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Common Measures of Variability

* Variance

Var(X) =

∑
(Xi − µ)2

N
.

* Range
R = Xn:n −X1:n.

* Interquartile range
IQR = Q3 −Q1.

All of those measures are based on a single number and may not be very
informative as observations in one particular part of the data may be more
spread out than in other parts.



First Page

Title Page

Contents

JJ II

J I

Page 3 of 37

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Excess wealth transform–Fernández-Ponce, Kochar and Muñoz-Perez (1998)
and Shaked and Shanthikumar (1998)

For a random variable X with finite mean, distribution F , the transform is de-
fined by

W (p ;F ) = E
[
(X − F−1(p))+

]
=

∫ ∞
F−1(p)

F̄ (x)dx,

where (X)+ = max{X, 0},

F−1(p) = inf{x : F (x) ≥ p}, for 0 ≤ p ≤ 1.

and
F̄ = 1− F

is the survival function of X .

This transform is called the right spread transform in Fernández-Ponce, Kochar
and Muñoz-Perez (1998). Shaked and Shanthikumar (1998) named it as excess
wealth transform.

In the context of economics,W (p ;F ) can be thought of as the additional wealth
(on top of the pth percentile income) of the of the richest 100(1−p)% individuals
in the population.
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Relation to variability

* Variance—Fernández-Ponce, Kochar and Muñoz-Perez (1998)

Var(X) =

∫ 1

0

[
W (p ;F )

1− p

]2
dp.

* Spacing—Fernández-Ponce, Kochar and Muñoz-Perez (1998)
If X1 and X2 are independent copies of X ,

E | X1 −X2 |= 2

∫ 1

0

W (p ;F )dp.

* Truncated variance

Var(X | X > F−1(p0)) =
1

1− p0

∫ 1

p0

[
W (p ;F )

1− p

]2
dp.

* Functional variance—Shaked and Shanthikumar (1998)

W (p ;F ) ≤ W (p ;G) =⇒ Var[h(X)] ≤ Var[h(Y )],

for any increasing and convex function h : [0,∞)→ R.
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Example

Let X be a uniform (0, 1) random variable, and Y be an exponential random
variable with rate 4, then, for 0 < p < 1,

W (p ;F ) =

∫ ∞
F−1(p)

F̄ (x)dx =
(1− p)2

2
,

W (p ;G) =

∫ ∞
G−1(p)

Ḡ(x)dx =
1− p

4
.
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Detecting Ageing Class

The right spread transform may also be used to detect the aging property. For
example, it could be used to detect the increasing failure rate (IFR) property of
data sets.

+ Proposition—Fernández-Ponce, Kochar and Muñoz-Perez (1998)

If X is IFR, then W (p ;F ) is a convex shaped function of p.

Example: Weibull distribution with shape parameter 2 and scale parameter 1.
The density function is

f(x) = 2xe−x
2

.

The hazard rate is
r(x) = 2x.
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Excess wealth plot (EW-plot)

Assume X1, · · · , Xn be a random sample from X . Let X1:n ≤ X2:n ≤ · · · ≤
Xn:n denote the order statistics corresponding to X1, · · · , Xn. The empirical
distribution is defined as

F̂n(t) =
1

n

n∑
i=1

I(Xi ≤ t).

Hence, the excess wealth transform is, for 0 ≤ i ≤ n− 1,

Wi = W

(
i

n
; F̂n

)
=

n−1∑
j=i

∫ F−1
n ((j+1)/n)

F−1
n (j/n)

F̄n(x)dx

=
n−1∑
j=i

n− j
n

(Xj+1:n −Xj:n) .
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It may be written as

W

(
i

n
; F̂n

)
=

n∑
j=i+1

n− j + 1

n
(Xj:n −Xj−1:n) .

It is observed that

W0 = X̄, Wi+1 = Wi −
n− i
n

(Xi+1:n −Xi:n), 0 ≤ i ≤ n− 2. (1)

A visual tool for detecting variability might be constructed as follows.

