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Interest in developing food, feed, and other useful products from farmed insects has
gained remarkable momentum in the past decade. Crickets are an especially popular
group of farmed insects due to their nutritional quality, ease of rearing, and utility.
However, production of crickets as an emerging commodity has been severely impacted
by entomopathogenic infections, about which we know little. Here, we identified and
characterized an unknown entomopathogen causing mass mortality in a lab-reared
population of Gryllodes sigillatus crickets, a species used as an alternative to the
popular Acheta domesticus due to its claimed tolerance to prevalent entomopathogenic
viruses. Microdissection of sick and healthy crickets coupled with metagenomics-
based identification and real-time qPCR viral quantification indicated high levels of
cricket iridovirus (CrIV) in a symptomatic population, and evidence of covert CrIV
infections in a healthy population. Our study also identified covert infections of Acheta
domesticus densovirus (AdDNV) in both populations of G. sigillatus. These results add
to the foundational research needed to better understand the pathology of mass-reared
insects and ultimately develop the prevention, mitigation, and intervention strategies
needed for economical production of insects as a commodity.

Keywords: reared crickets, insects as food and feed, Gryllodes sigillatus, cricket viruses, entomopathogenic
viruses

INTRODUCTION

Insect production is a rapidly growing industry globally. While the practice of farming insects has
been around for millennia (e.g., silkworm farming and apiculture) (Defoliart, 1995), applications
for mass-produced insects continue to expand beyond traditional uses (Castro-López et al., 2020;
van Huis, 2020b), to include chitin production (Hahn et al., 2020), waste management and
valorization (Surendra et al., 2016, 2020; Gasco et al., 2020), and use as feed for both pets, including
cats and dogs (Bosch et al., 2014), and agricultural animals (Makkar et al., 2014; Henry et al.,
2015; Tomberlin et al., 2015). Moreover, edible insects reared for direct human consumption
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(e.g., mealworms and crickets) are becoming an increasingly
attractive solution to address the world’s critical need for novel
and environmentally sustainable protein sources (van Huis et al.,
2013; Hawkey et al., 2021). Worldwide, farmed insects have the
potential to become a critically important commodity, buffering
against food insecurities, providing additional revenue streams
for rural and urban farmers, and offering sustainably produced
resources in a growing number of applications (van Huis et al.,
2013). Crickets (family: Gryllidae) are an especially popular
group of insects due to their ease of rearing and nutritional
profile (Wang et al., 2004; Zielińska et al., 2015; Stull et al.,
2018) and are already used in many foods, including nutritional
and functional additives (Hall et al., 2017; Osimani et al., 2018;
Udomsil et al., 2019), and feed applications (van Huis, 2020a;
Magara et al., 2021).

The demand for mass-produced insects is steadily increasing
due to their utility with relatively low associated costs (Wilkie,
2018); however, there are several obstacles that hinder farmed
insects from becoming an extensively utilized resource, including
a dearth of rigorous empirical data (van Huis, 2017; Stull and
Patz, 2020). Critical among these gaps is a lack of research on
the entomopathogenic microbes that negatively impact reared
insect colony health and production despite infectious disease
outbreaks plaguing modern insect farms for decades (Eilenberg
et al., 2018; Maciel-Vergara et al., 2021). As with traditional
animal livestock, farmed insects are susceptible to parasites
and pathogens, including viruses, bacteria, fungi, microsporidia,
and nematodes (Kaya and Vega, 2012; Eilenberg et al., 2015).
Pathogenic viruses can devastate reared insect populations
(Maciel-Vergara and Ros, 2017) and especially so within cricket
colonies, which are often reared in environments ideal for virus
transmission (i.e., crowded, humid, and warm). For example, the
Acheta domesticus densovirus (AdDNV), a small parvovirus, is
responsible for causing severe epizootics throughout European,
North American, and Asian cricket farms, resulting in massive
mortality and product losses of the commonly utilized house
cricket, A. domesticus (Styer and Hamm, 1991; Liu et al., 2011;
Szelei et al., 2011; Weissman et al., 2012; Pham et al., 2013b). As
a direct response to these outbreaks, many producers switched to
farming alternative species, including Gryllodes sigillatus in North
America due to reports that they were less susceptible to AdDNV
(Weissman et al., 2012).

