Extreme Preference and Distortion Risk Measures on Tail Regions with Nonparametric Inference Method

Xing Wang

Department of Mathematics Illinois State University

Oct 5th

Outline

2 Extreme Preference

- Tail Risks under the Extreme Scenarios
- Extreme Preference and Its Distortion
- 3 Distortion Risk Measure on Tail Regions
 - Distortion Risk Measure Difinition
 - Statistical Inference

4 Main Result about Distortion Risk Measure

- Learn risk exposure of a financial entity under the occurrence of some other financial variables' extreme scenarios. Example:
 - Measure the systemic risk of the expected loss on some financial equity return conditional on the occurrence of an extreme loss in the aggregated return of the financial sector;
 - Measure the relative risk of individual financial entity to some benchmark as a sensitive monitoring index of the market co-movement.
- Traditional risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES) cannot capture the risk exposure caused by the co-movement of multiple financial variables.
- Use quantitative definition of the exposure on the tail regions to model the dependence of some financial variables

- No formal definition/principle about what is the standard of risk measure when considering the co-movement in financial/insurance industry ⇒ hard to extend
- How to consider the choice under the extreme risk which quantitatively evaluates the preference of tail risk ? ⇒ Use utility theory and theoretical aspects of distortion functions when facing high risk events
- Asymptotic theory of the risk measures on tail regions

Our Contribution

- Compare risks under some extreme scenarios with different risk levels.
- Consider the risk exposure on the tail regions where a benchmark loss is included in the modeling of extreme scenarios.
- Explore a limiting space of the above risks on tail regions as the extreme scenarios go to extremes.
- Explore distortion risk measure on tail regions and its asymptotic property. Establish asymptotic results using Extreme Value Theory and tail copulas.
- Nonparametric estimator has been proposed and its asymptotic normality is proved.

Preference Relationship Components

- X: the risk random variable
- \bar{F}_X : survival distribution
- Γ : a given collection of survival distribution \overline{F}_X
- W: the set of all non-negative risk random variables, defined on space Γ. V always represents the loss.
- (X, Y): a pair of random losses with continuous joint distribution function F(x, y) and marginal distributions F₁(x) = F(x,∞) and F₂(y) = F(∞, y).
- Q_i = F_i⁻¹, i = 1, 2: the inverse functions of marginal distributions.
- α : the level of the risk, $\alpha \in [0, 1]$

The preference relationship

 The relations, indifference ~ and preference ≽, for any two (survival) distributions F̄, Ḡ in Γ are

$$ar{F} \sim ar{G}$$
 if and only if $ar{F}(t) = ar{G}(t), \quad \forall \ t \ge 0.$
 $ar{F} \succeq ar{G}$ if and only if $ar{F}(t) \ge ar{G}(t), \quad \forall \ t \ge 0.$ (1)

• The preference \succeq on $\mathbb V$ is based on distortion function g is

$$X_1 \succeq X_2 \quad ext{if and only if} \quad \int_{-\infty}^\infty g(ar{F}_{X_1}(t)) dt \geq \int_{-\infty}^\infty g(ar{F}_{X_2}(t)) dt,$$

The indifference \sim for X_1, X_2 in $\mathbb V$ is

$$X_1 \sim X_2$$
 if and only if $\int_{-\infty}^{\infty} g(ar{F}_{X_1}(t)) dt = \int_{-\infty}^{\infty} g(ar{F}_{X_2}(t)) dt.$

Preference relations on the tail risks

- Suppose Y is a benchmark whose extreme scenarios are of interest.
- Consider the univariate case where extreme scenarios of Y are included as conditional events, and the associated preference relation is called extreme preference when the extreme scenarios go to extreme.
- Technique: Extreme preference depends on the transformation of three spaces in the following sections (from $\Gamma \times \mathbb{C}$, to Γ' , then to Γ_0).

Two extensions:

- First, define the scenarios of Y as an event S(Y, α) where α represents the level of the risk.
 Typically, choose S(Y, α) = {Y > Q₂(1 − α)} as the extreme scenarios.
- Second, truncate the non-tail risk of X below the threshold $Q_1(1-\alpha)$ and consider the ratio of this truncated variable and the threshold.

