996) give detailed steps to derive this formula. These steps is summarized in the

following:

σ2
D = E

(
(RD − µD)2

)
.
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We can plug in (2.47) and (2.48) and get

σ2
D = E

[
((wA − wa)(RE − µE) + (1− wA)(RB − µB)− (1− wa)(Rb − µb))

2]
= (wA − wa)

2σ2
E + (1− wA)2σ2

B + (1− wa)
2σ2

b + 2(wA − wa)(1− wA)σEB

−2(wA − wa)(1− wa)σEb − 2(1− wA)(1− wa)σBb.

We assume that ρBb = 1. Then it may be true that ρEB = ρEb if the stock and bond

returns are normally distributed, but there is no proof in Leibowitz et al. (1996) and

this reasoning seems to be not obvious. However, it is possible to show that ρEB = ρEb

without any distribution assumption:

ρBb = 1

⇒ ∃ β > 0 such that RB = µB + β(Rb − µb) (cf. Tucker, 1962)

⇒ V ar(RB) = σ2
B = V ar (µB + β(Rb − µb)) = β2σ2

b

β>0⇒ β =
σB

σb

⇒ σEB = Cov(RE, RB) = Cov

(
RE, µB −

σB

σb

µb +
σB

σb

Rb

)

=

=0︷ ︸︸ ︷
Cov

(
RE, µB −

σB

σb

µb

)
+

σB

σb

Cov(RE, Rb)

=
σB

σb

σEb

⇒ σBσEB = σBσEb

⇒ σEB

σBσE

=
σEb

σbσE

⇒ ρEB = ρEb
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With this result, we can continue to calculate σ2
D:

σ2
D = (wA − wa)

2σ2
E + (1− wA)2σ2

B + (1− wa)
2σ2

b

+2(wA − wa)(1− wA)σEσBρEB − 2(wA − wa)(1− wa)σEσbρEb

−2(1− wA)(1− wa)σBσb

Subtracting and adding (wA − wa)
2σ2

Eρ2
EB gives

σ2
D =

[
(wA − wa)

2σ2
E − (wA − wa)

2σ2
Eρ2

EB

]
+
[
(wA − wa)

2σ2
Eρ2

EB

+(1− wA)2σ2
B + (1− wa)

2σ2
b + 2(wA − wa)(1− wA)σEσBρEB

−2(wA − wa)(1− wa)σEσbρEB − 2(1− wA)(1− wa)σBσb]

= (wA − wa)
2σ2

E(1− ρ2
EB)

+ [(wA − wa)σEρEB + (1− wA)σB − (1− wa)σb]
2

Now we have all the ingredients to find a formula for the shortfall constraint of the

relative return. Result II.10 gives the formula in terms of µD and σD, whereas Result

II.11 provides a formula for w:

Result II.10 (The Relative Return Shortfall Constraint)

Let RE ∼ N(µE, σ2
E), RB ∼ N(µB, σ2

B), and Rb ∼ N(µB, σ2
b ). Then

RD = RA −Ra ∼ N(µD, σ2
D),

where µD and σ2
D are given by (2.48)and (2.49), respectively, and the relative return
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shortfall constraint can be written as

P (RD < m) ≤ α (2.50)

⇔

µD ≥ m− zα · σD. (2.51)

Proof. RD ∼ N(µD, σ2
D) since RD = RA −Ra is a linear combination of normally

distributed random variables. Then RP−µP

σP
∼ N(0, 1) and the following equivalences

hold:

P (RD < m) ≤ α

⇔ P

(
RD − µD

σD

<
m− µD

σD

)
≤ α

⇔ Φ

(
m− µD

σD

)
≤ α

⇔ m− µD

σD

≤ zα

⇔ µD ≥ m− zα · σD

Here, zα denotes the α-percentile of the standard normal distribution and Φ is the

cumulative distribution function of the standard normal distribution.

Result II.11 (The Relative Return Shortfall Constraint for wA)

Let RE ∼ N(µE, σ2
E), RB ∼ N(µB, σ2

B), and Rb ∼ N(µB, σ2
b ). Let

a = (µE − µB)2 − z2
α

[
σ2

E + σ2
B − 2σEσBρEB

]
, (2.52)
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b = −2m(µE − µB)− 2wa(µE − µB)2 − z2
α

[
−2waσ

2
E − 2σ2

B

+2(1 + wa)σEσBρEB − 2(1− wa)σEσbρEB + 2(1− wa)σBσb] , (2.53)

c = m2 + 2mwa(µE − µB) + w2
a(µE − µB)2 − z2

α

[
w2

aσ
2
E

+σ2
B + (1− wa)

2σ2
b − 2waσEσBρEB + 2wa(1− wa)σEσbρEB

−2(1− wa)σBσb] . (2.54)

Then the relative return shortfall constraint is equivalent to the following conditions if

µD ≥ m:

• If a > 0, then w ∈ ((−∞, w1]
⋂

[0, 1])
⋃

([w2, +∞)
⋂

[0, 1]), where

w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the root
√

b2 − 4ac has no real solution, then

w ∈ [0, 1].

• If a < 0, then w ∈ [w1, w2]
⋂

[0, 1], where w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the

root
√

b2 − 4ac has no real solution, then there does not exist a w that satisfies the

relative return shortfall constraint.

• If a = 0 and b < 0, then w ∈ (−∞,− c
b
]
⋂

[0, 1].

• If a = 0 and b > 0, then w ∈ [− c
b
, +∞)

⋂
[0, 1].

• If a = 0, b = 0 and c ≥ 0, then w ∈ [0, 1].

• If a = 0, b = 0 and c < 0, then there does not exist a w that satisfies the relative

return shortfall constraint.
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Proof. We can plug (2.48) for µD and (2.49) for σD in the inequality (2.51):

µD ≥ m− zασD

µD≥m, zα<0⇐⇒ [(wA − wa)(µE − µB) + m]2

≥ z2
α

[
(wA − wa)

2σ2
E(1− ρ2

EB)

+[(wA − wa)σEρEB + (1− wA)σB − (1− wa)σb]
2
]

⇐⇒
[
(µE − µB)2 − z2

α

[
σ2

E + σ2
B − 2σEσBρEB

]]
· w2

A

+
[
−2m(µE − µB)− 2wa(µE − µB)2 − z2

α

[
−2waσ

2
E − 2σ2

B

+2(1 + wa)σEσBρEB − 2(1− wa)σEσbρEB + 2(1− wa)σBσb]] · wA

+
[
m2 + 2mwa(µE − µB) + w2

a(µE − µB)2 − z2
α

[
w2

aσ
2
E

+σ2
B + (1− wa)

2σ2
b − 2waσEσBρEB + 2wa(1− wa)σEσbρEB

−2(1− wa)σBσb]] ≥ 0

⇐⇒ aw2
A + bwA + c ≥ 0

If a > 0, the function f(w) = aw2 + bw + c is a parabola which is opened to the top.

The nulls of this function are w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why

f(w) ≥ 0 ⇔ w ≤ w1 or w ≥ w2. If the root
√

b2 − 4ac has no real solution, the

inequality aw2 + bw + c ≥ 0 is true for all w. If a < 0, the function f(w) = aw2 + bw + c

is a parabola which is opened to the bottom. The nulls of this function are

w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why f(w) ≥ 0 ⇔ w1 ≤ w ≤ w2. If the root

√
b2 − 4ac has no real solution, the inequality aw2 + bw + c ≥ 0 is false for all w. If

a = 0 and b > 0, this function reduces to a straight line, i.e. f(w) ≥ 0 ⇔ w ≥ − c
b
. If
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a = 0 and b < 0, we get f(w) ≥ 0 ⇔ w ≤ − c
b
. If a = 0, b = 0 and c ≥ 0, then f(w) ≥ 0,

otherwise f(w) < 0. This completes the proof.

Example 4

For this example, we need the following values of the underlying variables:

Table 3
Values for Example 4

Expected Return Standard
Deviation of

Returns

Correlation with
Bonds

Correlation with
Stocks

Stocks 13.0% 17.00% 0.35 1.00
Bonds 8.0% 6.96% 1.00 0.35

Source: Leibowitz et al. (1996, p.86)

In addition we assume that wa = 0, σb = 0.171, α = 0.10 and m = −0.15. Since

wa = 0, the benchmark portfolio only consists of a bond. The standard deviation σb is

equal to the standard deviation σL of the liability in Example 2. The same holds for the

expected value: µb = µL. However, we assume now ρBb = 1. So this differs a little bit

from ρBL = 0.913 in Example 2. Nevertheless, we can think of the liability of a pension

fund when using this kind of benchmark portfolio. Then we get the following values:

a = −0.0392, b = 0.0116, c = 0.0057

and therefore

w1/2 = 0.1484± 0.4077
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which restricts wA to

wA ∈ [0, 0.5562].

There is no need to do a sensitivity analysis. Result II.5 holds for the relative

return shortfall constraint, too.

It turns out that the asset return shortfall constraint and the surplus return

shortfall constraint are special cases of the relative return shortfall constraint. This will

be discussed in the following.

The Asset Return Shortfall Constraint and the Surplus Return Shortfall Constraint as
Special Cases of the Relative Return Shortfall Constraint

The result in this subsection will show that we could have started this chapter

with a discussion of the relative return shortfall constraint. After that, we could have

just mentioned that for certain values of the variables in the relative return shortfall

constraint, we would have gotten the asset return shortfall constraint and the surplus

return shortfall constraint.

However, there is a reason why the asset return shortfall constraint and the

surplus return shortfall constraint were given attention to this large extent. The asset

return and the surplus return are important financial ratios. They indicate how

profitable a pension fund is. Though this also holds for the relative return, but the

relative return

RD = RA −Ra
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compares the asset return to the benchmark return, and not to the liability return

(except for the case that the benchmark return is assumed to be the liability return).

Therefore, as we have mentioned earlier, in particular the surplus return qualifies better

for managing the assets against the liabilities (which is one of the pension fund

manager’s major goals) since the definition of the surplus return includes both the asset

return and liability return.

The following result shows the connection between the asset, the surplus, and the

relative return shortfall constraint:

Result II.12

The relationship between the relative return shortfall constraint and the asset and the

surplus return shortfall constraint can be described by the following two statements:

1. Assume that the asset portfolio is managed against a benchmark with Ra = i∗ (for

example i∗ = 0.08 for a one year treasury bill). Then the relative return shortfall

constraint is equivalent to an asset return shortfall constraint with m∗ = m + i∗

and α∗ = α.

2. Assume that the benchmark is the pension fund liability and assume that the

funding ratio is 1: F0 = 1. Then the relative return shortfall constraint is

equivalent to a surplus return shortfall constraint with m∗ = m and α∗ = α.

Proof. 1. RD = RA −Ra = RA − i∗ ⇒ P (RD ≤ m) = P (RA ≤ m + i∗)
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2. RD = RA −Ra = RA −RL
F0=1
= RS ⇒ P (RD ≤ m) = P (RS ≤ m)

The Log-normal Distribution Assumption

The last shortfall constraint that will be discussed in this chapter is the funding

ratio return shortfall constraint. For this shortfall constraint, we could still try to

assume normally distributed returns, but it would be impossible to derive practical

formulas.

The natural logarithm applied to a fraction is the difference of the numerator and

the denominator, i.e.

ln

(
x

y

)
= ln(x)− ln(y).

This property turns out to be quite useful for the derivation of the shortfall constraint.

Since the natural logarithm of log-normally distributed random variables is normally

distributed (cf. Klugman et al., 2004, p. 58), we will see that this distribution is a good

candidate for the distribution assumption of the returns.

In the section ”The Normal Distribution Assumption” we have already noted that

the normal distribution has the disadvantage of producing returns that are less than

−1. We have seen that this disadvantage can be undone by the log-normal distribution.