Beyond a single study (Weissman et al., 2012), we know little
about viral disease and susceptibility in G. sigillatus, yet the list of
entomopathogenic viruses infecting other farmed cricket species
continues to grow to include iridoviruses, nudiviruses, and other
dicistroviruses. Moreover, because there have not been wide-scale
systematic surveillance efforts (de Miranda et al., 2021b), it is
very likely that there are other pathogenic viruses among reared
crickets still to be discovered. Here, we provide one of the first
empirical reports of the identification and characterization of a
viral pathogen in a diseased colony of lab-reared G. sigillatus
crickets. We screened diseased colonies for known cricket viruses
by measuring viral prevalence across sexes using both real-
time PCR (qPCR) as well as Sanger sequencing and contrasted
these results with a related population with no apparent signs
of infection. Furthermore, we screened for novel pathogens by

performing a non-targeted shotgun metagenomic analysis on
guts and hemolymph from adult crickets. Metagenomic data
corroborate our qPCR results and provide a complete genome
of the suspected disease-causing agent, cricket iridovirus (CrIV)
with significant similarities to the previously reported lizard–
cricket iridovirus (Liz–CrIV) (Papp and Marschang, 2019). Our
results add to the critical, but presently scarce, research on
insect pathology of farmed crickets and highlight the importance
of understanding viral infection and transmission dynamics in
reared insect colonies.

MATERIALS AND METHODS

Cricket Colonies
Experimental G. sigillatus crickets came from either of two
populations (“Diseased”: an apparently diseased population, or
“Healthy”: an apparently disease-free population) of lab-reared
colonies (20 individuals of each sex within each population; 80
crickets total). These populations were descendants from the
same ancestral wild-caught crickets collected from Las Cruces,
New Mexico (United States) and have been cultured in a lab
setting since 2001. Populations were split and maintained in
separate labs since 2007. Symptoms present in the Diseased
colony were high, intermittent mortality among late-instar
nymphs and adults, a strong putrid odor within rearing
containers, milky white hemolymph which appeared iridescent
under illuminated magnification, increased cuticle and tissue
frailty, and underdeveloped or absent ovaries in some adult
females (Figure 1). Rearing methods followed standard cricket

FIGURE 1 | Micro- and macroscopic images of pathology discovered in adult
Gryllodes sigillatus. (A) Ventral view of crickets from the Healthy population
with no apparent signs of infection (from left to right: female, male, female).
(B) Ventral view of crickets from the Diseased population with clear signs of
infection (from left to right: female, male, female). (C) Ventral view of hemocoel
of male crickets from the Healthy (left) and Diseased (right) populations.
(D) Dissected guts from a female from the Diseased population. Note the
presence of nodules (black arrow) as well as the characteristic iridescent
sheen (white arrows).
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rearing protocol within a research laboratory setting (Duffield
et al., 2019). Briefly, about 500 crickets were housed in 55 L
plastic storage bins with ventilated lids packed with egg carton
to increase rearing surface area. They were provisioned with
a standard diet (roughly equal parts Mazuri R© Rat and Mouse
Diets and Purina R© Cat Chow Complete pellets) and water (glass
vials plugged with moist cotton) ad libitum. All individuals were
housed in an environmental chamber at 32◦C on a 16 h:8 h
light:dark cycle. Experimental individuals were at least 1-week-
old post-eclosion when they were killed by freezing at−80◦C.

DNA, RNA Extraction, and cDNA
Synthesis
To screen for DNA and RNA viruses, we extracted both DNA and
RNA from whole body homogenates. Previously frozen (−80◦C)
crickets were placed individually in tubes with 1 mL sterile 1x PBS
(pH 7.2) and two 3.2 mm diameter sterile stainless-steel beads
and macerated using a TissueLyser II (Qiagen, Germany). The
resulting liquid homogenate was removed (about 0.9 mL) and
placed in a new sterile tube for DNA and RNA extraction.