Space Construction

- Extreme scenarios event $S(Y, \alpha) = \{Y > Q_2(1 \alpha)\}$
- Truncate the non-tail risk of X below the threshold $Q_1(1-\alpha)$ and consider the ratio of this truncated variable and the threshold.
- Construct space V is the collection, or a subcollection, of X having distribution F with extreme index γ > 0, which satisfies

$$\lim_{t \to \infty} \frac{\bar{F}(tx)}{\bar{F}(t)} = x^{-1/\gamma}, \quad x > 0.$$
(2)

• Γ : the collection of all survival distributions of X

- C: a collection of (survival) copulas of (X, Y), we may say "given benchmark Y" and "given the survival copula of (X, Y)" equivalently in the following as the scenarios of Y is {Y > Q₂(1 − α)}.
- Consider the conditional survival distribution

$$\mathbb{P}\left(rac{(X-Q_1(1-lpha))_+}{Q_1(1-lpha)}>t \ \Big| \ Y>Q_2(1-lpha)
ight) \ = \ egin{cases} \left\{rac{\mathcal{C}(lpha eta_lpha ((1+t)^{-1/\gamma}),lpha)}{lpha} & t\geq 0 \ 1 & t<0 \end{cases}
ight.$$

where $a_+ = \max(a, 0)$ for any real value a, b and $s_{\alpha}(x) = \frac{\bar{F}(Q_1(1-\alpha)x^{-\gamma})}{\alpha}$ such that $s_{\alpha}(0) = 0$, $s_{\alpha}(1) = 1$ and $s_{\alpha}(\infty) = 1/\alpha$.

Define space Γ_{α} and its elements G_{α} (Fix α)

• Get G_{α} by a pair \overline{F} and C such that

$$G_{\alpha}(x) = \begin{cases} \frac{C(\alpha s_{\alpha}(x^{-1/\gamma}), \alpha)}{\alpha} & x \ge 1\\ 1 & 0 \le x < 1 \end{cases}$$
(3)

• $G_{\alpha} \in \Gamma_{\alpha}$ is induced by a pair of \overline{F} and C.

Image: A matched a matc

3)) B

- combine $\Gamma' = \bigcup_{\alpha} \Gamma_{\alpha}$ and $\mathbb{V}' = \bigcup_{\alpha} \mathbb{V}_{\alpha}$ and consider the preference relations on them.
- for any $G_{1\alpha_1}, G_{2\alpha_2}$

$$\begin{array}{ll} G_{1\alpha_1} \sim G_{2\alpha_2} & \text{if and only if} \quad G_{1\alpha_1}(t) = G_{2\alpha_2}(t), \quad \forall \ t \ge 0. \\ G_{1\alpha_1} \succ G_{2\alpha_2} & \text{if and only if} \quad G_{1\alpha_1}(t) \ge G_{2\alpha_2}(t), \quad \forall \ t \ge 0. \\ \end{array}$$

$$(4)$$

イロト イヨト イヨト

Axiom 1 (Neutrality) Let Y be a given loss, X_1 and X_2 belong to \mathbb{V} with respective levels α_1, α_2 and functions $G_{1\alpha_1}$ and $G_{2\alpha_2}$ in Γ' . Then,

$$\mathcal{G}_{1lpha_1} \sim \mathcal{G}_{2lpha_2} \qquad \Longrightarrow \quad X_1|(Y, lpha_1) \sim X_2|(Y, lpha_2) \quad ext{on } \mathbb{V}'$$

where $X|(Y,\alpha)$ means the loss X given the dependence with Y and level α .

- Axiom 2 (Complete weak order) \succeq on Γ' is reflexive, transitive, and connected.
- Axiom 3 (Continuity) \succeq on Γ' is continuous with respect to L_1 -norm.
- Axiom 4 (Monotonicity) If for any $t \ge 1$, $G_1(t) \ge G_2(t)$, then $G_1 \succeq G_2$ on Γ' .

Axiom 5 (Dual Independence) If G, G', H belong to Γ' and ω is any real value satisfying $\omega \in [0, 1]$, then $G \succeq G'$ implies $\omega G \oplus (1 - \omega)H \succeq \omega G' \oplus (1 - \omega)H$ where \oplus is the harmonic convex combination operator.

