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Motivation

Capital
Dhaene, et al., 2011, Journal of Risk and Insurance

The level of the capital held by a bank or an insurance company
is a key issue for its stakeholders. The regulator, primarily
sharing the interests of depositors and policyholders,
establishes rules to determine the required capital to be held by
the company. The level of this capital is determined such that
the company will be able to meet its financial obligations with a
high probability as they fall due, even in adverse situations.
Rating agencies rely on the level of available capital to assess
the financial strength of a company. Shareholders and investors
alike are concerned with the risk of their capital investment and
the return that it will generate.
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Risk measures
Artzner et al., 1999, Mathematical Finance

Risk measure ρ defined on a probability space (Ω,F,P). A
coherent risk measure:

1 Monotonicity

X1 ≤ X2 ⇒ ρ(X1) ≤ ρ(X2);

2 Positive homogeneity

ρ(cX ) = cρ(X ), c ≥ 0;

3 Translation invariance

ρ(X + c) = ρ(X ) + c, c ≥ 0;

4 Subadditivity

ρ(X + Y ) ≤ ρ(X ) + ρ(Y ).
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Capital allocation Assume we have n risks X1, . . . ,Xn. Then,
the aggregate loss is

S =
n∑

i=1

Xi ,

where this aggregate loss S can be interpreted as:

1 the total loss of a corporate, e.g. an insurance company,
with the individual losses corresponding to the losses of
the respective business units;

2 the loss from an insurance portfolio, with the individual
losses being those arising from the different policies; or

3 the loss suffered by a financial conglomerate, while the
different individual losses correspond to the losses
suffered by its subsidiaries.
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Capital allocation

S is the aggregate loss faced by an insurance company and Xi
the loss of business unit i . Assume that the company has
already determined the aggregated level of capital and denote
this total risk capital by l :

l = l1 + l2 + . . .+ ln.

What is the optimal allocation strategy?
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Allocation formulas

Haircut allocation
It is a common industry practice, driven by banking and
insurance regulations, to measure stand alone losses by a
VaR for a given probability level p. Assume that

li =
l∑n

j=1 F−1
j (p)

F−1
i (p);

Quantile allocation-Dhaene et al., 2002, IME
The comonotonic sum is

Sc =
n∑

i=1

F−1
i (U),

where U is a uniform random variable on (0,1). Then,

li = F−1
i (FSc (l));

Stochastic orders and applications in actuarial science



Motivation

Allocation formulas

Covariance allocation-Overbeck, 2002

li =
l

Var(S)
Cov(Xi ,S);

CTE allocation

li =
l

CTEp(S)
E
(

Xi |S > F−1
S (p)

)
,

where
CETp(S) = E

(
S|S > F−1

S (p)
)
.
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Optimal capital allocation

Decision criterion: Capital should be allocated such that for
each business unit the allocated capital and the loss are
sufficiently close to each other.
Dhaene, et al. (2011) proposed the following optimization
problem to model the capital allocation problem:

min
l∈A

n∑
i=1

viE
[
ζiD

(
Xi − li

vi

)]
, s.t .

n∑
i=1

li = l

where vi are nonnegative real numbers such that
∑n

i=1 vi = 1,
and the ζi are non-negative random variables such that
E[ζj ] = 1.
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The non-negative real number vj is a measure of exposure
or business volume of the j-th unit, such as revenue,
insurance premium, etc;
The terms D quantify the deviations of the outcomes of the
losses Xj from their allocated capital Kj ;
The expectations involve non-negative random variables ζj
with E[ζj ] = 1 that are used as weight factors to the
different possible outcomes D (Xi − li).
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Quadratic optimization

D(x) = x2.

Consider the following optimization:

min
l∈A

n∑
i=1

E

[
ζi

(Xi − li)
2

vi

]
, s.t .

n∑
i=1

li = l .