DNA was extracted from 200 µL of cricket homogenate
using the DNeasy Blood and Tissue kit (Qiagen) following
the “Purification of total DNA from insects” protocol. We
adapted these methods to include an addition of 200 µL of
ATL buffer to the homogenate with 20 µL proteinase K and
kept this mixture at 56◦C overnight. RNA was extracted from
100 µL of cricket homogenate using the RNeasy Mini prep
kit (Qiagen) following the “Purification of Total RNA from
Animal Tissues” protocol. DNA and RNA were estimated via
a NanoDrop OneC Microvolume UV-Vis Spectrophotometer
(Thermo Fisher Scientific). All samples were stored at −20◦C
until further use.

Real-Time PCR (qPCR) Detection and
Quantification
For quantification purposes, we designed a primer targeting
a tubulin-like reference gene (“tubu3,” GS-tubu-F3
5′-TGCGAGATCGTATTCCGTGG-3′ and GS-tubu-R3 5′-
ACCTCGGGAGAGTCAATCCA-3′, amplicon size = 137 bp)
using Primer-BLAST (NCBI) and used this as our reference gene
target throughout (all primers from IDT, Inc., United States).
Prior to conducting qPCR assays, we normalized DNA
samples to 100 ng/µL, based on NanoDrop estimates. RNA
was normalized to 1 µg, treated with DNA Wipeout, and
then converted to cDNA using the QuantiTect Reverse
Transcription Kit (Qiagen).

Viral screening targeted 8 known viruses identified in
reared cricket populations, based on primary literature searches
(Table 1): cricket iridovirus (CrIV) (Jakob et al., 2002; Papp
et al., 2014), A. domesticus densovirus (AdDNV) (Szelei et al.,
2011), A. domesticus mini ambidensovirus (AdMADV) (Pham
et al., 2013c), Gryllus bimaculatus nudivirus (GbNV) (Huger,
1985; Wang et al., 2007), A. domesticus volvovirus (AdVVV)
(Pham et al., 2013a), cricket paralysis virus (CrPV) (Wang
et al., 2019), A. domesticus iflavirus (AdIV) (de Miranda et al.,
2021b), and A. domesticus virus (AdV) (Valles and Chen, 2006).

While most of these viruses are associated with high mortality,
the pathology associated with AdMADV, AdVVV, and AdIV is
currently unknown (Fernandez-Cassi et al., 2019; de Miranda
et al., 2021b).

Absolute quantification was performed using known
standards via double-stranded DNA (dsDNA) fragments (IDT,
Inc., gBlocks Gene Fragments) designed to target the genes of
interest (Table 1). The absolute abundance was expressed as the
ratio of viral copies to cricket genome (tubu3) copies. For single
stranded viruses, calculated copies were divided by 2. Real-time
qPCR reactions were run on a Quant-Studio 6 Real-Time
PCR instrument (Thermo Fisher Scientific, United States), and
included a melt-curve stage to confirm product specificity. The
identity of the viruses detected in our assays was confirmed via
Basic Local Alignment Search Tool (BLAST, NCBI) following
traditional PCR and Sanger sequencing (Table 1). One microliter
of DNA or cDNA product was used in a 10 µL qPCR reaction
using gene specific primers (Table 1) and PowerUp SYBR green
Master mix kit (Qiagen). qPCR cycling conditions consisted of
holding at 50◦C for 2 min and 95◦C for 2 min and 40 cycles of
1 s at 95◦C and 30 min at 60◦C. Standard curve efficiencies were
99.03% (R2 = 0.9989) for AdDNV and 91.31% (R2 = 0.9985)
for CrIV. The limit of quantification for each qPCR assay was 1
copy/µL for both AdDNV and CrIV.