(a) Order the sample: X1:n ≤ X2:n ≤ · · · ≤ Xn:n.

(b) Compute Wi as defined in equation (1) for i = 0, · · · , n− 1.

(c) Plot the pairs (i/n,Wi), i = 0, · · · , n, where (1,Wn) = (1, 0), and connect
the points by line segments.
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Example
Let X be an exponential random variable with rate 2, from which 200 samples
are generated for EW-plot and scaled EW-plot. The EW-plot and scaled EW-plot
are displayed in the following.
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Theoretical support:

For any fixed p, if F−1 is continuous, then,

W (i/n;Fn)
a.s.−→ W (p;F ), n→∞, i/n→ p.
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Excess wealth transform for censored data

Now, consider the random censoring mechanism,

Xi = min{Ti, Ci},

where Ti is the real survival time with distribution F , and Ci is some indepen-
dent censoring variable with distribution G. The observed quantity is the pair
(Xi, Di), where

Di =

{
1, if Xi = Ti,
0, if Xi = Ci.

Assume the observed data set is (x1, d1), · · · , (xn, dn), where di = 1(0) if the
observation is uncensored (censored) for i = 1, · · · , n. For the censored data,
the Kaplan-Meier (K-M) estimator provides an estimate of the true distribution
function of Ti, i.e.,

Kn(t) = 1−
kt∏
j=1

(
n− j

n− j + 1

)dj
, (2)

where kt is the value of k such that t ∈ [xk:n, xk+1:n).
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It is noted that if there is no censoring, the K-M estimator is the empirical dis-
tribution function.
Define

H̄(x) = 1−H(x) = F̄ (x)Ḡ(x),

and τ = H−1(1).

The censored excess wealth transform as

WC(p ;F ) =

∫ τ

F−1(p)

F̄ (x)dx.
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Hence,

WC(p ;Kn) =

∫ τ

K−1
n (p)

K̄n(x)dx,

where

K̄n(t) = 1−Kn(t) =

kt∏
j=1

(
n− j

n− j + 1

)dj
.

Now,

WC
i = W (Kn(Xi:n);Kn) =

n−1∑
j=i

(Xj+1:n −Xj:n)

j∏
k=1

(
n− k

n− k + 1

)dk
. (3)

Similarly,

WC
0 = X̃, WC

i+1 = WC
i − (Xi+1:n −Xi:n)

i∏
k=1

(
n− k

n− k + 1

)dk
,

where X̃ is the censored mean as suggested in Gill (1983).
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EW-Plot for censored data

A visual tool for detecting the variability for the censored data could be con-
structed as follows.

(a) Order the sample: X1:n ≤ X2:n ≤ · · · ≤ Xn:n.

(b) Compute WC
i as defined in equation (3) for i = 0, · · · , n− 1.

(c) Plot the pairs
(
Kn(Xi:n),W

C
i

)
, i = 0, · · · , n, where (1,Wn) = (1, 0).



First Page

Title Page

Contents

JJ II

J I

Page 15 of 37

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

EW-plot for Channing House data

Channing House is a retirement centre in Palo Alto, California. These data were
collected between the opening of the house in 1964 until July 1, 1975. In that
time 97 men and 365 women passed through the centre. For each of these, their
age on entry and also on leaving or death was recorded. A large number of the
observations were censored mainly due to the resident being alive on July 1,
1975 when the data was collected. Over the time of the study 130 women and
46 men died at Channing House.
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Standard deviation for male group (group 1): 73.71466
Standard deviation for female group (group 2): 73.81204
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EW-plot for Weibull censored data
Group 1: n = 100, shape parameter 2 and scale parameter 1, variance is 0.215,
31 censored observations.
Group 2: n = 100, shape parameter 3 and scale parameter 2, variance is 0.359,
30 censored observations.
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Figure 1: RS-Plots of simulated samples
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Figure 2: RS-Plots of censored samples
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EW-plot for AML data

The data in the following Table are preliminary results from a clinical trial
to evaluate the efficacy of maintenance chemotherapy for acute myelogenous
leukemia (AML). The first group received maintenance chemotherapy; the sec-
ond group did not. The purpose of the trial was to see if maintenance chemother-
apy prolonged the time until relapse (cf. Embury, et al., 1977).