The reason why the normal distribution (and not the log-normal distribution) was

used for the asset, the surplus, and the relative return shortfall constraint is that it was

not practical enough to work with the log-normal distribution. However, it should be
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reminded that even if the log-normal distribution is used to model the returns, it does

not reflect reality perfectly:

But we must also remember that whatever model we select it is only an

approximation of reality. This is reflected in the following modeler’s motto

[...]:

All models are wrong, but some models are useful. (Klugman et al., 2004)

The Funding Ratio Return Shortfall Constraint

The funding ratio of a pension plan is defined as the market value of assets

divided by the present value of future liabilities (Leibowitz et al., 1996, p. 191). In

order to discuss what properties the funding ratio return has, it is beneficial to have a

more formal definition of the funding ratio return.

Definition 3 (The Funding Ratio Return)

Let

• Ai: value of the assets at time i ∈ {0, 1},

• Li: value of the liabilities at time i ∈ {0, 1},

• F0 = A0

L0
: initial funding ratio, and

• F1 = A1

L1
: funding ratio after one period.
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Then the funding ratio return (FRR) is given by the equation

FRR =
A1

L1
− A0

L0

A0

L0

=
F1 − F0

F0

. (2.55)

The following result gives an expression of the funding ratio return in terms of the

asset return and the liability return:

Result II.13 (The Funding Ratio Return)

Let RA and RL be the asset return and the liability return, respectively. Then the

funding ratio return can be written as

FRR =
1 + RA

1 + RL

− 1. (2.56)

Proof.

FRR =
A1

L1
− A0

L0

A0

L0

=
A1

A0

· L0

L1

− 1 =
1 + RA

1 + RL

− 1

Thus, the funding ratio return does not depend on the initial funding level F0, but

only on the asset return and the liability return. That is why Leibowitz et al. (1996)

refer to the funding ratio return as a more ”’universal’ measure in developing strategic

allocations”. All the funds that have the same asset return and the same liability

return produce the same funding ratio return, regardless of their initial funding ratio.

However, this independence of the initial funding level does not mean that the

initial funding level has no influence on the risk tolerance of the fund manager. An
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initial funding ratio larger than 1 indicates a surplus position since the assets A0 must

be larger than the liabilities L0. On the other hand, there is a deficit if the initial

funding ratio is less than 1. But with a surplus position it is more likely that the fund

manager invests in more risky allocations, whereas with a deficit position, the fund

manager probably will not be so risk tolerant. That is why the initial funding ratio will

affect the fund manager’s decisions when he/she adjusts the funding ratio return

shortfall constraint.

The funding ratio return shortfall constraint can be used to control the risk of a

pension fund. A fund manager, for example, may have the objective to meet a

minimum acceptable funding ratio return of -10% with a probability of 95%. In general,

this constraint can be formulated as follows (cf. Leibowitz et al., 1996, p. 44):

There should be no more than a probability of α that the funding ratio return

will be less than a minimum acceptable funding ratio return of m.

In order to derive a formula for the funding ratio return shortfall constraint, we need

some properties of the bivariate log-normal distribution. This distribution is defined as

follows:

Definition 4 (The Bivariate Log-normal Distribution)

Let Y = (Y1, Y2)
T be a multivariate normal random vector with probability density

function (cf. Johnson and Wichern, 2002)

f(Y1,Y2)(y1, y2) =
1

2π
√

σ2
1σ

2
2(1− ρ2

12)
· e
− 1

2(1−ρ2
12)

»“
y1−µ1

σ1

”2
+

“
y2−µ2

σ2

”2
−2ρ12

“
y1−µ1

σ1

”“
y2−µ2

σ2

”–
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where µ1 and µ2 are the expected values of Y1 and Y2, σ1 and σ2 are the standard

deviations of Y1 and Y2, and ρ12 is the correlation between Y1 and Y2. Then we say that

the random vector X =
(
eY1 , eY2

)T
has a bivariate log-normal distribution with

parameters µ1, µ2, σ1, σ2, and ρ12.

Thomopoulos (2004) provides the following formulas based on results given in

Law and Kelton (2000) and Aitchison and Brown (1957):

Result II.14 (The Bivariate Log-Normal Distribution)

Let X = (X1, X2) be a bivariate log-normally distributed random vector and let

Y1 = ln(X1) and Y2 = ln(X2). The expected value and the variance of Y1 and Y2 are

denoted by µY1, σY1 and µY2, σY2, respectively. Then the covariance σY1Y2, the expected

value µY1 and the variance σ2
Y1

are given by

σY1Y2 = ln

(
1 +

σX1X2

|µX1µX2|

)
, (2.57)

µY1 = ln

 µ2
X1√

µ2
X1

+ σ2
X1

 , (2.58)

σ2
Y1

= ln

(
1 +

σ2
X1

µ2
X1

)
. (2.59)

Now it is possible to find a formula for the funding ratio return shortfall

constraint:
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Result II.15 (The Funding Ratio Return Shortfall Constraint)

Let (1 + RA, 1 + RL) be bivariate log-normally distributed where 1 + µA, 1 + µL and σ2
A,

σ2
L are the expected returns and standard deviations of 1 + RA and 1 + RL, respectively.

Then the funding ratio shortfall constraint can be written as

P (FRR < m) ≤ α (2.60)

⇔

ln

[
(m + 1)

√
(1 + µA)2 + σ2

A(1 + µL)2√
(1 + µL)2 + σ2

L(1 + µA)2

]

≤ zα

√√√√√√ln

 [(1 + µA)2 + σ2
A] [(1 + µL)2 + σ2

L][
(1 + µA)(1 + µL) + µA−µB

µE−µB
σEL + µE−µA

µE−µB
σBL

]2
, (2.61)

where σBL = σBσLρBL and σEL = σEσLρEL and ρBL and ρEL are given by (2.31) and

(2.30). The variance σ2
L is given by (2.23).

Proof.

P (FRR < m)
ResultII.13

= P

(
1 + RA

1 + RL

− 1 < m

)
= P

(
1 + RA

1 + RL

≤ m + 1

)

= P

ln(1 + RA)︸ ︷︷ ︸
∼N(µ∗A,σ∗A

2)

− ln(1 + RL)︸ ︷︷ ︸
∼N(µ∗L,σ∗L

2)

< ln(m + 1)



= P

 ln(1 + RA)− ln(1 + RL)− (µ∗A − µ∗L)√
σ∗A

2 + σ∗L
2 − 2σ∗AL︸ ︷︷ ︸

∼N(0,1)

<
ln(m + 1)− (µ∗A − µ∗L)√

σ∗A
2 + σ∗L

2 − 2σ∗AL


where µ∗A, σ∗A

2 and µ∗L, σ∗L
2 are the expected return and the variance of ln(1 + RA),

ln(1 + RL), respectively, and σ∗AL is the covariance between these two random variables.
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Then

P (FRR < m) ≤ α

⇔ ln(m + 1)− (µ∗A − µ∗L)√
σ∗A

2 + σ∗L
2 − 2σ∗AL

≤ zα

⇔ ln(m + 1)− (µ∗A − µ∗L) ≤ zα

√
σ∗A

2 + σ∗L
2 − 2σ∗AL (2.62)

Now we can use Result II.14 with X1 = 1 + RA and X2 = 1 + RL. Then µX1 = 1 + µA,

σ2
X1

= σ2
A, µX2 = 1 + µL, σ2

X2
= σ2

L, and with the formulas in Result II.14 we get

µ∗A = ln

(
(1 + µA)2√

(1 + µA)2 + σ2
A

)

µ∗L = ln

(
(1 + µL)2√

(1 + µL)2 + σ2
L

)

σ∗A
2 = ln

(
1 +

σ2
A

(1 + µA)2

)
σ∗L

2 = ln

(
1 +

σ2
L

(1 + µL)2

)
σ∗AL = ln

(
1 +

σ1+RA,1+RL

|(1 + µA)(1 + µL)|

)
and

σ1+RA,1+RL
= Cov(1 + RA, 1 + RL) = Cov(RA, RL)

= wσEL + (1− w)σBL, where w =
µA − µB

µE − µB

Since we assume µA ≥ 0 and µL ≥ 0, the absolute value in the formula for σ∗AL can be

neglected, i.e.

σ∗AL = ln

(
1 +

σ1+RA,1+RL

(1 + µA)(1 + µL)

)
.
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After plugging in all these equations in (2.62), we get (2.61).

Example 5

For this example, we need the following values of the underlying variables:

Table 4
Values for Example 5

Expected Return Standard
Deviation of

Returns

Correlation with
Bonds

Correlation with
Stocks

Assets:
Stocks 13.0% 17.00% 0.35 1.00
Bonds 8.0% 6.96% 1.00 0.35

Liabilities:
Basic Schedule 8.0% 15.00% 1.00
Noise 0.00% 7.00% 0.25

Source: Leibowitz et al. (1996, p.86)

In Example 3, the values for σL, ρBL, and ρEL have already been calculated:

σL = 0.171, ρBL = 0.913, ρEL = 0.409.

In addition, we choose α = 0.0275 and m = −0.2. After plugging these values in (2.61),

we get the following inequality for the funding ratio return shortfall constraint:

ln

(
0.8533

√
(1 + µA)2 + σ2

A

(1 + µA)2

)
≤ 1.96

√
ln

(
1.1956 [(1 + µA)2 + σ2

A]

(1.1005µA + 1.0892)2

)
.

This funding ratio return shortfall constraint is illustrated in figure 12, page 76.

In figure 13, page 77, and figure 14, page 78, we can see that if we increase m or

decrease α, the funding ratio return shortfall constraint becomes more strict and the
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Figure 12
The Funding Ratio Return Shortfall Constraint

number of portfolios from which the pension fund manager can choose decreases. The

reason is that if we find a portfolio (µ∗A, σ∗A) that fulfills the shortfall constraint

condition (2.61)

ln

[
(m + 1)

√
(1 + µ∗A)2 + σ∗A

2(1 + µL)2√
(1 + µL)2 + σ2

L(1 + µ∗A)2

]

≤ zα

√√√√√√ln

 [
(1 + µ∗A)2 + σ∗A

2
]
[(1 + µL)2 + σ2

L][
(1 + µ∗A)(1 + µL) +

µ∗A−µB

µE−µB
σEL +

µE−µ∗A
µE−µB

σBL

]2
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Figure 13
The Impact of α on the Funding Ratio Return Shortfall Constraint

and decrease m or increase α, this inequality is still satisfied because the left side of this

inequality decreases or the right side increases.
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Figure 14
The Impact of m on the Funding Ratio Return Shortfall Constraint



CHAPTER III

TAIL CONDITIONAL EXPECTATION CONSTRAINTS

In the preceding chapter, we used shortfall probability to measure risk. However,

there is a major disadvantage with shortfall probability as risk measure. Let us consider

an investor who wants to control the investment risk. We have seen that the investor

could use a shortfall constraint which restricts the probability that the return of an

investment falls below a return that the investor considers as critical. For example, the

investor may have the objective to meet a minimum acceptable investment return of 3%

with a probability of 95%. With this approach, however, the investor cannot control

how much the return falls below 3% in 5% of the cases (with a probability of 5%).

Maybe the return mostly assumes values between 0% and 3% in this case, but it is also

possible that the return is almost always close to -10% given that it is less than 3%. Of

course, the investor would prefer the first scenario to the second scenario, but shortfall

probability does not distinguish between these scenarios.

That is why we will use a different risk measure in this chapter that remedies this

disadvantage of shortfall probability: tail conditional expectation. This risk measure

has already been introduced in chapter II. The tail conditional expectation is defined as

TCEα(R) = E (−R| −R ≥ V aRα(R)) .

79
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It has become more and more popular in recent years because it satisfies the (desirable)

properties of a coherent risk measure under certain conditions.

Definition 5 (Coherent Risk Measure)

Let (Ω, F, P ) be a probability space and let M be a convex cone (i.e. X, Y ∈M,

h > 0 ⇒ X + Y ∈M, hX ∈M) in L1(Ω, F, P ) where

L1(Ω, F, P ) = {X|X : Ω → R is a random variable such that
∫
|X|dP < +∞}.