Metagenomic Analysis
To screen for novel viruses, we performed non-targeted shotgun
metagenomic sequencing of four adult Diseased crickets. DNA
extracts from the hemolymph of each specimen and two
dissected guts were used for library preparation and multiplexing
using the Illumina Nextera DNA Flex kit. Briefly, libraries
were prepared using the Nextera DNA flex library standard
protocol according to the manufacturer’s instructions (Illumina,
Nextera DNA Flex Library Prep Reference guide). Each sample
was diluted to 240 ng of gDNA in 30 µL of nuclease-free
water for the Tagmentation reaction, using 10 µL of Bead-
Linked Transposase (BLT) and 10 µL of TB1 solution with
an incubation period of 15 min at 55◦C and then held at
10◦C. Following Tagmentation, the DNA-BLT complex was
washed three times using Tagmentation wash buffer and the
tagmented DNA amplified with 5 cycles of PCR using the
Enhanced PCR Mix (EPM) and Nextera DNA CD i5 and i7
index adapters (Illumina). Libraries were cleaned and 30 µL
of eluted library was transferred to a new sample plate to
measure their concentrations via a Quant-iTTM High-Sensitivity
dsDNA Assay Kit (Thermo Fisher Scientific) on a Varioskan
Lux (Thermo Fisher Scientific) microplate reader. Each sample
library was diluted to 4 nM concentration, and 5 µL of the
normalized library was denatured with 5 µL of 0.2 N Sodium
acetate. A total of 6 Flex libraries were created (2 from gut
samples and 4 from hemolymph samples). Samples were pooled
and sequenced on an Illumina MiSeq system (Illumina) using
a MiSeq Reagent V3 (2 × 300 bp) sequencing kit (Illumina) at
the National Center for Agricultural Utilization Research (Peoria,
Illinois, United States). Metagenomic data was submitted to
the Sequence Read Archive (SRA) database under BioProject
accession number PRJNA764167.

Frontiers in Microbiology | www.frontiersin.org 3 November 2021 | Volume 12 | Article 780796

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-780796 November 24, 2021 Time: 13:39 # 4

Duffield et al. Viral Infections in Gryllodes sigillatus

TABLE 1 | Real-time PCR (qPCR) and Sanger sequencing (in gray) primers used to target known viruses infecting rearing crickets (family: Gryllidae) in this study.

Virus target Gene target Primer sequence Amplicon size (bp) References

DNA viruses Invertebrate iridescent virus Major capsid protein GGTTTCATCGATATCGCCAC
GAAAAGTAATCACTGCCCAT