Then, the optimal solution is (Dhaene, et al., 2002)

li = E (ζiXi) + vi

l −
n∑

j=1

E(ζjXj)

 , i = 1, . . . ,n.
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Convex loss function

We consider how the different capital allocation strategies affect
the loss function under the general setup. Specifically, the loss
function is defined as

L(l) =
n∑

i=1

φi(Xi − li), l ∈ A

for some suitable convex functions φi , where

A =

{
(l1, . . . , ln) :

n∑
i=1

li = l

}
.
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Convex loss function

We also discuss the the following optimisation problem:

min
l∈A

n∑
i=1

P (L(l) ≥ t) , ∀t ≥ 0;

or equivalently,
min
l∈A

E[Φ (L(l))],

for some increasing function Φ, which could be interpreted as a
utility function.
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Stochastic orders

Assume random variables X and Y have distribution functions
F and G, density functions f and g, respectively. X is said to be
smaller than Y in the

1 likelihood ratio order, denoted by X ≤lr Y , if g(x)/f (x) is
increasing in x for which the ratio is well defined.

2 usual stochastic order, denoted by X ≤st Y , if F (x) ≥ G(x)
for all x , or equivalently Eφ(X ) ≤ Eφ(X ) for all increasing
function.

3 increasing and convex order, denoted by X ≤icx Y , if
Eφ(X ) ≤ Eφ(X ) for all increasing convex function φ.
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It is known that in the literature:

X ≤lr Y =⇒ X ≤st Y =⇒ X ≤icx Y .

Let x(1) ≤ x(2) ≤ · · · ≤ x(n) be the increasing arrangement of
components of the vector x = (x1, x2, · · · , xn).

x is said to be majorized by y, denoted by x �m y, if

j∑
i=1

x(i) ≥
j∑

i=1

y(i) for j = 1, . . . ,n − 1,

and
∑n

i=1 x(i) =
∑n

i=1 y(i).
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A real-valued function Φ defined on a set A ⊆ <n is said to be
Schur-concave on A if, for any x,y ∈ A,

x �m y =⇒ φ(x) ≤ φ(y),

and φ is log-concave on A = {x ∈ <n : φ(x) > 0} if, for any
x,y ∈ A and α ∈ [0,1],

φ(αx + (1− α)y) ≥ [φ(x)]α[φ(y)]1−α.
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Most common univariate parametric densities are log-concave,
such as the normal family, all gamma densities with shape
parameter ≥ 1, all Weibull densities with exponent ≥ 1, all beta
densities with both parameters ≥ 1, the generalized Pareto and
the logistic density, see e.g. Bagnoli and Bergstrom (2005).

A real function f : <n → < is said to be arrangement increasing
if for all i and j such that 1 ≤ i ≤ j ≤ n,

(xi−xj)
[
f (x1, . . . , xi , . . . , xj , . . . , xn)− f (x1, . . . , xj , . . . , xi , . . . , xn)

]
≤ 0.
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Log-concave

Lemma

(Prékopa, 1973; Eaton, 1982) Suppose that h : <m ×<k → <+ is a
log-concave function and that

g(x) =

∫
<k

h(x, z)dz

is finite for each x ∈ <m. Then g is log-concave on <m.
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Theorem
Let X1,X2, . . . ,Xn be independent random variables defined on
<+ with log-concave density function f . If φi ’s are convex
functions, then,

(l1, . . . , ln)�m(l∗1 , . . . , l
∗
n )⇒

n∑
i=1

φi(Xi − li) ≥st

n∑
i=1

φi(Xi − l∗i ).

Ex.

(1,0, . . . ,0)�m(1/2,1/2, . . . ,0)�m(1/n,1/n, . . . ,1/n)
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The optimal solution to the following problem

min
l∈A

E

[
n∑

i=1

φi(Xi − li)

]
,

is l∗ = (l/n, . . . , l/n).
Examples:

1 Let φi(x) = kix2, then

L(D) =
n∑

i=1

D(Xi − li) =
n∑

i=1

ki(Xi − li)2,

where ki could be interpreted as the weights attached to
different units which reflect the relative importance of the
different risks;

2 Let φi(x) = ki |x |, then

L(D) =
n∑

i=1

D(Xi − li) =
n∑

i=1

ki |Xi − li |.
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What about independent but not necessarily identically
distributed random variables?

