
Abstract 
The pollution of heavy metals within surface water is a rising global concern. As heavy metals 
are transported through rivers, they can bioaccumulate through the food web, leading to harmful 
concentrations within waterways. In urban areas such as the city of Chicago, Illinois, the use of 
road salts is a concern as elevated concentrations of chloride (Cl–) can reduce surface water 
quality. Since surface waters can carry heavy metals and Cl– salts over a large distance, methods 
of in-situ phytoremediation are of growing importance. Through a pilot project, a floating garden 
system has been installed along a portion of the Chicago River. This work aims to answer the 
following question: Do floating gardens alter the heavy metal concentrations of surface water? 
To address this question, two hypotheses were proposed: 1) Heavy metal (Al, As, Be, Cd, Cu, 
Cr, Mn, Zn) concentrations of surface waters upstream from the floating gardens will be higher 
than the concentrations downstream. 2) The floating gardens will alter metal concentrations more 
during the growing season (summer) than the dormant season (winter). To test these hypotheses, 
surface water samples were collected and analyzed for heavy metals and Cl- upstream and 
downstream of the floating gardens during both the growing and dormant seasons. The results of 
this study show a lack of heavy metal presence in the waters. Due to this, the effectiveness of the 
floating gardens in removing heavy metal concentrations was unable to be determined. This 
study is useful in understanding heavy metal concentrations in the Chicago River and can serve 
to support studies on changing concentrations in the river.   
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Introduction and Background 

Heavy Metal Pollution 

The pollution of heavy metals within surface and groundwater is a rising global concern 

(Vaze and Chiew, 2002; Hnaťuková et al., 2009; Trujillo-González et al., 2016; Chen et al., 

2018; Kobielska et al., 2018; Lu et al., 2018). Heavy metals such as aluminum (Al), arsenic (As), 

cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), manganese 

(Mn), and zinc (Zn) can be detrimental to both the environment and human health (Kobielska et 

al., 2018). While some heavy metals such as Cu, Mn, and Cr are essential for human health, 

excess amounts can be toxic (Rubio Armendáriz et al., 2015; Saha et al., 2017). Essential heavy 

metals such as Cu, Cr, Mn, Se, and Zn influence biochemical and physical functions of plants 

and animals as they are an important part of enzymes and can influence oxidation-reduction 

reactions (Marchand et al., 2010).  

Heavy metals are considered a priority pollutant of watersheds and can cause adverse 

effects to the ecosystems they pollute (Saha et al., 2017). Metals such as Hg, Cd, and Pb pose a 

high risk to human health and are highly toxic even at low concentrations (Kavcar et al., 2009; 

Saha and Zaman, 2013; Saha et al., 2017).  Some of the negative effects on human health include 

hair loss (Cr) (Salem et al., 2000), brain and kidney damage (Cu) (Salem et al., 2000; Wuana and 

Okieimen, 2011; Ali et al., 2013), cancer of the lungs (Ni) (Salem et al., 2000; Khan et al., 2007; 

Ali et al., 2013), and impaired development in children (Pb) (Salem et al., 2000; Wuana and 

Okieimen, 2011; Ali et al., 2013). The formation of free radicals by heavy metals causes 

oxidative stress, which can attack DNA and lead to cell damage (Ali et al., 2013; Jaishankar et 
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al., 2014). The effect of heavy metals on the blood cells of fish include: a wrinkled cell 

membrane, cell nucleolus damage and shifting, and nucleus destruction which can lead to anemia 

or death in fish species (Shah, 2017).  

 While natural sources contribute to heavy metal pollution, the majority of pollution 

around the study site stems from anthropogenic activities that can be related to production 

processes and disposal of metal alloys (Bradl, 2005; Wuana and Okieimen, 2011; Kobielska et 

al., 2018). Within the urbanized Chicago River (IL) watershed, the primary sources of heavy 

metal pollution are from the drainage of impervious areas, domestic wastewater, and industrial 

wastewater. The majority of the pollution in urban water sources is related to road input caused 

by an increase in stormwater runoff (Vaze and Chiew, 2002; Trujillo-González et al., 2016). The 

accumulation of road dusts within urban areas can deposit inorganic minerals such as Cu, Cd, Cr, 

Pb, and Zn on the impermeable surfaces of roads and roofs within the city (Trujillo-González et 

al., 2016). In addition to the accumulation of road dusts, urban streams may receive pollution via 

discharge from combined sewage overflows (CSOs) (Hnaťuková et al., 2009). 

In the portion of the Chicago River located around Goose Island in Chicago, Illinois 

(Figure 1 and Figure 2), large impermeable areas of urban landscape are drained into the river. 