1,079 Jakob et al., 2002
type 6 (IIV-6)/Cricket iridovirus

(CrIV)–dsDNA TGGTTYACCCAAGTACCKGTTAG
ATGCKGACCATTCGCTTC

73 Papp et al., 2014

A. domesticus densovirus
(AdDNV)—ssDNA

Non-structural protein GGATTGATGGAGCCTTACGA 200 Szelei et al., 2011

CTTGCTCCGTTTTCTTCGAG

GCGAGCAATCCCGACTACTA 96 Present study

CGCGTTGTTGATGTCCTTCC

A. domesticus mini
ambidensovirus
(AdMADV)—ssDNA

Non-structural protein ACCGTGCAAGTGTTGGAGAA
GTAGTGGCAGTCGTGGACAA

134

G. bimaculatus nudivirus
(GbNV)—dsDNA

Capsid protein TGGCTTGTAAAAACGCACCG
ACGGTCGGATCGCAAGATTT

127

A. domesticus volvovirus
(AdVVV)—ssDNA

Capsid protein-like protein GTCGTTTGATGCATCGTCGG
CCACGCCTAGGAATAGCCAG

139

RNA viruses Cricket paralysis virus
(CrPV)—ssRNA

Structural polyprotein CTCAAGGGTCATAGCCCACC
ATGTGGTGGTTTGTGGCTGA

74

A. domesticus iflavirus
(AdIV)—ssRNA

RNA polymerase TCATCCATCAGGGTTTGCCC
CCCGGCCGATATGTCTGAAA

137

A. domesticus virus
(AdV)—ssDNA

Capsid protein CCGCGTGTTGAACTCACTTG
GTCGGGGTACGAGCAATAGG

117

Metagenomic paired reads were processed using different
bioinformatic applications available on the University of South
Florida high performance computing cluster. Raw sequence
reads were quality-filtered using Trimmomatic v 0.36.0 (Bolger
et al., 2014) with default parameters. FastQC v 0.11.5 (Andrews,
2010) was used to verify the quality of trimmed sequences and
assemblies were performed using metaSPAdes v 3.11.1 with
default parameters (Nurk et al., 2017). Assembled contigs were
filtered by size on the Galaxy web-based platform (Afgan et al.,
2018) to retain contigs larger than 100 bp. Contig sequences were
compared against the GenBank non-redundant database using
BLASTx as implemented in DIAMOND (Buchfink et al., 2015)
to identify viral sequences.

BLAST searches revealed large contigs (∼195 kb) with
significant similarities to an iridovirus (Liz-CrIV; accession
number MN081869) in each of the six libraries. These contigs
were further explored using Geneious Prime v 2021.1.1 given
that their size approximated near-complete iridovirus genomes.
Since iridovirus genomes can be circularly permutated (Jakob
et al., 2001), putative unit length genomes were obtained by
identifying terminally redundant sequences for annotation
purposes. To evaluate genome coverage, quality-trimmed
forward reads from each library were mapped to the identified
unit length iridovirus genomes using default parameters within
the “Map to Reference” Geneious tool. Genome co-linearity
was verified using Mauve with the progressiveMauve algorithm
(Darling et al., 2010) as implemented in Geneious Prime. A
representative viral genome, named cricket iridovirus isolate
Liz-CrIV_USDA_2019 (CrIV_USDA), was submitted to
GenBank under accession number OK181107. Genome-wide
pairwise identities among genomes were calculated by aligning
sequences using EMBOSS Stretcher (Madeira et al., 2019).
Alignments were then used to calculate pairwise identities

using the formula employed by the Species Demarcation
Tool, which has been used to classify viral sequences (Muhire
et al., 2014). Specifically, the percent identity values were
calculated as [1-(M/A)]∗100 where M is the number of
mismatching nucleotides and A the total number of aligned
positions with no gaps.

Statistical Analysis
To compare viral copy abundance across populations and
between sexes, we performed general linear models for the ratio
of viral copies normalized to cricket tubu3 copies including
population (Diseased or Healthy), sex, and virus (CrIV or
AdDNV) and their interactions. Individuals with viral copies
lower than the limit of quantification were removed from
analysis. All abundance data were log transformed to fit normality
assumptions and reported results derive from the best models
as determined by corrected Akaike’s information criterion (AICc
using the stepAIC function in R; Sugiura, 1978; Hurvich and
Tsai, 1989) or before the removal of terms from the final model.
All statistical analyses were carried out in R (version 4.0.5, R
Core Team, 2021) and graphs were made using GraphPad Prism
9 (version 9.0.0). Viral prevalence and abundance data can be
accessed in Supplementary Material Data Sheet 1.

RESULTS

Viral Prevalence and Abundance via
qPCR
Across 80 crickets sampled, we detected CrIV and AdDNV
in all but one individual for each virus (both females from
the Healthy population, 98.75% positivity rate for each target)
(Table 2). Based on qPCR, we did not find any evidence
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TABLE 2 | Prevalence of targeted viruses across two populations (“Healthy” and “Diseased”) of male and female adult reared Gryllodes sigillatus using qPCR.

Virus target Diseased population Healthy population

Females Males Females Males

DNA viruses Cricket iridovirus (CrIV) 20/20 (100%) 20/20 (100%) 19/20 (95%) 20/20 (100%)

A. domesticus densovirus (AdDNV) 20/20 (100%) 20/20 (100%) 19/20 (95%) 20/20 (100%)

A. domesticus mini ambidensovirus (AdMADV) 0/80 (0%)

G. bimaculatus nudivirus (GbNV) 0/80 (0%)

A. domesticus volvovirus (AdVVV) 0/80 (0%)

RNA viruses Cricket paralysis virus (CrPV) 0/80 (0%)

A. domesticus iflavirus (AdIV) 0/80 (0%)

A. domesticus virus (AdV) 0/80 (0%)

that either population was infected with additional DNA
(AdMADV, GbNV, AdVVV) or RNA viruses (CrPV, AdIV,
AdV) (Table 2).