Group weeks of complete remission
Group 1 9,13,13+,18,23,28+,31,34,45+,48,161+
Group 2 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45
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Theoretical support:

For any fixed p, if F is continuous, then,

WC(Kn(xi:n);Kn)
a.s.−→ WC(p;F ), n→∞, Kn(xi:n)→ p.
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EW transform for heavy-tailed data
Distribution of the excess over a threshold µ:

Fµ(t) = P (X − µ ≤ t | X ≥ µ) .

Peaks over threshold (POT) modeling:

1. Hydrology: It is critical to model the level of water in a river or sea to avoid
flooding.

2. Actuarial science: Insurance companies set premium levels based on models
for large losses.

3. Survival analysis: The POT method is used for modeling lifetimes.

4. Environmental science: Public health agencies set standards for pollution
levels.
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Peaks over threshold modeling is based on the generalized Pareto class of dis-
tributions being appropriate for describing statistical properties of excesses.
generalized Pareto distribution (GPD):

Gξ,β(x) =

{
1− (1 + ξx/β)−1/ξ ξ 6= 0,

1− exp(−x/β) ξ = 0,

where β > 0, and x ≥ 0 when ξ ≥ 0, and 0 ≤ x ≤ −β/ξ if ξ < 0.

It is known that there exists a positive measurable function β(µ) such that

lim
µ→∞

sup
x≥µ
| Fµ(x)−Gξ,β(µ)(x) |= 0,

if

lim
x→∞

F̄ (tx)

F̄ (x)
= t−1/ξ.
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The mean excess (ME) function is a tool popularly used to aid this choice of u
and also to determine the adequacy of the GPD model in practice.

M(u) = E(X − u | X > u),

if E(X) <∞. It is seen that if ξ < 1, then

M(u) =
β

1− ξ
+

ξ

1− ξ
u

Look at the EW transform:

W (p;F ) =
β

1− ξ
(1− p)1−ξ.

The scaled EW transform:

SEW (p;F ) =
W (p;F )

E(X)
= (1− p)1−ξ.
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The scaled EW transform could be used to detect heavy-tailed data:(
p, 1− ln(SEW (p;F ))

ln(1− p)

)
.

It can be shown that

1− ln(SEW (i/n;Fn))

ln(1− i/n)

P−→ ξ.

So, the following transformed plot (TEW) can be developed to detect the heavy-
tailed data: (

i

n
, 1− ln(SEW (i/n;Fn))

ln(1− i/n)

)
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We generate 1000 data from the GPD distribution with β = .9 and ξ = .7, i.e.,

Gξ,β(x) = 1− (1 + .7x/.9)−1/.7.

The TEW plot and ME plot (POT package in R) are displayed in the following.
It is seen that the TEW plot is very informative, and also provides the rough
estimate of ξ around .7.
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Excess wealth order

A random variable X with distribution function F is said to be less than a ran-
dom variable Y with distribution function G in the excess wealth order, denoted
by X ≤ew Y , if

W (p ;F ) ≤ W (p ;G), for all p ∈ [0, 1].

It is known that the right spread order is independent of location parameters (cf.
Kochar and Carriére, 1997). That is, for any c,

X ≤ew Y ⇐⇒ X ≤ew Y + c.

Also it is known that,

X ≤ew Y =⇒ VarX ≤ VarY.
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Actuarial application
The VaR is defined as

VaR[X; p] = F−1(p).