We assume that X + a ∈M for all a ∈ R. Then a risk measure

ρ : M→ R

is called coherent if it satisfies the following properties:

1. ρ is monotonous, i.e. X,Y ∈M, X ≤ Y with probability 1 ⇒ ρ(X) ≥ ρ(Y ).

2. ρ is sub-additive, i.e. X, Y ∈M⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

3. rho is positively homogeneous, i.e. X ∈M, h > 0 ⇒ ρ(hX) = hρ(X).

4. ρ is translation invariant, i.e. X ∈M, a ∈ R⇒ ρ(X + a) = ρ(X)− a.

Acerbi and Tasche (2002) show that if the underlying distribution is continuous,

the tail conditional expectation TCE fulfills these properties and therefore, TCE is a

coherent risk measure.

In order to control the risk of the fund, the pension fund manager can restrict the

tail conditional expectation TCE such that TCE won’t exceed a value that the

manager regards as critical. This restriction of TCE is referred to as tail conditional
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expectation constraint. In the following, we will derive formulas for the tail conditional

expectation constraint for the asset return, the surplus return, the relative return, and

the funding ratio return.

The Tail Conditional Expectation Constraint for the Asset Return

At first, we will focus on the tail conditional expectation constraint for the asset

return. For this purpose, we will use the same notations and the same distribution

assumptions as for the asset return shortfall constraint:

• RP : return of the pension fund portfolio,

• RB: return of the bond portion in the portfolio, and

• RE: return of the stock portion in the portfolio.

We assume that RB and RE are normally distributed:

• RB ∼ N(µB, σ2
B), where µB and σ2

B are the expected return and the variance of

RB, respectively.

• RE ∼ N(µE, σ2
E), where µE and σ2

E are the expected return and the variance of

RE, respectively.

The tail conditional expectation is the expected value of the random variable

−RP | −RP ≥ V aRα(RP ). That is why it is useful to have a formula for the cumulative

distribution function and the probability density function of this random variable.
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These formulas will be derived in the following. At first we concentrate on a random

return R which does not necessarily have to be the asset return.

Result III.1 (The Distribution of the Random Variable −R| −R ≥ V aRα(R))

Let R be a random variable with a continuous distribution and let v = V aRα(R). Then

the cumulative distribution function of −R| −R ≥ v is given by

F−R|−R≥v(x) =

{
1− 1

α
FR(−x) if x ≥ v,

0 if x < v,
(3.1)

where FR(·) denotes the cumulative distribution function of the random variable R. The

density function of −R| −R ≥ v is given by

f−R|−R≥v(x) =

{
1
α
fR(−x) if x ≥ v,

0 if x < v,
(3.2)

where fR(·) denotes the probability density function of R.

Proof. The Value-at-Risk is defined as

V aRα(R) = − inf{x|P (R ≤ x) > α}.

Since R has a continuous distribution, the following relationship holds:

v = V aRα(R) ⇔ α = P (R ≤ −v) = FR(−v). (3.3)

Then the formula for the cumulative distribution function can be derived by
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straight-forward calculations:

F−R|−R≥v(x) = P (−R ≤ x| −R ≥ v) =
P (R ≥ −x, R ≤ −v)

P (R ≤ −v)

=
P (−x ≤ R ≤ −v)

FR(−v)

=

{
FR(−v)−FR(−x)

FR(−v)
if x ≥ v,

0 if x < v

(3.3)
=

{
1− 1

α
FR(−x) if x ≥ v,

0 if x < v

The formula for the density function can be derived as follows:

f−R|−R≥v(x) =
d

dx
F−R|−R≥v(x)

=

{
1
α
fR(−x) if x ≥ v,

0 if x < v

With this result, it is possible to find a formula for the TCE constraint for R if R

is normally distributed with expected return µ and standard deviation σ.

Result III.2 (The TCE constraint for R)

Let R ∼ N(µ, σ2) and v = V aRα(R). Then the TCE constraint for R is given by

E(−R| −R ≥ v) ≤ m

⇔

µ ≥ e−
1
2
z2
1−α

α
√

2π
· σ −m. (3.4)
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Proof. In the proof for Result III.1, we have already shown that

α = FR(−v).

Thus

α = FR(−v) = P

(
R− µ

σ
≤ −v − µ

σ

)
= Φ

(
−v − µ

σ

)
= 1− Φ

(
v + µ

σ

)
⇒ v+µ

σ
= z1−α (3.5)

Now we can calculate the expected value of −R| −R ≥ v:

E(−R| −R ≥ v) =

∫ +∞

−∞
xf−R|−R≥v(x)dx =

∫ +∞

v

x

α
fR(−x)dx

=

∫ +∞

v

x

α

1√
2πσ

e−
1
2(

−x−µ
σ )

2

dx

=
1

α

∫ +∞

−∞

x√
2πσ

e−
1
2(

x−(−µ)
σ )

2

dx− 1

α

∫ v

−∞

x√
2πσ

e−
1
2(

−x−µ
σ )

2

dx

=
−µ

α
− 1

α

∫ v

−∞

x√
2πσ

e−
1
2(

x+µ
σ )

2

dx

[
u =

x + µ

σ
, du =

1

σ
dx

]
= −µ

α
− 1

α

∫ v+µ
σ

−∞

σu− µ√
2π

e−
1
2
u2

du

= −µ

α
− 1

α

[
− σ√

2π
e−

1
2
u2

∣∣∣∣ v+µ
σ

−∞
− µ · Φ

(
v + µ

σ

)]

(3.5)
= −µ

α
+

1

α

 σ√
2π

e−
1
2
z2
1−α + µ

1−α︷ ︸︸ ︷
Φ(z1−α)


= −µ +

e−
1
2
z2
1−α

α
√

2π
· σ
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Therefore

E(−R| −R ≥ v) ≤ m

⇔ −µ +
e−

1
2
z2
1−α

α
√

2π
· σ ≤ m

⇔ µ ≥ e−
1
2
z2
1−α

α
√

2π
· σ −m

Now we can return to the TCE constraint for the asset return. The distribution

of the random variable −RP | −RP ≥ V aRα(RP ) is provided by the following result.

Result III.3 (The Distribution of −RP | −RP ≥ V aRα(RP ))

Let RB ∼ N(µB, σ2
B), RE ∼ N(µE, σ2

E), and let v = V aRα(RP ). Then the cumulative

distribution function of −RP | −RP ≥ v is given by

F−RP |−RP≥v(x) =

{
1− 1

α
FRP

(−x) if x ≥ v,

0 if x < v,
(3.6)

where FRP
(·) denotes the cumulative distribution function of the random variable RP .

The density function of −RP | −RP ≥ v is given by

f−RP |−RP≥v(x) =

{
1
α
fRP

(−x) if x ≥ v,

0 if x < v,
(3.7)

where fRP
(·) denotes the probability density function of RP . RP is normally distributed

with expected value µP and standard deviation σP .

Proof. We have already shown that RP ∼ N(µP , σ2
P ) (cf. (2.4)). Formulas for µP and
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σP are given by (2.2) and (2.3), respectively. The result follows from Result III.1 since

the normal distribution is a continuous distribution.

With this result, we can find a formula of the TCE constraint for the asset return.

Result III.4 (The TCE constraint for the asset return)

Let RB ∼ N(µB, σ2
B) and RE ∼ N(µE, σ2

E). Let v = V aRα(RP ). Then the TCE

constraint for the asset return is given by

E(−RP | −RP ≥ v) ≤ m

⇔

µP ≥
e−

1
2
z2
1−α

α
√

2π
· σP −m. (3.8)

Proof. The result follows directly from Result III.2 since RP is normally distributed.

Example 6

For this example, we choose α = 0.10 and m = 0.10. Then the TCE constraint for the

asset return is given by

µP ≥ 1.7585σP − 0.10.

In figure 15, p. 87, this TCE constraint is graphed in a µP -σP -coordinate system.

Figure 15, p. 87, shows that the TCE constraint for the asset return is

represented by a straight line in the µP -σP -coordinate system. The slope of this line is
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Figure 15
The TCE Constraint for the Asset Return

e
− 1

2 z2
1−α

α
√

2π
and the y-intercept is −m (cf. (3.8)).

Sensitivity Analysis

As for the asset return shortfall constraint, the pension fund manager can change

two ”free” parameters in order to adjust the TCE constraint for the asset return to the

level of risk he/she is willing to accept: these free parameters are α and m. Changes in

those parameters will result in changes in the number of potential portfolios which the

pension fund manager can choose from.
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Figure 16
The Impact of α on the TCE Constraint for the Asset Return

At first, we keep m fixed and analyze what happens when we increase or decrease

α. For this purpose, we consider the slope of the line µP (σ) = e
− 1

2 z2
1−α

α
√

2π
· σP −m: e

− 1
2 z2

1−α

α
√

2π
.

We assume that α < 0.5 since α ≥ 0.5 is not desirable for the Value-at-Risk: We only

want to have small probabilities for which the returns fall below the corresponding

Value-at-Risk. If we increase α, the numerator of e
− 1

2 z2
1−α

α
√

2π
decreases and the

denominator increases. Thus, the slope decreases. With the same reasoning, we can

conclude that the slope decreases if we decrease α. This is illustrated in Figure 16, p.

88.
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Figure 17
The Impact of m on the TCE Constraint for the Asset Return

Now we keep α fixed. Since −m is the y-intercept of the line

µP (σ) = e
− 1

2 z2
1−α

α
√

2π
· σP −m, the y-intercept decreases if m is increased. The reverse holds

if we decrease m. This is illustrated in Figure 17, p. 89.

The next result corresponds to the result for the sensitivity analysis for the

shortfall constraint. It is a general statement for a random return R. R can be replaced

by RA so that this result can be applied to the TCE constraint for the asset return.
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Result III.5 (Sensitivity Analysis)

Let R be a random return with expected value µ and standard deviation σ. We assume

that

µ ≥ e−
1
2
z2
1−α

α
√

2π
· σ −m

is the corresponding TCE constraint. Then the set of potential portfolios after an

increase of m and/or an increase of α is a superset of the set of potential portfolios

before m and/or α is changed.

Proof. Let (µ∗, σ∗) be a portfolio that satisfies the TCE constraint for a certain α∗

(again, we assume that α is always less than 0.5). Let αnew > α∗. Then

µ∗ ≥ e−
1
2
z2
1−α∗

α∗
√

2π
· σ∗ −m ≥ e−

1
2
z2
1−αnew

αnew
√

2π
· σ∗ −m

That is why the portfolio (µ∗, σ∗) satisfies the new TCE constraint, too.

Let (µ̃, σ̃) be a portfolio that satisfies the TCE constraint for a certain m̃. Let

mnew > m̃. Then

µ̃ ≥ e−
1
2
z2
1−α

α
√

2π
· σ̃ − m̃ ≥ e−

1
2
z2
1−α

α
√

2π
· σ̃ −mnew.

Therefore, the portfolio (µ̃P , σ̃P ) fulfills the new TCE constraint, too.

These two considerations imply the statement in Result III.5.

The TCE Constraint for the Asset Return for w

The next result gives a formula for the TCE constraint for the asset return in

terms of w:
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Result III.6 (The TCE constraint for the Asset Return for w)

Let

a = µ2
E + µ2

B − 2µEµB −

(
e−

1
2
z2
1−α

α
√

2π

)2 (
σ2

E + σ2
B − 2σEσBρEB

)
, (3.9)

b = 2

µEµB − µBm− µ2
B + µEm +

(
e−

1
2
z2
1−α

α
√

2π

)2

σ2
B

−

(
e−

1
2
z2
1−α

α
√

2π

)2

σEσBρEB

 , (3.10)

c = µ2
B + m2 + 2µBm−

(
e−

1
2
z2
1−α

α
√

2π

)2

σ2
B. (3.11)

Then the TCE constraint for the asset return is equivalent to the following conditions if

µP ≥ −m:

• If a > 0, then w ∈ ((−∞, w1]
⋂

[0, 1])
⋃

([w2, +∞)
⋂

[0, 1]), where

w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the root
√

b2 − 4ac has no real solution, then

w ∈ [0, 1].