Notably, crickets from the Diseased population of both sexes
had a much greater abundance of CrIV copies compared to
their Healthy counterparts and significantly more copies of CrIV
than AdDNV in both populations (Tables 3, 4 and Figure 2).
Males and females had similar viral loads of CrIV across
both populations. For AdDNV, males and females from the
Diseased population had similar viral loads while males had
significant lower viral loads compared to females within the
Healthy population (Tables 3, 4 and Figure 2). Both male and
female crickets from the Diseased population also had a greater
abundance of AdDNV compared to the Healthy population
(Tables 3, 4 and Figure 2). Estimated amounts of viral copies per
cricket are listed in Supplementary Table 1.

Genome Sequence of CrIV via Shotgun
Metagenomic Analysis
Metagenomic analysis confirmed the presence of CrIV across
all samples. We identified near-complete CrIV genomes
with high coverage in each sample (mean coverage ranged
from 53x to 1050x), suggesting high viral concentrations.
These genomes shared >99.9% identity (genome size between
individuals ranged from 194,811 to 195,316 bp). Genome-
wide pairwise identities revealed that CrIV isolated from the
Diseased population, referred herein as “CrIV_USDA”, was most
closely related to Liz-CrIV (accession no. MN081869) (97%)
(Figure 3) followed by Invertebrate iridescent virus 6 (IIV6)
(accession no. NC_003038) (71.5%) (Supplementary Figure 1).
We were not able to detect AdDNV in our metagenomic
analysis which could be due to the fact that we had low
concentrations in our samples and AdDNV is a ssDNA virus
with a relatively small genome (5,425 bp) (Liu et al., 2011;
de Miranda et al., 2021a).

DISCUSSION

Entomopathogenic viruses are known to cause significant losses
to the reared insect industry (Maciel-Vergara and Ros, 2017);
however, little is known about their diversity, biology, and host
association. Using a range of molecular approaches in the present

TABLE 3 | Model terms and statistics from generalized linear models for
log-transformed absolute abundance (number of viral copies) of cricket iridovirus
(CrIV) and Acheta domesticus densovirus (AdDNV) detected across two
populations (“Healthy” and “Diseased”) of male and female adult reared
Gryllodes sigillatus.

Model term F df P

Population 1503.20 1 <0.0001

Sex 4.28 1 0.0404

Virus 1013.97 1 <0.0001

Population × Sex 4.12 1 0.0441

Population × Virus 674.91 1 <0.0001

Sex × Virus 0.02 1 0.8750

Population × Sex × Virus 3.88 1 0.0506

Bold terms denote statistical significance (α = 0.05).

study, we were able to identify an cricket iridovirus (CrIV) as
the likely causal agent of a disease affecting a colony of reared
G. sigillatus, a species of growing importance for food, feed,
and industrial purposes (Weissman et al., 2012). Metagenomic
analyses revealed that our CrIV isolate, CrIV_USDA, was most
closely related to lizard-cricket iridovirus (Liz-CrIV) (Papp et al.,
2014; Papp and Marschang, 2019). Gross pathology included
milky hemolymph, decreased fecundity, sluggish behavior, and
melanotic lesions, all indicative of an active microbial infection.
Our molecular identification and quantification assays indicated
that Diseased crickets were supporting large numbers of CrIV.
Diseased crickets were estimated to have about 1.5 trillion more
copies of CrIV than Healthy crickets, based on the volume
of DNA template extracted and used in our qPCR assays
(Supplementary Table 1). Although our studies did not include
a complete Koch’s postulate to confirm the causal agent infecting
this colony of G. sigillatus, our molecular characterization based
on shotgun metagenomics of hemolymph and gut samples and
qPCR-based absolute quantification strongly suggests that CrIV
is the main viral entomopathogen driving the pathology in the
Diseased population. Future studies will focus on dissecting the
intricacies of host-pathogen interactions, routes of transmission,
and identifying the biological factors that might be associated
with an active and covert infection. The latter consideration will
be essential as we do not yet fully understand why CrIV presents
as an active infection in one population but not the other.
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TABLE 4 | Post hoc comparisons of interactions from generalized linear models for log-transformed normalized number of viral copies of cricket iridovirus (CrIV) and
Acheta domesticus densovirus (AdDNV) detected across two populations (“Healthy” and “Diseased”) of male and female adult reared Gryllodes sigillatus.