Lemma
Let X1,X2, . . . ,Xn be independent random variables defined on <+

with arrangement increasing density function f . If φ is a convex
function, then,

(l1, . . . , ln)�m(l∗1 , . . . , l
∗
n )

implies
n∑

i=1

φ(Xi − l(i)) ≤st

n∑
i=1

φ(Xi − l(n−i+1)).
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Lemma

If g(x1, x2) is log-concave on <2
+ and

g(x(2), x(1)) ≥ g(x(1), x(2)) for all (x1, x2) ∈ <2
+,

then

(x1, x2) �m (y1, y2) =⇒ g(x(1), x(2)) ≥ g(y(1), y(2)).
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Theorem
Let X1,X2, . . . ,Xn be independent random variables defined on
<+ with log-concave density functions f1, f2, . . . , fn, respectively.
If X1 ≤lr X2 ≤lr . . . ≤lr Xn, then, for any convex function φ,

(l1, . . . , ln)�m(l∗1 , . . . , l
∗
n )

implies
n∑

i=1

φ(Xi − l(n−i+1)) ≥st

n∑
i=1

φ(Xi − l∗i ).
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Theorem
Let X1,X2, . . . ,Xn be independent random variables defined on <+.
If X1 ≤lr X2 ≤lr . . . ≤lr Xn, then, for any convex function φ,

(l1, . . . , ln)�m(l∗1 , . . . , l
∗
n )

implies
n∑

i=1

φ(Xi − l(n−i+1)) ≥icx

n∑
i=1

φ(Xi − l∗i ).
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Assume that l∗ = (l∗1 , . . . , l
∗
n ) is a solution to the following

problem:

min
l∈A

E

[
Φ

(
n∑

i=1

φ(Xi − li)

)]
, (1)

where φ is a convex function, and Φ is an increasing function.
Now, we are interested in the structure of l∗.
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Theorem
Let X1,X2, . . . ,Xn be independent random variables defined on
<+. If l∗ is a solution to Problem 1, then, for each pair (i , j),

Xi ≤lr Xj =⇒ l∗i ≤ l∗j .

Example:
Now, consider a portfolio containing m risk classes, and class i
contains ni independent and identically distributed risks
Xi,1, . . . ,Xi,ni distributed as Xi with gamma density function
having parameters (ki , θ), where ki is the shape parameter and
θ is the scale parameter. Then the aggregate loss is

S =
m∑

i=1

Si =
m∑

i=1

ni∑
j=1

Xi,j .
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Hence, the loss function is

L(l) =
m∑

i=1

φ (Si − ni li) ,

where li is the capital allocated to each risk Xi,j in class i . It is
well-known that Si is a gamma random variable with
parameters (niki , θ). It is easy to check that if ki ≤ kj , then
Xi ≤lr Xj . Hence, under the optimal capital allocation scheme,
one should have

niki ≤ njkj =⇒ ni li ≤ nj lj .
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Optimal allocation of policy limits

Assume that a policyholder has a total policy limit
l = l1 + . . .+ ln, which can be allocated arbitrarily among the n
risks X1, . . . ,Xn. Then, the total retained loss of the
policyholder is

n∑
i=1

(Xi − li)+,

where x+ = max{x ,0}.
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For example, the compensation package of many big
companies includes a commonly called “Flexible Spending
Account Programme", which allows employees to allocate
pre-tax dollars toward specific expenses such as healthcare,
medical costs or dependent care. This is essentially a form of
allocating policy limits.
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If we choose φi(x) = max{x ,0} = x+, which is a convex
function, then the loss function becomes

L(l) =
n∑

i=1

D(Xi − li) =
n∑

i=1

(Xi − li)+.

Hence, the optimal allocation of policy limits becomes
minimizing the loss function.
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Thank you!
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