• If a < 0, then w ∈ [w1, w2]
⋂

[0, 1], where w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the

root
√

b2 − 4ac has no real solution, then there does not exist a w that satisfies the

TCE constraint for the asset return.

• If a = 0 and b < 0, then w ∈ (−∞,− c
b
]
⋂

[0, 1].

• If a = 0 and b > 0, then w ∈ [− c
b
, +∞)

⋂
[0, 1].

• If a = 0, b = 0 and c ≥ 0, then w ∈ [0, 1].
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• If a = 0, b = 0 and c < 0, then there does not exist a w that satisfies the TCE

constraint for the asset return.

Proof. The proof is identical to the one for the asset return shortfall constraint (cf.

Result II.3). We just have to replace zα by − e
− 1

2 z2
1−α

α
√

2π
and m by −m.

P (RP < m) ≤ α

ResultIII.4⇐⇒ µP ≥
e−

1
2
z2
1−α

α
√

2π
· σP −m

⇐⇒ wµE + (1− w)µB

≥ −m +−e−
1
2
z2
1−α

α
√

2π

√
w2σ2

E + (1− w)2σ2
B + 2w(1− w)σEσBρEB

It makes sense to assume µP ≥ −m (usually, one chooses m > 0 and µP should be

greater than 0). Then the last inequality is equivalent to

(wµE + (1− w)µB + m)2

≥

(
−e−

1
2
z2
1−α

α
√

2π

√
w2σ2

E + (1− w)2σ2
B + 2w(1− w)σEσBρEB

)2

⇔

=a︷ ︸︸ ︷
µ2

E + µ2
B − 2µEµB −

(
e−

1
2
z2
1−α

α
√

2π

)2 (
σ2

E + σ2
B − 2σEσBρEB

)
w2

+

=b︷ ︸︸ ︷
2

µEµB + µBm− µ2
B − µEm +

(
e−

1
2
z2
1−α

α
√

2π

)2

σ2
B − z2

ασEσBρEB

w

+ µ2
B + m2 + 2µBm−

(
e−

1
2
z2
1−α

α
√

2π

)2

σ2
B︸ ︷︷ ︸

=c

≥ 0

⇔ aw2 + bw + c ≥ 0
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If a > 0, the function f(w) = aw2 + bw + c is a parabola which is opened to the top.

The nulls of this function are w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why

f(w) ≥ 0 ⇔ w ≤ w1 or w ≥ w2. If the root
√

b2 − 4ac has no real solution, the

inequality aw2 + bw + c ≥ 0 is true for all w. If a < 0, the function f(w) = aw2 + bw + c

is a parabola which is opened to the bottom. The nulls of this function are

w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why f(w) ≥ 0 ⇔ w1 ≤ w ≤ w2. If the root

√
b2 − 4ac has no real solution, the inequality aw2 + bw + c ≥ 0 is false for all w. If

a = 0 and b > 0, this function reduces to a straight line, i.e. f(w) ≥ 0 ⇔ w ≥ − c
b
. If

a = 0 and b < 0, we get f(w) ≥ 0 ⇔ w ≤ − c
b
. If a = 0, b = 0 and c ≥ 0, then f(w) ≥ 0,

otherwise f(w) < 0. This completes the proof.

The Tail Conditional Expectation Constraint for the Surplus Return

In chapter II, we have seen that the surplus return shortfall constraint has the

same form as the asset return shortfall constraint. The only difference was that the

surplus return variables were used instead of the asset return variables. We will see that

this is also the case for the TCE constraint for the surplus return.

In order to derive the TCE constraint for the surplus return, we will use the same

liability model and the same assumptions as for the surplus return shortfall constraint.

Result III.7 (The Distribution of −RS| −RS ≥ V aRα(RS))

Let RB ∼ N(µB, σ2
B), RE ∼ N(µE, σ2

E), RL ∼ N(µL, σ2
L), and let v = V aRα(RS). Then
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the cumulative distribution function of −RS| −RS ≥ v is given by

F−RS |−RS≥v(x) =

{
1− 1

α
FRS

(−x) if x ≥ v,

0 if x < v,
(3.12)

where FRS
(·) denotes the cumulative distribution function of the random variable RS.

The density function of −RS| −RS ≥ v is given by

f−RS |−RS≥v(x) =

{
1
α
fRS

(−x) if x ≥ v,

0 if x < v,
(3.13)

where fRS
(·) denotes the probability density function of RS. RS is normally distributed

with expected value µS and standard deviation σS.

Proof. We have already shown in Result II.8 that RS ∼ N(µS, σ2
S). Then this result

follows directly from Result III.1.

With this result, it is possible to find a formula for the TCE constraint for the

surplus return.

Result III.8 (The TCE constraint for the surplus return)

Let RB ∼ N(µB, σ2
B), RE ∼ N(µE, σ2

E), and RL ∼ N(µL, σ2
L). Then the TCE

constraint for the surplus return is given by

µS ≥
e−

1
2
z2
1−α

α
√

2π
· σS −m. (3.14)

An equivalent expression for this constraint is given by the two inequalities

µA ≥
µL −m

F0

, (3.15)

aσ2
A + bµA + cµ2

A ≤ d, (3.16)
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where

a =

(
e−

1
2
z2
1−α

α
√

2π

)2

F 2
0 , (3.17)

b =

2F0σLσBρBL

(
e
− 1

2 z2
1−α

α
√

2π

)2

µE − µB

−
2F0σLσEρEL

(
e
− 1

2 z2
1−α

α
√

2π

)2

µE − µB

+2F0µL − 2F0m, (3.18)

c = −F 2
0 , (3.19)

d = µ2
L + m2 − 2µLm−

(
e−

1
2
z2
1−α

α
√

2π

)2

σ2
L −

2F0

(
e
− 1

2 z2
1−α

α
√

2π

)2

σLσEρELµB

µE − µB

+

2F0σLσBρBL

(
e
− 1

2 z2
1−α

α
√

2π

)2

µE

µE − µB

. (3.20)

The formulas for ρEL and ρBL are given by (2.30) and (2.31).

Proof. The first part follows directly from Result III.2 since RS is normally distributed.

The proof for the second part is identical to the one for Result II.8; we just have

to replace zα by − e
− 1

2 z2
1−α

α
√

2π
and m by −m.

We have to express the TCE constraint in terms of µA and σA, i.e. we have to

replace µS and σS in 3.14 by 2.27 and 2.28, respectively:

µS ≥ −m +
e−

1
2
z2
1−α

α
√

2π
σS

⇔ F0µA − µL ≥ −m +
e−

1
2
z2
1−α

α
√

2π

√
F 2

0 σ2
A + σ2

L − 2F0σAσLρAL
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⇔
√

F 2
0 σ2

A + σ2
L − 2F0σAσLρAL ≤

µL −m− F0µA

− e
− 1

2 z2
1−α

α
√

2π

( e
− 1

2 z2
1−α

α
√

2π
> 0)

⇔ µL −m− F0µA

− e
− 1

2 z2
1−α

α
√

2π

≥ 0 and

(√
F 2

0 σ2
A + σ2

L − 2F0σAσLρAL

)2

≤

µL −m− F0µA

− e
− 1

2 z2
1−α

α
√

2π

2

− e
− 1

2 z2
1−α

α
√

2π
<0

⇐⇒ µA ≥
µL −m

F0

and

(√
F 2

0 σ2
A + σ2

L − 2F0σAσLρAL

)2

≤

µL −m− F0µA

− e
− 1

2 z2
1−α

α
√

2π

2

⇔ µA ≥
µL −m

F0

and(
e−

1
2
z2
1−α

α
√

2π

)2

(F 2
0 σ2

A + σ2
L − 2F0σAσLρAL) ≤ (µL −m− F0µA)2

︸ ︷︷ ︸
(∗)

It holds:

µA = wµE + (1− w)µB = w(µE − µB) + µB

⇒ w =
µA − µB

µE − µB

, (1− w) =
µE − µA

µE − µB

Now we find an expression for ρAL with known variables. According to 2.29, we have

ρAL =
wσEρEl + (1− w)σBρBL

σA

⇒ ρAL =

(
µA − µB

µE − µB

σEρEL +
µE − µA

µE − µB

σBρBL

)
· 1

σA
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After plugging this result in (∗), we get(
e−

1
2
z2
1−α

α
√

2π

)2 [
F 2

0 σ2
A + σ2

L − 2F0σL

(
µA − µB

µE − µB

σEρEL +
µE − µA

µE − µB

σBρBL

)]
≤ (µL −m− F0µA)2

⇔

(
e−

1
2
z2
1−α

α
√

2π

)2

F 2
0 σ2

A + µA


2F0σLσBρBL

(
e
− 1

2 z2
1−α

α
√

2π

)2

µE − µB

−
2F0σLσEρEL

(
e
− 1

2 z2
1−α

α
√

2π

)2

µE − µB

+ 2F0(µL −m)

− F 2
0 µ2

A

≤ µ2
L + m2 − 2µLm−

(
e−

1
2
z2
1−α

α
√

2π

)2

σ2
L −

2F0

(
e
− 1

2 z2
1−α

α
√

2π

)2

σLσEρELµB

µE − µB

+

2F0σLσBρBL

(
e
− 1

2 z2
1−α

α
√

2π

)2

µE

µE − µB

⇔ aσ2
A + bµA + cµ2

A ≤ d

Example 7

For this example, we need the values in table 5. Then σL, ρBL, and ρEL can be

calculated by using (2.23), (2.31), and (2.30):

σL = 0.171, ρBL = 0.913, ρEL = 0.409 (cf. Leibowitz et al., 1996, p.86)

For α, F0, and m, we choose α = 0.10, F0 = 1, and m = 0.20. With these values, we get

a = 3.0922, b = −0.3666, c = −1, d = −0.0189
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Table 5
Values for Example 7

Expected Return Standard
Deviation of

Returns

Correlation with
Bonds

Correlation with
Stocks

Assets:
Stocks 13.0% 17.00% 0.35 1.00
Bonds 8.0% 6.96% 1.00 0.35

Liabilities:
Basic Schedule 8.0% 15.00% 1.00
Noise 0.00% 7.00% 0.25

Source: Leibowitz et al. (1996, p.86)

and

µL −m

F0

= −0.12.

Now we use (2.40), (2.41), and (2.34) to write down the TCE constraint for the

µA-σA-coordinate system:

µA ≥
√

0.0525 + 3.0922σ2
A − 0.1833 or

µA ≤ −
√

0.0525 + 3.0922σ2
A − 0.1833

and

µA ≥ −0.12

This TCE constraint is illustrated in Figure 18, p. 99.

We can use Result III.5 to analyze what happens if we change α and m since RS is

a return with the demanded properties. In figure 18, p. 99, the relevant (upper) curve
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Figure 18
The TCE Constraint for the Surplus Return

will move upwards if the TCE constraint is made stricter by decreasing α and/or m.

The next result gives a condition for the TCE constraint for the surplus return in

terms of w.

Result III.9 (The TCE Constraint for the Surplus Return for w)

Let

a = F 2
0

µ2
E + µ2

B − 2µEµB −

(
e−

1
2
z2
1−α

α
√

2π

)2

(σ2
E + σ2

B − 2σEσBρEB)

 , (3.21)
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b = F0

[
2µBµL + 2mµE − 2mµB + 2F0µEµB − 2µ2

BF0 − 2µLµE

+

(
e−

1
2
z2
1−α

α
√

2π

)2

(2F0σ
2
B − 2F0σEσBρEB + 2σL(σEρEL − σBρBL))

 , (3.22)

c = µ2
L + m2 + µ2

BF 2
0 − 2µLm− 2µBF0µL + 2mF0µB

−

(
e−

1
2
z2
1−α

α
√

2π

)2

(F 2
0 σ2

B + σ2
L − 2F0σLσBρBL). (3.23)

Then the TCE constraint for the surplus return is equivalent to the following conditions

if µS ≥ −m:

• If a > 0, then w ∈ ((−∞, w1]
⋂

[0, 1])
⋃

([w2, +∞)
⋂

[0, 1]), where

w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the root
√

b2 − 4ac has no real solution, then

w ∈ [0, 1].