Tail Risks under the Extreme Scenarios Extreme Preference and Its Distortion

Theorem 1

Theorem

For any fixed level $\alpha_1, \alpha_2 \in (0, 1)$, a preference relation \succeq satisfies Axioms A1-A5 if and only if there exists a distortion function g such that given the loss Y (given any survival copulas respectively), for any X_1, X_2 in \mathbb{V} with respective $G_{1\alpha_1}, G_{2\alpha_2}$ in Γ' ,

$$X_1|(Y,lpha_1) \succeq X_2|(Y,lpha_2)$$
 on \mathbb{V}' if and only if

$$\int_0^\infty g(G_{1lpha_1}(t))dt \geq \int_0^\infty g(G_{2lpha_2}(t))dt.$$

Moreover, any variable X in \mathbb{V} is equivalent to its utility on \mathbb{V}' given Y, α and thus $G_{\alpha} \in \Gamma'$ so that

$$X|(Y,\alpha) \sim [U_{\alpha}(X;Y);1]|(Y,\alpha) \quad on \ \mathbb{V}'. \tag{5}$$

where $U_{\alpha}(X; Y) := \int_{0}^{\infty} g(G_{\alpha}(t))dt$ and [x; p] is a binary random variable taking x with probability p and 0 with probability 1 - p.

Asymptotic limit of the extreme preference as $\alpha \downarrow 0$ Three questions:

- 1) Is there a collection of distributions which represent the limits of G_{α} in Γ' as $\alpha \downarrow 0$?
- 2) If there exists such a collection Γ_0 for which similar Axioms 1-5 hold as well?
- 3) If there exists such a collection Γ_0 satisfying some axioms similar to Axioms 1-5, what is the distortion function? Is it consistent with the g in Theorem 1?

< 日 > < 同 > < 同 > < 回 > .

Axiom 0' Suppose there exists a measure $R: (0,\infty)^2 \to [0,\infty)$ such that

$$\lim_{x\downarrow 0} \frac{\mathcal{C}(\alpha s_{\alpha}(x), \alpha)}{\alpha} = R(x, 1), \quad x \ge 1.$$

Axiom 1' (Neutrality) Let Y be a given loss, X_1 and X_2 belong to \mathbb{V} with respective G_1 and G_2 in Γ_0 . Then,

$$\mathcal{G}_1\sim \mathcal{G}_2 \qquad \Longrightarrow \quad X_1|(Y)\sim X_2|(Y) \quad ext{on } \mathbb{V}_0.$$

- Axiom 2' (Complete weak order) \succeq on Γ) is reflexive, transitive, and connected.
- Axiom 3' (Continuity) \succeq on Γ_0 is continuous with respect to L_1 -norm.
- Axiom 4' (Monotonicity) If for any $t \ge 1$, $G_1(t) \ge G_2(t)$, then $G_1 \succeq G_2$ on Γ_0 .

Axiom 5' (Dual Independence) If G, G', H belong to Γ_0 and ω is a real value satisfying $\omega \in [0, 1]$, then $G \succeq G'$ implies $\omega G \oplus (1 - \omega)H \succeq \omega G' \oplus (1 - \omega)H$ where \oplus is the harmonic convex combination operator.

Tail Risks under the Extreme Scenarios Extreme Preference and Its Distortion

Theorem 2

Theorem

A preference relation \succeq satisfies Axioms A0'-A5' if and only if there exists a distortion function g_0 such that given the loss Y (given any survival copulas respectively), for any X_1, X_2 in \mathbb{V} with respective G_1, G_2 in Γ_0 ,

 $X_1|(Y) \succeq X_2|(Y)$ on \mathbb{V}_0 if and only if

$$\int_0^\infty g_0(G_1(t))dt \geq \int_0^\infty g_0(G_2(t))dt.$$

Moreover, any variable X in $\mathbb V$ is equivalent to its utility on $\mathbb V_0$ given Y and thus $G\in\Gamma_0$ so that

 $X|(Y) \sim [U_0(X;Y);1]|(Y) \text{ on } \mathbb{V}_0.$ (6)

where $U_0(X; Y) := \int_0^\infty g_0(G(t))dt$ and [x; p] is a binary random variable taking x with probability p and 0 with probability 1 - p.