Contrast Estimate ± SE Z ratio P

Population (Diseased vs. Healthy) CrIV Females 16.97 ± 0.528 32.14 <0.0001

Males 17.00 ± 0.521 32.62 <0.0001

AdDNV Females 2.31 ± 0.528 4.37 <0.0001

Males 4.41 ± 0.521 8.45 <0.0001

Sex (Males vs. Females) CrIV Diseased 0.486 ± 0.521 0.93 0.3516

Healthy 0.517 ± 0.528 0.98 0.3279

AdDNV Diseased −0.466 ± 0.521 −0.89 0.3715

Healthy 1.633 ± 0.528 3.09 0.0020

Virus (CrIV vs. AdDNV) Female Diseased −15.64 ± 0.521 −30.01 <0.0001

Healthy −0.98 ± 0.535 −1.83 0.0669

Male Diseased −14.69 ± 0.521 −28.19 <0.0001

Healthy −2.10 ± 0.521 −4.02 0.0001

Bold terms denote statistical significance (α = 0.05) following Tukey adjustment for multiple comparisons.

FIGURE 2 | Viral loads of cricket iridovirus (CrIV) (left) and Acheta domesticus densovirus (AdDNV) (right) detected across two populations (“Diseased” and “Healthy”)
of male and female adult reared Gryllodes sigillatus (geometric mean ± 95% confidence intervals). The graphs depict the ratio of viral copies normalized to cricket
tubu3 copies, shown on a log scale. Post hoc comparisons are indicated on Table 4.

Invertebrate iridescent viruses (family Iridoviridae) have non-
occluded icosahedral particles, approximately 130 nm diameter,
that contain a double-stranded DNA genome of about 140–210
kpb (Williams et al., 2000; İnce et al., 2018). They can infect a
broad range of invertebrates, including terrestrial isopods, and
have been isolated from several insect taxa (Kleespies et al., 1999;
Jakob et al., 2002). Furthermore, certain invertebrate iridoviruses
are known to cause disease in reptiles (Just et al., 2001; Weinmann
et al., 2007; Marschang, 2011; Papp et al., 2014) and amphibians
(Stöhr et al., 2016) via ingestion of infected insects, posing a
particular health concern for the pet trade industry. In crickets,
CrIV is known to cause disease in several species, including
reared Gryllus texensis (Adamo et al., 2014), G. bimaculatus (Just
and Essbauer, 2001), G. campestris, A. domesticus (Kleespies et al.,
1999), and now G. sigillatus.

Our metagenomic analyses confirm the draft genome of Liz-
CrIV from a previous study (Papp and Marschang, 2019) as

a distinct virus from Invertebrate Iridescent virus 6 (IIV-6),
although formal analyses are needed to determine if Liz-CrIV
represents a strain of IIV-6 or a new species of invertebrate
iridovirus (Papp and Marschang, 2019). Analyses from the
current study also provide the most complete genome of Liz-
CrIV. Importantly, our PCR primers were not able to discern
between IIV-6 and Liz-CrIV and so future screening efforts
should target areas of the genome that distinguish the two
(see Supplementary Figure 1). Liz-CrIV was first discovered
in Europe from commercially produced crickets in the mid to
late 1990’s (Kleespies et al., 1999; Just and Essbauer, 2001). The
populations used in the present study, descents of field-caught
crickets in New Mexico, have been reared in a research lab setting
since 2001, and have had no history of contact with commercially
produced crickets. While we currently do not know the origins or
the spread of this virus, our study confirms that Liz-CrIV is active
across multiple continents.
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FIGURE 3 | Schematic showing a genome-wide pairwise comparison between CrIV_USDA and lizard–cricket iridescent virus (Liz-CrIV). Each block, including
“Identity,” “CrIV_USDA,” and “Liz-Cr-IV,” illustrates the shared identity and organization for each genome, respectively. The numbers at the top each block indicate
alignment positions. The “Identity” panel highlights identical sites (green), mismatches (red), and gaps (white) across the alignment. Non-overlapping open reading
frames encoding putative proteins larger than 80 amino acids in each genome are highlighted with yellow arrows. Areas of the Liz-CrIV genome annotated as gaps
(G) in GenBank are highlighted with gray arrows.