• If a < 0, then w ∈ [w1, w2]
⋂

[0, 1], where w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the

root
√

b2 − 4ac has no real solution, then there does not exist a w that satisfies the

TCE constraint for the surplus return.

• If a = 0 and b < 0, then w ∈ (−∞,− c
b
]
⋂

[0, 1].

• If a = 0 and b > 0, then w ∈ [− c
b
, +∞)

⋂
[0, 1].

• If a = 0, b = 0 and c ≥ 0, then w ∈ [0, 1].

• If a = 0, b = 0 and c < 0, then there does not exist a w that satisfies the TCE

constraint for the surplus return.

Proof. Again, the proof is the same as the one for the surplus return shortfall
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constraint for Result II.9 if we replace zα by − e
− 1

2 z2
1−α

α
√

2π
and m by −m. In the proof for

Result III.8 we showed that

µS ≥ −m +
e−

1
2
z2
1−α

α
√

2π
σS

⇔

(
e−

1
2
z2
1−α

α
√

2π

)2

(F 2
0 σ2

A + σ2
L − 2F0σAσLρAL) ≤ (µL −m− F0µA)2

Since we assume that µS = F0µA − µL ≥ −m, the second condition µA ≥ µL−m
F0

is

always true. Then(
e−

1
2
z2
1−α

α
√

2π

)2

(F 2
0 σ2

A + σ2
L − 2F0σAσLρAL) ≤ (µL −m− F0µA)2

⇔

(
e−

1
2
z2
1−α

α
√

2π

)2 [
F 2

0 (w2σ2
E + (1− w)2σ2

B + 2w(1− w)σEσBρEB) + σ2
L

−2F0σL(wσEρEL + (1− w)σBρEB)]

≤ µ2
L + m2 + w2µ2

EF 2
0 + (1− w)2µ2

BF 2
0 − 2µLm− 2wµLµEF0

−2(1− w)µBF0µL + 2mF0µEw + 2mF0(1− w)µB + 2F 2
0 w(1− w)µEµB

⇔ F 2
0

µ2
E + µ2

B − 2µEµB −

(
e−

1
2
z2
1−α

α
√

2π

)2

(σ2
E + σ2

B − 2σEσBρEB)

 · w2

+F0

[
2µBµL + 2mµE − 2mµB + 2F0µEµB − 2µ2

BF0 − 2µLµE

+

(
e−

1
2
z2
1−α

α
√

2π

)2

(2F0σ
2
B − 2F0σEσBρEB + 2σL(σEρEL − σBρBL))

 · w
+µ2

L + m2 + µ2
BF 2

0 − 2µLm− 2µBF0µL + 2mF0µB

−

(
e−

1
2
z2
1−α

α
√

2π

)2

(F 2
0 σ2

B + σ2
L − 2F0σLσBρBL) ≥ 0

⇔ aw2 + bw + c ≥ 0
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If a > 0, the function f(w) = aw2 + bw + c is a parabola which is opened to the top.

The nulls of this function are w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why

f(w) ≥ 0 ⇔ w ≤ w1 or w ≥ w2. If the root
√

b2 − 4ac has no real solution, the

inequality aw2 + bw + c ≥ 0 is true for all w. If a < 0, the function f(w) = aw2 + bw + c

is a parabola which is opened to the bottom. The nulls of this function are

w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why f(w) ≥ 0 ⇔ w1 ≤ w ≤ w2. If the root

√
b2 − 4ac has no real solution, the inequality aw2 + bw + c ≥ 0 is false for all w. If

a = 0 and b > 0, this function reduces to a straight line, i.e. f(w) ≥ 0 ⇔ w ≥ − c
b
. If

a = 0 and b < 0, we get f(w) ≥ 0 ⇔ w ≤ − c
b
. If a = 0, b = 0 and c ≥ 0, then f(w) ≥ 0,

otherwise f(w) < 0. This completes the proof.

The Tail Conditional Expectation Constraint for the Relative Return

In this section, we will give two results for the TCE constraint of the relative

return that correspond to the ones for the relative return shortfall constraint. It is quite

intuitive that we can transfer these results for the TCE since this worked for the asset

return and the surplus return. However, it is not obvious that the TCE constraint for

the asset return and the surplus return are special cases of the TCE constraint for the

relative return: The TCE is a conditional expectation where the condition depends on

the Value-at-Risk of the random variables. This will be discussed in the subsection

”The TCE Constraint for the Asset Return and the Surplus Return as Special Cases of

the TCE Constraint for the Relative Return”.
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Again, we use the same notations and assumptions for the underlying variables as

for the relative return shortfall constraint. At first we start with the result for the

distribution of −RD| −RD ≥ V aRα(RD).

Result III.10 (The Distribution of −RD| −RD ≥ V aRα(RD))

Let RB ∼ N(µB, σ2
B), RE ∼ N(µE, σ2

E), Rb ∼ N(µB, σ2
b ) (we assume µB = µb), and let

v = V aRα(RD) where RD = RA −Ra. Then the cumulative distribution function of

−RD| −RD ≥ v is given by

F−RD|−RD≥v(x) =

{
1− 1

α
FRD

(−x) if x ≥ v,

0 if x < v,
(3.24)

where FRD
(·) denotes the cumulative distribution function of the random variable RD.

The density function of −RD| −RD ≥ v is given by

f−RD|−RD≥v(x) =

{
1
α
fRD

(−x) if x ≥ v,

0 if x < v,
(3.25)

where fRD
(·) denotes the probability density function of RD. RD is normally distributed

with expected value µD and standard deviation σD.

Proof. We have already shown in Result II.10 that RD ∼ N(µD, σ2
D). Then the result

follows directly from Result III.1.

The following result gives a formula for the TCE constraint of the relative return.

Result III.11 (The TCE constraint for the relative return)

Let RB ∼ N(µB, σ2
B), RE ∼ N(µE, σ2

E), and Rb ∼ N(µB, σ2
b ). Then the TCE constraint
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for the relative return is given by

µD ≥
e−

1
2
z2
1−α

α
√

2π
· σD −m. (3.26)

Proof. The result follows directly from Result III.2 since RD is normally distributed.

Again, we can apply Result III.5 by replacing R by RD to see what happens if m

or α is changed.

It is useful to have the following version of the TCE constraint for the relative

return for wA:

Result III.12 (The TCE Constraint for the Relative Return for wA)

Let RE ∼ N(µE, σ2
E), RB ∼ N(µB, σ2

B) and Rb ∼ N(µB, σ2
b ). Let

a = (µE − µB)2 −

(
e−

1
2
z2
1−α

α
√

2π

)2 [
σ2

E + σ2
B − 2σEσBρEB

]
, (3.27)

b = 2m(µE − µB)− 2wa(µE − µB)2 −

(
e−

1
2
z2
1−α

α
√

2π

)2 [
−2waσ

2
E − 2σ2

B

+2(1 + wa)σEσBρEB − 2(1− wa)σEσbρEB + 2(1− wa)σBσb] , (3.28)

c = m2 − 2mwa(µE − µB) + w2
a(µE − µB)2 −

(
e−

1
2
z2
1−α

α
√

2π

)2 [
w2

aσ
2
E

+σ2
B + (1− wa)

2σ2
b − 2waσEσBρEB + 2wa(1− wa)σEσbρEB

−2(1− wa)σBσb] . (3.29)

Then the relative return shortfall constraint is equivalent to the following conditions if

µD ≥ −m:
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• If a > 0, then w ∈ ((−∞, w1]
⋂

[0, 1])
⋃

([w2, +∞)
⋂

[0, 1]), where

w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the root
√

b2 − 4ac has no real solution, then

w ∈ [0, 1].

• If a < 0, then w ∈ [w1, w2]
⋂

[0, 1], where w1/2 = −b±
√

b2−4ac
2a

and w1 ≤ w2. If the

root
√

b2 − 4ac has no real solution, then there does not exist a w that satisfies the

TCE constraint for the relative return.

• If a = 0 and b < 0, then w ∈ (−∞,− c
b
]
⋂

[0, 1].

• If a = 0 and b > 0, then w ∈ [− c
b
, +∞)

⋂
[0, 1].

• If a = 0, b = 0 and c ≥ 0, then w ∈ [0, 1].

• If a = 0, b = 0 and c < 0, then there does not exist a w that satisfies the TCE

constraint for the relative return.

Proof. Again, the proof is the same as the one for the relative return shortfall

constraint for Result II.11 if we replace zα by − e
− 1

2 z2
1−α

α
√

2π
and m by −m.

We can plug (2.48) for µD and (2.49) for σD in the inequality (3.26). Since

µD ≥ −m and − e
− 1

2 z2
1−α

α
√

2π
< 0, we get:
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µD ≥ −m +
e−

1
2
z2
1−α

α
√

2π
σD

⇔ [(wA − wa)(µE − µB)−m]2

≥

(
e−

1
2
z2
1−α

α
√

2π

)2 [
(wA − wa)

2σ2
E(1− ρ2

EB)

+[(wA − wa)σEρEB + (1− wA)σB − (1− wa)σb]
2
]

⇔

(µE − µB)2 −

(
e−

1
2
z2
1−α

α
√

2π

)2 [
σ2

E + σ2
B − 2σEσBρEB

] · w2
A

+

2m(µE − µB)− 2wa(µE − µB)2 −

(
e−

1
2
z2
1−α

α
√

2π

)2 [
−2waσ

2
E − 2σ2

B

+2(1 + wa)σEσBρEB − 2(1− wa)σEσbρEB + 2(1− wa)σBσb]] · wA

+

m2 − 2mwa(µE − µB) + w2
a(µE − µB)2 −

(
e−

1
2
z2
1−α

α
√

2π

)2 [
w2

aσ
2
E

+σ2
B + (1− wa)

2σ2
b − 2waσEσBρEB + 2wa(1− wa)σEσbρEB

−2(1− wa)σBσb]] ≥ 0

⇔ aw2
A + bwA + c ≥ 0

If a > 0, the function f(w) = aw2 + bw + c is a parabola which is opened to the top.

The nulls of this function are w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why

f(w) ≥ 0 ⇔ w ≤ w1 or w ≥ w2. If the root
√

b2 − 4ac has no real solution, the

inequality aw2 + bw + c ≥ 0 is true for all w. If a < 0, the function f(w) = aw2 + bw + c

is a parabola which is opened to the bottom. The nulls of this function are

w1/2 = −b±
√

b2−4ac
2a

where w1 < w2. That is why f(w) ≥ 0 ⇔ w1 ≤ w ≤ w2. If the root

√
b2 − 4ac has no real solution, the inequality aw2 + bw + c ≥ 0 is false for all w. If
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a = 0 and b > 0, this function reduces to a straight line, i.e. f(w) ≥ 0 ⇔ w ≥ − c
b
. If

a = 0 and b < 0, we get f(w) ≥ 0 ⇔ w ≤ − c
b
. If a = 0, b = 0 and c ≥ 0, then f(w) ≥ 0,

otherwise f(w) < 0. This completes the proof.

The TCE Constraint for the Asset Return and the Surplus Return as Special Cases of
the TCE Constraint for the Relative Return

In chapter II we showed that under certain conditions, the asset return shortfall

constraint and the surplus return shortfall constraint are special cases of the relative

return shortfall constraint. The same is true for the TCE constraint. The next result

provides this relationship between the TCE constraint of the asset return and surplus

return and the TCE constraint of the relative return.

Result III.13

Let RA ∼ N(µA, σ2
A), RB ∼ N(µB, σ2

B), Rb ∼ N(µB, σ2
b ), RL ∼ N(µL, σ2

L). Then the

relationship between the TCE of the relative return and the TCE of the asset and the

surplus return can be described by the following two statements:

1. Assume that the asset portfolio is managed against a benchmark with Ra = i∗ (for

example i∗ = 0.08 for a one year treasury bill). Then the TCE constraint for the

relative return is equivalent to a TCE constraint for the asset return with

m∗ = m− i∗ and α∗ = α.