As the VaR at a fixed level only gives local information about the underlying
distribution, actuaries proposed the so-called expected shortfall to overcome this
shortcoming. Expected shortfall at probability level p is the stop-loss premium
with retention VaR[X; p], that is, E (X − VaR[X; p])+, which is just the excess
wealth transform of X . Hence, excess wealth order provides a natural way to
compare the risks. Sordo (2010) proved the following interesting result.

X and Y bet two random variables with respective distribution functions F and
G. Then

X ≤ew Y ⇐⇒ Hφ,p(X) ≤ Hφ,p(Y ), 0 < p < 1,

where
Hφ,p(X) = E(φ(X − E(Xp)) | X > F−1(p)),

and φ is a convex function, and Xp = (X | X > F−1(p)).

As a direct consequence,

X ≤ew Y =⇒ Var(X | X > F−1(p)) ≤ Var(Y | Y > G−1(p)), 0 < p < 1.
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Hypothesis Testing

Belzunce, et al. (2001) established L-statistics to test the right spread order:

H0 : X
ew
= Y

vs. the alternative,
H1 : X <ew Y.

However, the test there may not be consistent since at some points the excess
wealth transforms of X and Y may cross.

Denuit, et al. (2007) proposed a Kolmogorov-Smirnov type test for the shortfall
dominance against parametric alternatives (one sample test), where the shortfall
order is equivalent to the excess wealth order with replacing p by 1− p.

In the following, we will establish two sample Kolmogorov-Smirnov type test
for the excess wealth order.



First Page

Title Page

Contents

JJ II

J I

Page 27 of 37

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Two Sample Kolmogorov-Smirnov Test

Assume X1, · · · , Xn be a random sample from continuous distribution F , and
Y1, · · · , Ym be a random sample from continuous distribution G. The testing
hypothesis we are interested is

H0 : W (p ;F ) ≤ W (p ;G) for all p ∈ [0, 1],

versus,
Ha : W (p ;F ) > W (p ;G) for some p ∈ [0, 1].

Our test statistic based on empirical distributions for the null hypothesis is

S(F̂n; Ĝm) =

(
nm

n+m

)1/2

sup
p

(
W (p ; F̂n)−W (p ; Ĝm)

)
.

We reject the null hypothesis H0 when

S(F̂n; Ĝm) > cα,

where cα is the critical value based on the significant level α.
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From the classical empirical process theory, it follows that

√
n
(
F̂n − F

)
=⇒ U(F ),

where U is a Brownian bridge process, and F̂n is the empirical distribution based
on n samples from X . Then, we have the following Proposition.

Assume F be continuous,
√
n
(
W (p ; F̂n)−W (p ;F )

)
=⇒W(p ;F ),

where

W(p ;F ) = −
∫ 1

p

U(s)

f(F−1(s))
ds+ (1− p) U(p)

f(F−1(p))
.
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Theoretical Result

Assume F andG be continuous, and their inverses be also continuous. If n/(n+
m)→ λ as n,m→∞, 0 < λ < 1,
(i)

lim
n,m→∞

P (rejectH0 | H0 is true) ≤ P (sup
p
S(F ;G)(p) > cα | H0 is true) = α,

with equality holds when X ew
= Y , where

S(F ;G)(p) = (1− λ)1/2W(p ;F )− λ1/2W(p ;G).

(ii)
lim

n,m→∞
P (rejectH0 | H0 is false) = 1.
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Bootstrapping for p-value
One method is to resample from the the combined sample with replacement (see
Van der Varrt and Wellner, 1996). AssumeX∗1 , X

∗
2 , · · · , X∗n, Y ∗1 , Y

∗
2 , · · · , Y ∗m be

a bootstrap sample from the combined sample X1, X2, · · · , Xn, Y1, Y2, · · · , Yn.
Denote

F̂ ∗n(t) =
1

n

n∑
i=1

I(X∗i ≤ t), Ĝ∗m(t) =
1

m

m∑
i=1

I(Y ∗i ≤ t),

the empirical distributions based on the bootstrap samples. Then we compute
the following test statistic.