In addition to active CrIV infections, our study found
evidence for covert, or asymptomatic, infections of both CrIV
and Acheta domesticus densovirus (AdDNV), the latter of which
has been documented in G. sigillatus previously (Weissman
et al., 2012). Covert infections of invertebrate iridovirus are
reportedly more prevalent than active lethal infections in some
insect populations (Williams, 1993, 2008; Tonka and Weiser,
2000). Although our study design did not allow us to examine
in detail the effects that covert infections might have on
cricket health, covert invertebrate iridovirus infections may
have significant fitness consequences for hosts (e.g., increased
development times and reduced fecundity) (Marina et al., 1999,
2003), which could have important ramifications for product
yield in production facilities. Our study design prevents us from
distinguishing between a persistent infection (with low levels of
virus replication) or a latent infection and additional experiments
(e.g., measuring transcription) could elucidate the nature of these
covert infections (Williams et al., 2017).

Interestingly, we found a significant effect of the interaction
between sex and population on the abundance of viral copies
such that Healthy males had a lower abundance of AdDNV
copies compared to Diseased males and females from either
population. Although females are the larger sex (Sakaluk et al.,
2019), our analysis normalized abundance values such that body
size would not account for these differences. Thus, our results
could be indicative of a higher tolerance of AdDNV by females,
but controlled exposures would be needed to confirm this. We did
not see the same sex-effect for CrIV. Few studies, if any, quantify
viral loads across sex in reared and farmed insects, which makes
generalizing this finding difficult. However, previous studies have
demonstrated higher immune activity in female G. sigillatus
compared with males (Gershman et al., 2010), which could
contribute to differences in viral loads.

A key aspect of this system yet to be determined is the
route of virus transmission, although per os is suspected to
be the main route for CrIV (Williams et al., 2005). Adamo
et al. (2014) found that CrIV can be transmitted horizontally
via topical exposure in G. texensis and found no evidence
of virus within the testes. Similar results were found by
Just and Essbauer (2001) who found no signs of infection
in the ovaries or testes in G. bimaculatus. However, both
studies assessed transmission among populations experiencing
active infections and so it is plausible that CrIV may be
transmitted vertically when populations are exhibiting covert
infections. Indeed, several classes of pathogenic viruses, including
iridoviruses, are known to adopt mixed-mode transmission
(both vertical and horizontal transmission) based on the relative
fitness gains that are obtained via each transmission strategy
(Ebert, 2013). Because horizontal transmission is riskier when
hosts are rare but vertical transmission is constrained by host
fitness, this mixed-mode transmission balances the likelihood
of transmission with the constraints of host fitness. Thus,
vertical transmission is favored when host densities are low
while horizontal transmission is favored when host density is
high. Further studies exploring the potential for mixed-mode
transmission of CrIV across populations with active and covert
infections will be critical and may explain the discrepancy
between populations.

In conclusion, foundational research on the pathology of
mass-produced insects, including crickets, will be essential to
maintain the health and yield necessary for this growing industry.
Here, we report the viral loads across sexes of active and covert
infections of two pathogenic viruses (CrIV and AdDNV) in two
populations of reared G. sigillatus. Importantly, these findings
will inform future work addressing diagnostic, mitigation, and
therapeutic interventions in reared insect colonies that could
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ultimately improve product yield and support this burgeoning
sustainable industry.
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