Distortion Risk Measure Difinition Statistical Inference

Definition

Let $\rho_g : \mathcal{L}(R_+) \to R_+$ be a distortion risk measure for a univariate non-negative random loss Z with distribution function $F_Z \in \mathcal{L}(R_+)$ and non-decreasing distortion function g satisfying g(0) = 0, g(1) = 1, the corresponding distortion risk measure is:

$$ho_{\mathsf{g}}(\mathsf{Z}) = \int_0^\infty \mathsf{g}(1 - \mathsf{F}_{\mathsf{Z}}(\mathsf{x})) \mathsf{d}\mathsf{x}.$$

Definition

The distortion risk measure on tail regions of (X, Y) is the distortion risk measure ρ_g applied to the distribution of $\frac{(X-Q_1(1-\alpha))_+}{Q_1(1-\alpha)}|Y > Q_2(1-\alpha)$ taking into account the marginal threshold, which is

$$\rho_g(X;Y,\alpha) = Q_1(1-\alpha) + \int_{Q_1(1-\alpha)}^{\infty} g\left(\mathbb{P}(X > x | Y > Q_2(1-\alpha))\right) dx$$

where g is a (right-continuous) distortion function.

イロト イヨト イヨト

Nonparametric Estimation

- (X₁, Y₁),..., (X_n, Y_n):independent and identically distributed random vectors with joint distribution *F*.
 X_{1:n} ≥ X_{2:n} ≥ ... ≥ X_{n:n}, Y_{1:n} ≥ Y_{2:n} ≥ ... ≥ Y_{n:n}.
 X_{t:n} = X_{Lt:n} where [·] is the flooring integer of any positive real values.
- $F_1(x) = F(x, \infty)$, $F_2(y) = F(\infty, y)$ and $Q_i = F_i^{-1}$, i = 1, 2, the generalized inverse function of F_i .
- $\overline{F}_{n1}(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i > x), \quad \overline{F}_{n2}(y) = \frac{1}{n} \sum_{i=1}^{n} I(Y_i > y), \quad x, y \in \mathbb{R}$.: the empirical survival functions

Distortion Risk Measure Difinition Statistical Inference

The smoothed and non-smoothed empirical (survival) copulas are given by

$$\begin{cases} \widehat{C}(u,v) = \frac{1}{n} \sum_{i=1}^{n} I(\overline{F}_{n1}(X_i) < u, \overline{F}_{n2}(Y_i) < v), \\ \widetilde{C}(u,v) = \frac{1}{n} \sum_{i=1}^{n} K\left(\frac{1 - \overline{F}_{n1}(X_i)/u}{h}\right) K\left(\frac{1 - \overline{F}_{n2}(Y_i)/v}{h}\right), \quad u,v \in [0,1]. \end{cases}$$

where $h := h_n > 0$ is the bandwidth. Two nonparametric estimators of $\rho_g(X; Y, \alpha)$ defined below

$$\begin{cases} \hat{\rho}_{g}(X;Y,\alpha) = \frac{1}{n\alpha} \sum_{i=1}^{n} (X_{i} - X_{n\alpha:n}) I(\bar{F}_{n1(X_{i})} < \alpha) \left(g\left(\frac{\hat{C}(\bar{F}_{n1}(X_{i}),\alpha)}{\alpha}\right) + X_{n\alpha:n}\right) \\ \tilde{\rho}_{g}(X;Y,\alpha) = \frac{1}{n\alpha} \sum_{i=1}^{n} (X_{i} - X_{n\alpha:n}) I(\bar{F}_{n1(X_{i})} < \alpha) \left(g\left(\frac{\tilde{C}(\bar{F}_{n1}(X_{i}),\alpha)}{\alpha}\right) + X_{n\alpha:n}\right) \end{cases}$$

Assumptions

There exist some $\gamma_1 \in (0, 1), \beta_1 ≤ 0$ and function A which is slowly regular varying with index β_1 and a constant sign near infinity, such that

$$\lim_{t\to\infty}\frac{1}{A(1/\bar{F}_1(t))}\left(\frac{\bar{F}_1(tx)}{\bar{F}_1(t)}-x^{-1/\gamma_1}\right)=x^{-1/\gamma_1}\frac{x^{\beta_1/\gamma_1}-1}{\gamma_1\beta_1},\quad x>0.$$

 $\label{eq:constraint} \begin{array}{l} \textcircled{\begin{subarray}{ll} \bullet \\ 0 < \delta_0 < 1, L > 0, \tau < 0, \beta > \gamma_1, T > 1 \mbox{ such that, as } t \to \infty \end{array} \end{array} } \end{array}$

$$\sup_{x \in (0,\infty), y \in (0,T]} \left(\frac{tC(t^{-1}x, t^{-1}y) - R(x, y)}{x^{\beta}} \right) = O(t^{\tau}).$$

and

$$\sup_{x,\in(0,\delta_0],y\in(0,1]}\frac{R(x,y)}{(x\wedge y)^{\beta}}\leq L.$$

0 There exists $0<\delta_0'<1, L'>0$ such that

$$|g(u)-g(u')| \leq L'|u-u'|, \quad \forall u,u' \in (0,\delta'_0).$$

So As
$$n \to \infty$$
, $\alpha = O(n^{-1+\kappa})$ for some $0 < \kappa < \frac{-2\tau}{-2\tau+1}$ and $\sqrt{n\alpha}A(\alpha^{-1}) = o(1)$.