2. Assume that the benchmark is the pension fund liability and assume that the
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funding ratio is 1: F0 = 1. Then the TCE constraint for the relative return is

equivalent to a TCE constraint for the surplus return with m∗ = m and α∗ = α.

Proof. 1. In the proof for Result III.4, we showed that

E(−RP | −RP ≥ v) = −µP +
e−

1
2
z2
1−α

α
√

2π
· σP .

After replacing the variables for RP by the corresponding ones for RA and RD, we

get

E(−RA| −RA ≥ v) = −µA +
e−

1
2
z2
1−α

α
√

2π
· σA, (3.30)

E(−RD| −RD ≥ v) = −µD +
e−

1
2
z2
1−α

α
√

2π
· σD. (3.31)

Since RD = RA −Ra = RA − i∗, we get

µD = µA − i∗, σD = σA.

Thus

E(−RD| −RD ≥ v)

(3.30)
= −µD +

e−
1
2
z2
1−α

α
√

2π
· σD = −(µA − i∗) +

e−
1
2
z2
1−α

α
√

2π
· σA

= −µA +
e−

1
2
z2
1−α

α
√

2π
· σA + i∗

= E(−RA| −RA ≥ v) + i∗

Therefore

E(−RD| −RD ≥ v) ≤ m

⇔ E(−RA| −RA ≥ v) ≤ m− i∗
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2. RD = RA −Ra = RA −RL
F0=1
= RS

⇒ E(−RD| −RD ≥ v) = E(−RS| −RS ≥ v)

The Tail Conditional Expectation Constraint for the Funding Ratio Return

In this section, we will derive a formula for the TCE constraint for the funding

ratio return (FRR). As for the corresponding shortfall constraint, it is only possible to

express this constraint as an implicit function in terms of µA and σA.

At first we need to know the distribution of the random variable

−FRR| − FRR ≥ V aRα(FRR).

Result III.14 (The Distribution of −FRR| − FRR ≥ V aRα(FRR))

Let v = V aRα(FRR). We assume that FRR has a continuous distribution. Then the

cumulative distribution function of −FRR| − FRR ≥ V aRα(FRR) can be written as

F−FRR|−FRR≥v(x) =


1− 1

α
F 1+RA

1+RL

(1− x) if 1 ≥ x ≥ v,

0 if x < v,

1 otherwise.

(3.32)

The probability density function is given by

f−FRR|−FRR≥v(x) =

{
1
α
f 1+RA

1+RL

(1− x) if 1 ≥ x ≥ v,

0 otherwise.
(3.33)

Proof. The cumulative distribution function can be derived by straight-forward
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derivations:

F−FRR|−FRR≥v(x) = P (−FRR ≤ x| − FRR ≥ v)

= P

(
−
(

1 + RA

1 + RL

− 1

)
≤ x

∣∣∣∣− (1 + RA

1 + RL

− 1

)
≥ v

)

=
P
(
v ≤ 1− 1+RA

1+RL
≤ x

)
P
(
1− 1+RA

1+RL
≥ v
) =

P
(
1− x ≤ 1+RA

1+RL
≤ 1− v

)
P
(

1+RA

1+RL
≤ 1− v

)
=

F 1+RA
1+RL

(1− v)− F 1+RA
1+RL

(1− x)

F 1+RA
1+RL

(1− v)

=


1−

F 1+RA
1+RL

(1−x)

F 1+RA
1+RL

(1−v)
if 1 ≥ x ≥ v,

0 if x < v,

1 otherwise

It holds:

F 1+RA
1+RL

(1− v) = P

(
1 + RA

1 + RL

− 1 ≤ −v

)
= P (FRR ≤ −v) = α (3.34)

Thus,

F−FRR|−FRR≥v(x) =


1− 1

α
F 1+RA

1+RL

(1− x) if 1 ≥ x ≥ v,

0 if x < v,

1 otherwise.

The density function can be obtained by taking the derivative of the cumulative

distribution function.

f−FRR|−FRR≥v(x) =
d

dx
F−FRR|−FRR≥v(x)

=

{
1
α
f 1+RA

1+RL

(1− x) if 1 ≥ x ≥ v,

0 otherwise
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Now we can derive a formula for the TCE constraint for FRR.

Result III.15 (The TCE constraint for FRR)

Let (1 + RA, 1 + RL) be bivariate log-normally distributed and let (1 + µA, σ2
A) and

(1 + µL, σ2
L) be the corresponding expected values and variances of 1 + RA and 1 + RL,

respectively. Let v = V aRα(FRR). Then the TCE constraint for the funding ratio

return is given by the following inequality:

Φ

(
zα −

√
ln

(
((1 + µA)2 + σ2

A)((1 + µL)2 + σ2
L)

[(1 + µA)(1 + µL) + σAσLρAL]2

))

≥ α [(1 + µA)(1 + µL) + σAσLρAL] (1 + µL)2

(1 + µA)2 [(1 + µL)2 + σ2
L]

(1−m), (3.35)

where µA and σ2
A are the expected return and the variance of

RA = wµE + (1− w)µB, w ∈ [0, 1] and ρAL is given by (2.29):

ρAL =
wσEρEL + (1− w)σBρBL

σA

.

Proof. Since 1 + RA and 1 + RE are bivariate log-normally distributed, it holds:

ln

(
1 + RA

1 + RL

)
= ln(1 + RA)− ln(1 + RL) ∼ N(µ, σ2).

(remark: We will derive formulas for µ and σ later.)

Thus, 1+RA

1+RL
is log-normally distributed with parameters µ and σ. Now we can
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calculate the expected value of −FRR| − FRR ≥ v:

E(−FRR| − FRR ≥ v) =

∫ +∞

−∞
xf−FRR|−FRR≥v(x)dx

(3.35)
=

∫ 1

v

x

α
f 1+RA

1+RL

(1− x)dx

=
1

α

∫ 1

v

x√
2πσ(1− x)

e−
1
2(

ln(1−x)−µ
σ )

2

dx [u = 1− x, du = −dx]

=
−1

α

∫ 0

1−v

1− u√
2πσu

e−
1
2(

ln(u)−µ
σ )

2

du

=
1

α

[∫ 1−v

0

1√
2πσu

e−
1
2(

ln(u)−µ
σ )

2

du−
∫ 1−v

0

1√
2πσ

e−
1
2(

ln(u)−µ
σ )

2

du

]
=

1

α

[
F 1+RA

1+RL

(1− v)−
∫ 1−v

0

1√
2πσ

e−
1
2(

ln(u)−µ
σ )

2

du

]
=

[
substitution : x =

ln(u)− µ

σ
, dx =

1

uσ
du

]
(3.34)
= 1− 1

α

∫ ln(1−v)−µ
σ

−∞

eσx+µ

√
2π

e−
1
2
x2

dx

= 1− 1

α

∫ ln(1−v)−µ
σ

−∞

1√
2π

e−
1
2((x−σ)2−σ2−2µ)dx

= [substitution : u = x− σ, du = dx]

= 1− e
1
2
σ2+µ

α

∫ ln(1−v)−µ
σ

−σ

−∞

1√
2π

e−
1
2
u2

du

= 1− e
1
2
σ2+µ

α
Φ

(
ln(1− v)− µ

σ
− σ

)
(3.36)

It holds:

α
(3.34)
= P

(
1 + RA

1 + RL

≤ 1− v

)
= P (ln(1 + RA)− ln(1 + RL) ≤ ln(1− v))

= P

(
ln(1 + RA)− ln(1 + RL)− µ

σ
≤ ln(1− v)− µ

σ

)
= Φ

(
ln(1− v)− µ

σ

)
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Thus,

ln(1− v)− µ

σ
= zα

⇔ ln(1− v) = zασ + µ

Now we can continue to calculate E(−FRR| − FRR ≥ v):

E(−FRR| − FRR ≥ v)
(3.36)
= 1− e

1
2
σ2+µ

α
Φ

(
ln(1− v)− µ

σ
− σ

)
= 1− e

1
2
σ2+µ

α
Φ

(
zασ + µ− µ

σ
− σ

)
= 1− e

1
2
σ2+µ

α
Φ (zα − σ) (3.37)

We can calculate σ2 and µ by using Result II.14. Let (µ∗A, σ∗A) and (µ∗L, σ∗L) be the

expected values and standard deviations of ln(1 + RA) and ln(1 + RL). Then

σ2 = Var (ln(1 + RA)− ln(1 + RL)) = σ∗A
2 + σ∗L

2 − 2σ∗AL

= ln

(
((1 + µA)2 + σ2

A)((1 + µL)2 + σ2
L)

[(1 + µA)(1 + µL) + σAσLρAL]2

)
µ = µ∗A − µ∗L = ln

(
(1 + µA)2

√
(1 + µL)2 + σ2

L

(1 + µL)2
√

(1 + µA)2 + σ2
A

)

After plugging this in (3.37), we get for the TCE constraint for FRR:

E(−FRR| − FRR ≥ v) ≤ m

⇔ Φ

(
zα −

√
ln

(
((1 + µA)2 + σ2

A)((1 + µL)2 + σ2
L)

[(1 + µA)(1 + µL) + σAσLρAL]2

))

≥ α [(1 + µA)(1 + µL) + σAσLρAL] (1 + µL)2

(1 + µA)2 [(1 + µL)2 + σ2
L]

(1−m)
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Example 8

For this example, we need the following values of the underlying variables:

Table 6
Values for Example 8

Expected Return Standard
Deviation of

Returns

Correlation with
Bonds

Correlation with
Stocks

Assets:
Stocks 13.0% 17.00% 0.35 1.00
Bonds 8.0% 6.96% 1.00 0.35

Liabilities:
Basic Schedule 8.0% 15.00% 1.00
Noise 0.00% 7.00% 0.25

Source: Leibowitz et al. (1996, p.86)

In Example 3, the values for σL, ρBL and ρEL have already been calculated:

σL = 0.171, ρBL = 0.913, ρEL = 0.409.

In addition, we choose α = 0.10 and m = 0.17. After plugging these values in (3.35),

we get the following inequality for the TCE of the funding ratio return:

Φ

(
−1.28−

√
ln

(
1.1956((1 + µA)2 + σ2

A)

(1.1005µA + 1.0892)2

))
≥ 0.0810 · 1.1005µA + 1.0892

(1 + µA)2
.

This TCE constraint for FRR is illustrated in figure 19, page 115.
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Figure 19
The TCE Constraint for FRR



CHAPTER IV

THE OPTIMIZATION PROBLEM

The Optimization Problem

In this chapter, we want to discuss a strategy which a pension fund manager can

use in order to decide what percentage to invest in stocks and what percentage to invest

in bonds. For this purpose, we will use the results from chapter II and chapter III.

We showed that a pension fund manager can control the risk of a pension fund by

using one or more shortfall or tail conditional expectation constraints. But these

restrictions just reduced the fund manager’s potential choices. We haven’t analyzed yet

which portfolio the manager should choose after this reduction of choices.

With the constraints in chapter II and chapter III, the pension fund manager can

adjust the risk of the pension fund to a level which he/she is willing to accept. After

setting the risk level of the pension fund, it is desirable to get an expected return as high

as possible (under the restriction of the shortfall constraints and the TCE constraints).

One possibility is now to focus on the asset return and to maximize the expected

value of this return. However, the fund manager could also try to maximize the

expected value of the surplus return, the relative return, or the funding ratio return.