S∗,1(F̂n; Ĝm) =

(
nm

n+m

)1/2

sup
p

(
W (p ; F̂ ∗n)−W (p ; Ĝ∗m)

)
.
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The other method is to bootstrap independently from two samples. That
is, let F ∗n be the empirical distribution based on bootstrap sample from
X1, X2, · · · , Xn, and G∗m be the empirical distribution based on bootstrap sam-
ple from Y1, Y2, · · · , Ym. Then, compute the following statistic,

S∗,2(F̂n; Ĝm) =

(
nm

n+m

)1/2

sup
p

((
W (p ; F̂ ∗n)−W (p ; F̂n)

)
−
(
W (p ; Ĝ∗m)−W (p ; Ĝm)

))
.

Then, the p-values are defined as, for j = 1, 2,

p∗j = P
(
S∗,j(F̂n; Ĝm) ≥ S(F̂n; Ĝm)

)
.
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Theoretical Support:
Under the same condition, assuming that α < 1/2, a test for the right spread
order based on any of the following rules:

RejectH0 if p∗j < α, j = 1, 2,

satisfies the following,

lim
n→∞

P (rejectH0 | H0 is true) ≤ α,

lim
n→∞

P (rejectH0 | H0 is false) = 1.

In practice, we will use Monte Carlo simulation to approximate the p-value.
That is, the simulated p-value would be

p∗j ≈
1

R

R∑
i=1

I
(
S∗,ji (F̂n; Ĝm) > S(F̂n; Ĝm)

)
, j = 1, 2,

where R is the bootstrap replication.
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Monte Carlo Results
The replication number of R is 1, 000. The rejection rates are computed for the
bootstrap method with respect to the significant level of 0.05 and 0.01 and we
consider equal sample size cases for the simulations.

Example 1
We generate X’s samples from N(1, 1) and Y ’s samples from N(2, 4). Hence,
the variance of X is smaller than the variance of Y .

N 25 50 100 500
p∗1 0.9732 0.995 0.9982 1
p∗2 0.997 1 1 1

From the table, it could be seen that both statistics suggest not rejecting the null
hypothesis, i.e.,

H0 : W (p ;F ) ≤ W (p ;G) for all p ∈ [0, 1].
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Example 2
We generate X’s samples from N(1, 1) and Y ’s samples from N(4, 1). Hence,
the variance of X is equal to the variance of Y . But, they are different in the
location parameters.

N 25 50 100 500
p∗1 0.761 0.968 0.807 0.995
p∗2 0.558 0.937 0.679 0.974

From the table, in this case, there is no enough evidence to reject the null hy-
pothesis. This coincides with the location free property of right spread order.



First Page

Title Page

Contents

JJ II

J I

Page 35 of 37

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example 3
Let X be a uniform (0, 1) random variable, and Y be an exponential random
variable with rate 4, then, for 0 < p < 1,

W (p ;F ) =

∫ ∞
F−1(p)

F̄ (x)dx =
(1− p)2

2
,

W (p ;G) =

∫ ∞
G−1(p)

Ḡ(x)dx =
1− p

4
.

It could be seen that they have a cross at p = 1/2. Now, we generate data from
both distributions. From Table 3, it is seen that the null hypothesis is rejected. It
works well even in small samples!

N 25 50 100 500
p∗1 0.004 0 0 0
p∗2 0.001 0 0 0
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Example: RFM data

The first data set was collected to study survival times in the presence of pol-
lutants (cf. Hoel, 1972). The data set consists of two groups of survival times
of RFM strain male mice, and the cause of death was thymic lymphoma. The
first group with sample size 22 lived in a conventional laboratory environment,
while the second group with sample size 29 was in a germ free environment.

The simulated p-values are p∗1 = 0.978 and p∗2 = 0.665 with 1000 bootstrap
replications.
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Thanks!