イロト イポト イヨト

Theorem

Suppose the set $B = \{x \in (0, 1] \mid g \text{ is discontinuous at } R(x, 1)\}$ has zero Lebesque measure. Under the Assumption (1.a)-(1.c), the distortion risk measure satisfies

$$\lim_{\alpha \downarrow 0} \frac{\rho_g(X; Y, \alpha)}{Q_1(1 - \alpha)} = 1 + \int_1^\infty g(R(x^{-1/\gamma_1}, 1)) dx.$$
(7)

Theorem

Suppose the set $B = \{x \in (0, 1]) \mid g \text{ is discontinuous at } R(x, 1)\}$ has zero Lebesque measure. Under the Assumption (1.a)-(1.d), the distortion risk measure satisfies

$$\lim_{n \to \infty} \sqrt{n\alpha} \left| \frac{\rho_g(X; Y, \alpha)}{Q_1(1 - \alpha)} - \rho_0 \right| = 0.$$
(8)

イロト イヨト イヨト

Assumptions:

The function R in Assumption (1.b) has a continuous first-order partial derivatives $R_1(x, 1) = \partial R(x, 1)/\partial x$.

- The kernel distribution function K has symmetric density k with support [-1, 1] and the kernel density k has bounded first derivative.
- The bandwidth $h := h_n > 0$ satisfies $n\alpha h^2 \to \infty$ and $n\alpha h^4 \to 0$.

Theorem

Let $\alpha = \alpha_n$ be an intermediate sequence such that $\alpha_n \to 0$ and $n\alpha_n \to \infty$ as $n \to \infty$. Suppose the set $B = \{x \in (0,1] \mid g \text{ is discontinuous at } R(x,1)\}$ has zero Lebesque measure. Under the Assumptions **??** and (2.a), (2.b),

$$\sqrt{n\alpha} \left(\frac{\hat{\rho}_{g}(X; Y, \alpha)}{\rho_{g}(X; Y, \alpha)} - 1 \right) \xrightarrow{d} N(0, \sigma_{R, g, \gamma_{1}}^{2}).$$

with $\sigma^2_{R,g,\gamma_1} = \textit{Var}(\Phi_{R,g,\gamma_1})/
ho_0^2$ and

$$egin{aligned} & \Phi_{R,g,\gamma_1} = \gamma_1 \int_0^1 rac{\mathbb{W}_R(R^\leftarrow(x),1)}{(R^\leftarrow(x))^{\gamma_1+1}R_1(R^\leftarrow(x),1)} \ & dg(x-\gamma_1rac{\mathbb{W}_R(R^\leftarrow(1),1)}{(R^\leftarrow(1))^{\gamma_1+1}R_1(R^\leftarrow(1),1)}. \end{aligned}$$

ほ トーイ ヨート

Theorem continued

Theorem

is non-degenerate. R^{\leftarrow} is the (right-continuous) generalized inverse function of $R(\cdot, 1)$ and \mathbb{W}_R is a R-Brownian motion, i.e. a zero-mean Gaussian process with covariance function with

$$\mathbb{E}(\mathbb{W}_R(u_1,v_1)\mathbb{W}_R(u_2,v_2))=R(u_1\wedge u_2,v_1\wedge v_2),$$

$$(u_i, v_i) \in (0, \infty]^2 \setminus \{\infty, \infty\}, \ i = 1, 2.$$

Moreover, if Assumption (2.c) and (2.d) are also satisfied, then

$$\sqrt{n\alpha}\left(\frac{\tilde{\rho}_g(X;Y,\alpha)-\hat{\rho}_g(X;Y,\alpha)}{\rho_g(X;Y,\alpha)}\right)\xrightarrow{P} 0.$$

Q&A?

・ロト ・四ト ・ヨト・

Ð.

Thank you very much for your attention!