We denote the optimization problem by (P ). Then, (P ) can be formulated as

follows:

116
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(P )



µA = wµE + (1− w)µB → max

under the constraints

P (RA < m) ≤ αA asset return shortfall constraint

P (RS < m) ≤ αS surplus return shortfall constraint

P (RD < m) ≤ αD relative return shortfall constraint

P (FRR < m) ≤ αFRR funding ratio return shortfall

constraint

E(−RA| −RA ≥ V aRαA
(RA)) ≤ mA TCE constraint for the asset return

E(−RS| −RS ≥ V aRαS
(RS)) ≤ mS TCE constraint for the surplus

return

E(−RD| −RD ≥ V aRαD
(RD)) ≤ mD TCE constraint for the relative

return

E(−FRR| − FRR ≥ V aRαFRR
(FRR)) TCE constraint for the funding

≤ mFRR ratio return

This does not mean that all shortfall and TCE constraints have to be used. A subset of

these constraints can also be selected to restrict the maximization of µA. If the

formulas from the preceding chapters are used, we should think about the different

assumptions for the underlying distributions: We assumed normally distributed returns

for the shortfall and TCE constraints for the asset, the surplus, and the relative return,

but we used log-normally distributed returns for the shortfall and TCE constraint for

the funding ratio return. Because of these different assumptions, these shortfall and

TCE constraints shouldn’t be combined.
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If we assume that µE ≥ µB, the following holds:

µA = wµE + (1− w)µB = w (µE − µB)︸ ︷︷ ︸
≥0

+µB → max

⇔

w → max. (4.1)

We note that maximizing the expected return of the surplus return and the relative

return would lead to the same optimization problem since

µS = F0µA − µL = F0(w (µE − µB)︸ ︷︷ ︸
≥0

+µB)− µL → max

⇔

w → max

and

µD = µA − µa = w (µE − µB)︸ ︷︷ ︸
≥0

+µB − µa → max

⇔

w → max.



119

Thus, (P ) can be written as

(P )



w → max

under the constraints

P (RA < m) ≤ αA

P (RS < m) ≤ αS

P (RD < m) ≤ αD

P (FRR < m) ≤ αFRR

E(−RA| −RA ≥ V aRαA
(RA)) ≤ mA

E(−RS| −RS ≥ V aRαS
(RS)) ≤ mS

E(−RD| −RD ≥ V aRαD
(RD)) ≤ mD

E(−FRR| − FRR ≥ V aRαFRR
(FRR)) ≤ mFRR

The Solution for the Optimization Problem

The Solution for the Shortfall and TCE Constraints for the Asset, the Surplus, and the
Relative Return

In this section, we will solve the optimization problem (P ). For this purpose, we

focus on the shortfall and TCE constraints for the asset, the surplus, and the relative

return first. As we have noted in the preceding section, the shortfall and TCE

constraints for the funding ratio return should be considered separately.

The goal is now to make w as large as possible given that a selection of the six

shortfall and TCE constraints is satisfied. It is very useful that we have derived

equivalent conditions for the corresponding shortfall and TCE constraints for w in

Result II.3, Result II.9, Result II.11, Result III.6, Result III.9 and Result III.12 because

they tell us which w fulfill the corresponding constraints. The intersection of all the

sets that these results give us represents the set of w that satisfy all constraints. Now
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we only have to find the maximum of this set and this maximum is the solution for the

optimization problem.

This procedure can be summarized in the following algorithm:

1. Calculate the restrictions for all imposed shortfall and TCE constraints using

Result II.3, Result II.9, Result II.11, Result III.6, Result III.9 and Result III.12.

2. Calculate the intersection of the resulting sets. This intersection is denoted by Ω.

3. Calculate ω = max(Ω). Then ω is the solution for the optimization problem.

Example 9

For this example, we need the following values of the underlying variables:

Table 7
Values for Example 9

Expected Return Standard
Deviation of

Returns

Correlation with
Bonds

Correlation with
Stocks

Assets:
Stocks 13.0% 17.00% 0.35 1.00
Bonds 8.0% 6.96% 1.00 0.35

Liabilities:
Basic Schedule 8.0% 15.00% 1.00
Noise 0.00% 7.00% 0.25

Source: Leibowitz et al. (1996, p.86)

Then, σL, ρBL and ρEL can be calculated by using (2.23), (2.31) and (2.30):

σL = 0.171, ρBL = 0.913, ρEL = 0.409. (cf. Leibowitz et al., 1996, p.86)



121

We consider a pension fund manager who wants to control the risk of a pension fund by

using a surplus return shortfall constraint and a TCE constraint for the asset return.

Then the three steps of the optimization algorithm are:

1. The fund manager decides to use α = 0.10 and m = −0.15 for the surplus return

shortfall constraint. In order to use Result II.9, we need to calculate the variables

a, b, and c with the formulas given in this result:

a = −0.0392, b = 0.0206, c = 0.0023.

Therefore

w1/2 = 0.2634± 0.3564 ⇒ w ∈ [0, 0.8039].

For the TCE constraint of the asset return, the pension fund manager chooses

α = 0.10 and m = 0.10. Then the values for a, b, and c for Result III.6 are

a = −0.0762, b = 0.0223, c = 0.0174.

Therefore

w1/2 = 0.1466± 0.5000 ⇒ w ∈ [0, 0.6466].

2. Ω = [0, 0.8039]
⋂

[0, 0.6466] = [0, 0.6466]

3. ω = max(Ω) = max([0, 0.6466]) = 0.6466

Thus, the pension fund manager should choose the portfolio that consists of 65%

stocks and 35% bonds. The expected value of this portfolio is

µP = wµE + (1− w)µB = 11.25%
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and the standard deviation is (cf. (2.3))

σP =
√

w2σ2
E + (1− w)2σ2

B + 2w(1− w)σEσBρEB = 12.12%.

The surplus return shortfall constraint and the TCE constraint for the asset return

together with the stock/bond-curve are illustrated in figure 20, page 122.

Figure 20
The Surplus Return Shortfall Constraint, the TCE Constraint for the Asset

Return and the Stock/Bond-Curve
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The Solution for the Shortfall and TCE Constraint for the Funding Ratio Return

Now we will focus on the shortfall and TCE constraint for the funding ratio

return. For these two constraints, we didn’t derive formulas in terms of w in chapter II

and chapter III. The reason is that in Result II.13 and Result III.15, the shortfall and

TCE constraints are given in an implicit form which does not allow for solving these

inequalities for w. That is why we need a different approach to solve the optimization

problem.

For this purpose, we consider the following figure 21, page 124.

We can see that the intersection point of the FRR shortfall constraint and the

stock/bond-curve determines that part of the stock/bond-curve which we can choose

portfolios from: If the stock/bond-curve lies to the left of the shortfall constraint curve,

all the portfolios represented by this part of the stock/bond-curve satisfy the shortfall

constraint; otherwise (i.e. if the stock/bond-curve lies to the right of the shortfall

constraint curve), these portfolios do not fulfill the constraint. Thus, the idea is now to

determine all the intersection points of the stock/bond-curve and the TCE or shortfall

constraint curve in the first quadrant. From these intersection points, the µA-value is

taken to form consecutive intervals in terms of µA. For each interval, we check if the

stock/bond-curve lies to the left or to the right of the constraint curve. After that, we

will exclude all the intervals where the TCE or shortfall constraint is not satisfied. The

union of the remaining intervals represents the set of all the portfolios we can choose

from (in terms of µA). By using µA = wµE + (1− w)µB which we can solve for w
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Figure 21
The FRR Shortfall Constraint and the Stock/Bond-Curve

(w = µA−µB

µE−µB
), we can determine the values of w that fulfill the TCE or shortfall

constraint.

This procedure can be summarized in the following algorithm:

1. Determine all the intersection points of the stock/bond-curve and the shortfall

and TCE constraint curve in the first quadrant. The number of these points is

denoted by n.



125

2. Arrange the µA-values of these points in ascending order:

µ1
A < µ2

A < ... < µn−1
A < µn

A. From these values, form the intervals

[µB, µ1
A], (µ1

A, µ2
A], ..., (µn−1

A , µn
A], (µn

A, µE]. Again, we assume that µB ≤ µE.

3. Determine whether the stock/bond-curve lies to the left or to the right of the

TCE or shortfall constraint curve. Exclude all the intervals for which the

stock/bond-curve lies to the right of at least one of the constraint curves.

4. Let M be the union of all the remaining intervals. Then µ∗A = sup(M) is the

solution to the optimization problem (more precise: ω =
µ∗A−µB

µE−µB
is the solution to

the optimization problem).

In order to verify that this algorithm is valid, we need to show that the

constraints for the funding ratio return can be represented by a continuous curve in the

µA-σA-coordinate system and that all the portfolios to the left of this curve satisfy the

constraints. The next two results provide conditions that assure that the algorithm can

be applied.

Result IV.1 (Properties of the Funding Ratio Return Shortfall Constraint)

The following holds for the funding ratio return shortfall constraint:

1. Assume that for µA = 0, the funding ratio shortfall constraint (2.61) has a
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solution σsol
A ≥ 0 (if we replace ≤ by = in the inequality), i.e.

ln

[
(m + 1)σA(1 + µL)2√

(1 + µL)2 + σ2
L

]

= zα

√√√√√√ln

 σ2
A [(1 + µL)2 + σ2

L][
(1 + µL)− µB

µE−µB
σEL + µE

µE−µB
σBL

]2
 (4.2)

has a solution σsol
A ≥ 0 and assume that σEL−σBL

µE−µB
> 0 and µL > 0. Then there

exists a continuous increasing function µA : [σsol
A , +∞) → R that represents the

funding ratio return shortfall constraint in the µA-σA-coordinate system. The same

is true if we assume that for σA = 0, (2.61) has a solution µsol
A ≥ 0 if we replace

≤ by = in the inequality. Then there exists a continuous increasing function

µA : [0, +∞) → R that represents the funding ratio return shortfall constraint.

2. All portfolios to the left of the graph of this function and to the right of the

µA-axis satisfy the funding ratio return shortfall constraint in the

µA-σA-coordinate system. All other portfolios in the first quadrant do not fulfill

the shortfall constraint.

Proof. 1. Let σsol
A be the solution for (4.2). We consider the equation (cf. the

inequality (2.61))

ln

[
(m + 1)

√
(1 + µA)2 + σ2

A(1 + µL)2√
(1 + µL)2 + σ2

L(1 + µA)2

]

= zα

√√√√√√ln

 [(1 + µA)2 + σ2
A] [(1 + µL)2 + σ2

L][
(1 + µA)(1 + µL) + µA−µB

µE−µB
σEL + µE−µA

µE−µB
σBL

]2
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⇔ ln

[
(m + 1)

√
(1 + µA)2 + σ2

A(1 + µL)2√
(1 + µL)2 + σ2

L(1 + µA)2

]

−zα

√√√√√√ln

 [(1 + µA)2 + σ2
A] [(1 + µL)2 + σ2

L][
(1 + µA)(1 + µL) + µA−µB

µE−µB
σEL + µE−µA

µE−µB
σBL

]2
 = 0

⇔ ln

(m + 1)
√

1
(1+µA)2

+
σ2

A

(1+µA)4
(1 + µL)2√

(1 + µL)2 + σ2
L



−zα

√√√√√√ln


[
(1 +

σ2
A

(1+µA)2

]
[(1 + µL)2 + σ2

L][
(1 + µL) + µA

1+µA

σEL−σBL

µE−µB

]2
 = 0 (4.3)

Let us consider the function

h(µA, σA) = ln

(m + 1)
√

1
(1+µA)2

+
σ2

A

(1+µA)4
(1 + µL)2√

(1 + µL)2 + σ2
L



−zα

√√√√√√ln


[
(1 +

σ2
A

(1+µA)2

]
[(1 + µL)2 + σ2

L][
(1 + µL) + µA

1+µA

σEL−σBL

µE−µB

]2


If we increase σA, both summands increase since −zα > 0 (we assume α < 0.5).

Therefore h(µA, σA) increases.

If we increase µA, both summands decrease because of −zα > 0, σEL−σBL

µE−µB
> 0 and

the following consideration:

d

dµA

(
µA

1 + µA

)
=

1

(1 + µA)2
> 0.

This means that µA

1+µA
increases if µA is increased. Therefore h(µA, σA) decreases.

In addition:

h(µA, σA) → +∞ for σA → +∞

h(µA, σA) → −∞ for µA → +∞
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From this consideration and the fact that h(·, ·) is continuous, we can conclude

the following:

We assumed that (σsol
A , 0) satisfies (4.3). If we increase µA, we have to increase

σsol
A as well so that (4.3) is still fulfilled. The resulting σA is unique. Thus, for

each µA > 0 we can find a σA > 0 such that (4.3) is satisfied. The curve consisting

of these points must be increasing and continuous and can be represented by a

function µA : [σsol
A , +∞) → R (because h(·, ·) is continuously differentiable and

because of the theorem of implicit functions (cf. Heuser, 2000, p. 292)). For the

second part, we can just replace the point (σsol
A , 0) by (0, µsol

A ) and repeat the

proof.

2. The inequality h(µA, σA) ≤ 0 is equivalent to (2.61) and h(·, ·) decreases if we

decrease σA and increases if we increase σA. That is why all portfolios to the left

of the curve and to the right of the µA-axis satisfy the funding ratio return

shortfall constraint and all other portfolios in the first quadrant do not fulfill the

shortfall constraint.

Result IV.2 (Properties of the TCE constraint for FRR)

The following holds for the TCE constraint for the funding ratio return:

1. Assume that for µA = 0, the TCE constraint for FRR (3.35) has a solution

σsol
A ≥ 0 (if we replace ≤ by = in the inequality), i.e.
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Φ

(
zα −

√
ln

(
σ2

A((1 + µL)2 + σ2
L)

[(1 + µL) + σAσLρAL]2

))

=
α [(1 + µL) + σAσLρAL] (1 + µL)2

[(1 + µL)2 + σ2
L]

(1−m) (4.4)

has a solution σsol
A ≥ 0 and assume that 0 < σEL−σBL

µE−µB
< 1 and µL > 0. Then there

exists a continuous increasing function µA : [σsol
A , +∞) → R that represents the

TCE constraint for the funding ratio return in the µA-σA-coordinate system. The

same is true if we assume that for σA = 0, (3.35) has a solution µsol
A ≥ 0 if we

replace ≤ by = in the inequality. Then there exists a continuous increasing

function µA : [0, +∞) → R that represents the TCE constraint for the funding

ratio return in the µA-σA-coordinate system.

2. All portfolios to the left of the graph of this function and to the right of the

µA-axis satisfy the TCE constraint for the funding ratio return. All other

portfolios in the first quadrant do not fulfill the TCE constraint.

Proof. 1. Let σsol
A be the solution for (4.4). We consider the equation (cf. the

inequality (3.35))

Φ

(
zα −

√
ln

(
((1 + µA)2 + σ2

A)((1 + µL)2 + σ2
L)

[(1 + µA)(1 + µL) + σAσLρAL]2

))

=
α [(1 + µA)(1 + µL) + σAσLρAL] (1 + µL)2

(1 + µA)2 [(1 + µL)2 + σ2
L]

(1−m)
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⇔ Φ

zα −

√√√√√√ln

 ((1 + µA)2 + σ2
A)((1 + µL)2 + σ2

L)[
(1 + µA)(1 + µL) + µA−µB

µE−µB
σEL + µE−µA

µE−µB
σBL

]2



−
α
[
(1 + µA)(1 + µL) + µA−µB

µE−µB
σEL + µE−µA

µE−µB
σBL

]
(1 + µL)2

(1 + µA)2 [(1 + µL)2 + σ2
L]

(1−m) = 0

⇔ Φ

zα −

√√√√√√ln


(
1 +

σ2
A

(1+µA)2

)
((1 + µL)2 + σ2

L)[
(1 + µL) + µA

1+µA

σEL−σBL

µE−µB

]2



−
α
[
(1 + µL) + µA

1+µA

σEL−σBL

µE−µB

]
(1 + µL)2

(1 + µA) [(1 + µL)2 + σ2
L]

(1−m) = 0 (4.5)

Let us consider the function

h(µA, σA) = Φ

zα −

√√√√√√ln


(
1 +

σ2
A

(1+µA)2

)
((1 + µL)2 + σ2

L)[
(1 + µL) + µA

1+µA

σEL−σBL

µE−µB

]2



−
α
[
(1 + µL) + µA

1+µA

σEL−σBL

µE−µB

]
(1 + µL)2

(1 + µA) [(1 + µL)2 + σ2
L]

(1−m)

If we increase σA, h(µA, σA) decreases.

If we increase µA, we can see that the first summand increases. The second one

increases as well because

d

dµA

(
(1 + µL) + µA

1+µA

σEL−σBL

µE−µB

1 + µA

)

= − 1 + µL

(1 + µA)2
+

[1 + µA − 2µA]σEL−σBL

µE−µB

(1 + µA)3

=

<0︷ ︸︸ ︷
−1 +

σEL − σBL

µE − µB

−µLµA − µL − µA

(
1 + σEL−σBL

µE−µB

)
(1 + µA)3

< 0

This means that
(1+µL)+

µA
1+µA

σEL−σBL
µE−µB

1+µA
decreases if µA is increased. Therefore
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h(µA, σA) increases.

In addition:

For σA → +∞:

h(µA, σA) → −
α
[
(1 + µL) + µA

1+µA

σEL−σBL

µE−µB

]
(1 + µL)2

(1 + µA) [(1 + µL)2 + σ2
L]

(1−m) < 0

For µA → +∞:

h(µA, σA) → Φ

zα −

√√√√√√ln

 ((1 + µL)2 + σ2
L)[

(1 + µL) + σEL−σBL

µE−µB

]2

 > 0

From this consideration and the fact that h(·, ·) is continuous, we can conclude

the following:

We assumed that (σsol
A , 0) satisfies (4.5). If we increase µA, we have to increase

σsol
A as well so that (4.5) is still fulfilled. The resulting σA is unique. Thus, for

each µA > 0 we can find a σA > 0 such that (4.5) is satisfied. The curve consisting

of these points must be increasing and continuous and can be represented by a

function µA : [σsol
A , +∞) → R (because h(·, ·) is continuously differentiable and

because of the theorem of implicit functions (cf. Heuser, 2000, p. 292)).

For the second part, we can just replace the point (σsol
A , 0) by (0, µsol

A ) and repeat

the proof.

2. The inequality h(µA, σA) ≥ 0 is equivalent to (2.61) and h(·, ·) increases if we

decrease σA and decreases if we increase σA. That is why all portfolios to the left

of the curve and to the right of the µA-axis satisfy the TCE constraint for the
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funding ratio return and all other portfolios in the first quadrant do not fulfill the

TCE constraint.

Example 10

For this example, we need the following values of the underlying variables:

Table 8
Values for Example 10

Expected Return Standard
Deviation of

Returns

Correlation with
Bonds

Correlation with
Stocks

Assets:
Stocks 13.0% 17.00% 0.35 1.00
Bonds 8.0% 6.96% 1.00 0.35

Liabilities:
Basic Schedule 8.0% 15.00% 1.00
Noise 0.00% 7.00% 0.25

Source: Leibowitz et al. (1996, p.86)

In Example 3, the values for σL, ρBL, and ρEL have already been calculated:

σL = 0.171, ρBL = 0.913, ρEL = 0.409.

We consider a pension fund manager who wants to control the risk of a pension

fund by using a shortfall constraint and a TCE constraint for the funding ratio return.

We assume that the fund manager chooses α = 0.0275 and m = −0.2 for the shortfall

constraint (cf. Example 5) and α = 0.10 and m = 0.17 for the TCE constraint (cf.

Example 8). Then we get the following inequalities for the funding ratio return shortfall
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constraint

ln

(
0.8533

√
(1 + µA)2 + σ2

A

(1 + µA)2

)
≤ 1.96

√
ln

(
1.1956 [(1 + µA)2 + σ2

A]

(1.1005µA + 1.0892)2

)
and for the TCE constraint

Φ

(
−1.28−

√
ln

(
1.1956((1 + µA)2 + σ2

A)

(1.1005µA + 1.0892)2

))
≥ 0.0810 · 1.1005µA + 1.0892

(1 + µA)2
.

The stock/bond-curve is given by

µP = ±
√

0.0982σ2
P − 0.0005 + 0.0814. (cf. Example 2)

This is illustrated in figure 22, page 134.

It holds 0 < σEL−σBL

µE−µB
= 0.0205 and µL = 0.08 > 0. For this example, we will not

give a formal proof that there exists a solution µsol
A ≥ 0 for the equations in Result IV.1

and Result IV.2. Figure 22, page 134, indicates that this is the case because both curves

of the constraints intersect with the σA-axis. Then the four steps of the optimization

algorithm are:

1. From figure 22, we can find the intersection points (0.114, 0.110) and

(0.120, 0.112).

2. Since 0.110 < 0.112, the corresponding intervals are (0.080, 0.110], (0.110, 0.112]

and (0.112, 0.130].

3. For the intervals (0.110, 0.112] and (0.112, 0.130], the stock/bond-curve lies to the

right of at least one of the shortfall constraint curve and the TCE constraint

curve and therefore, these intervals are excluded.
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Figure 22
The FRR Shortfall Constraint, the TCE Constraint for FRR and the

Stock/Bond-Curve

4. M = [0.080, 0.110). Then µ∗A = sup[0.08, 0.110) = 0.110 and ω = 0.110−0.08
0.13−0.08

= 0.60.

Thus, the pension fund manager should invest 60% in stocks and 40% in bonds. The

expected value of this portfolio is

µP = wµE + (1− w)µB = 11.00%
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and the standard deviation is (cf. (2.3))

σP =
√

w2σ2
E + (1− w)2σ2

B + 2w(1− w)σEσBρEB = 11.47%.



CHAPTER V

SUMMARY AND CONCLUSIONS

In this thesis, we have provided tools which can support a pension fund manager

in managing a pension fund. We have seen how a pension fund manager can use these

tools to control the risk level of the fund and how he/she can come to an investment

decision based on the risk level he/she is willing to accept.

In chapter I, a brief overview of the different types of pension plans was given. We

decided to consider a defined benefit plan with a fund since for this type of plans, the

employer bears the investment risk. Companies often hire a pension fund manager to

manage the pension fund.

In chapter II, an overview of risk measures was given. Based on shortfall

probability as risk measure, we developed the concept of shortfall constraints. With a

shortfall constraint, the pension fund manager can restrict the shortfall probability of

falling below a certain return such that this probability will not exceed a value that the

manager regards as critical. Under the assumption of normally distributed returns and

log-normally distributed returns, respectively, we derived formulas for the shortfall

constraints of the asset return, the surplus return, the relative return, and the funding

ratio return. We also discussed what happens if the fund manager changes the free

parameters ”shortfall constraint probability” and ”minimum acceptable return”.

136
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In chapter III, we noticed that the shortfall probability has the disadvantage of

failing to measure to which extent the return falls below the minimum acceptable

return given that the return has already fallen below this minimum return. That is why

we decided to work with another risk measure: tail conditional expectation. Again,

formulas for the corresponding tail conditional expectation constraints of the asset

return, the surplus return, the relative return, and the funding ratio return were derived

under the assumption of normally and log-normally distributed returns.

Finally in chapter IV, an investment strategy was provided based on the shortfall

and tail conditional expectation constraints given in chapter II and chapter III.

For all the calculations in this thesis, we assumed that there is only one stock and

one bond to choose from. This reduced the investment decision as to what percentage

to invest in the stock and what percentage to invest in the bond. Of course, the pension

fund manager can invest in a large variety of different stocks and bonds and other types

of investment in reality. Therefore, an extension of the discussed model to one with

several stocks and bonds is encouraged.

Another aspect that should be considered critically is the assumption of normally

and log-normally distributed returns. Although we got some valuable insights into the

shortfall and tail conditional expectation constraint concept, we just approximated the

reality by using these distribution assumptions. Therefore, from a practical point of

view, one could try to find optimal portfolios by simulation rather than modeling the

returns with the normal and log-normal distribution.
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Finally, the concept of shortfall and TCE constraints is not restricted to

controlling the risk of a pension fund. Any investor who needs to manage assets against

liabilities can use these constraints to adjust the risk level he/she is willing to accept.
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