Four CSO locations near the north and south ends of the canal discharge directly into the canal 

during high rainfall events. CSOs are utilized to manage the mixture of urban runoff and 

municipal wastewater and to transport stormwater and wastewater from homes, businesses, and 

industries in one single pipe (Hnaťuková, 2011). Due to the limiting capabilities of single pipe 

transport, high flow events create issues within these combined sewage systems. Periods of 

continuous rainfall result in an overfilling of these systems. To handle the overfilling, a portion 

of the flow is discharged directly into streams and rivers through CSO, increasing heavy metal 
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concentrations in water (Komínková et al., 2016). Upstream from the CSO, the concentrations 

for Cu, Pb, and Zn were 4.5 μg/L, 1.8 μg/L, and 7 μg/L to 22 μg/L, respectively. While 

downstream the concentrations for Cu, Pb, and Zn increased to 9.6 μg/L, 4.8 μ/L, and 27 μg/L.  

Upon discharging to aquatic ecosystems, the metals are divided between solid and liquid 

phases that affect stream water and stream sediment (Komínková et al., 2016). In the aquatic 

phase, heavy metals can undergo precipitation and co-precipitation, which can create insoluble 

compounds. Iron oxides can co-precipitate copper, nickel, zinc, and manganese while manganese 

oxides can co-precipitate nickel and zinc (Sheoran and Sheoran, 2006). The surfaces for co-

precipitation are highly dependent upon pH. Under acidic conditions, iron oxides are positively 

charged and can co-precipitate oxyanions of selenium such as selenite while under alkaline 

conditions, the surfaces are negatively charged and can co-precipitate cationic copper, zinc, 

nickel, and cadmium (Sheoran and Sheoran, 2006).  

Although the metals in stream sediments are generally immobile, variations in pH, 

salinity, and redox potential cause the release of metals back into the aqueous phase (Hnaťuková 

et al., 2009), leading to the remobilization and increased bioavailability of heavy metals 

(Hnaťuková, 2011). At contaminated sites the most abundant heavy metals are Pb, Cr, As, Zn, 

Cd, and Hg (Wuana and Okieimen, 2011). As heavy metals are transported through rivers, they 

can be absorbed by algae and bioaccumulate through the food web, leading to harmful 

concentrations within the soils and waterways. Bioaccumulation can occur by either direct 

toxicity to plants and wildlife or from secondary toxicity to animals feeding on contaminated 

organisms. (Beringer et al., 2007). The metal concentrations in biota are dependent upon 

development stage, behavior, sex, and history of exposure in an organism (Komínková et al., 

2016).  
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Chloride Pollution   

Beginning in the 1940s, sodium chloride (NaCl) was used as a deicing agent for 

roadways. The application of road salts has increased since then to account for increasing 

urbanization (Jackson and Jobbagy, 2005; Kelly et al., 2008). The continual use of road salts is a 

concern as elevated concentrations of chloride (Cl-) can run off of the impervious surfaces in 

cities (Kelly et al., 2008; Ludwikowski and Peterson, 2018) and reduce the quality of surface 

water (Ludwikowski and Peterson, 2018; Willmert et al., 2018). Annually, 270,000 tons of road 

salts are applied to the roads in the Chicago, Illinois region (Kelly et al., 2008; Friederici, 2004). 

Wastewater treatment plants are another main source of chloride pollution and add an estimated 

175,000 metric tons of salt per year to the Chicago region (Kelly et al., 2012). The combined 

sewage systems in the city of Chicago deliver the road salt runoff and discharge from wastewater 

treatment plants directly into surface streams and rivers (Kelly et al., 2012). Since Cl- is highly 

soluble in water, the majority of Cl- is transported via urban runoff into water bodies and can 

affect the biota within an ecosystem (Kelly et al., 2009).  

In urban areas, the concentrations of Cl- can exceed the levels for freshwater life to 

survive. In addition, ecosystem functions can be altered at lower than lethal levels (Kelly et al., 

2008). While there are no studies on the effects of chloride on aquatic life in the Chicago area, a 

study by Corsi et al. (2010) in Milwaukee, WI indicated high concentrations of chloride in urban 

streams had negative affects to several aquatic species. The chloride concentrations ranged from 

1000 mg/L up to 7,730 mg/L in 8 of the 14 streams studied, elevated above the 860 mg/L EPA 

acute water quality criteria (Corsi et al., 2010). In all 14 of the study locations, the chloride 

concentrations exceeded the EPA chronic water quality criteria of 230 mg/L. At concentrations 
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above 1770 mg/L the water flea, C. dubia, was unable to reproduce and at concentrations above 

2420 mg/L mortality occurred. For the freshwater minnow, P. promelas, reduced weight and 

survival occurred when concentrations reached 2920 mg/L.  

The elevated salt concentration coupled with elevated heavy metal concentrations and 

temperature changes can further inhibit ecosystem functions (Kelly et al., 2008). Chloride altered 

soil can mobilize heavy metals by inducing ion exchange, lowering the pH of the soil, and 

causing colloid dispersion (Bäckström et al., 2004). The two main processes controlling the 

increase in heavy metal mobility due to salinity are: 1) the chemical bonding of salt anions with 

heavy metals, and 2) the exchange of salt cations with positively charged heavy metals (Paalman 

et al., 1994; Norrström, 2005; Acosta et al., 2011). Concentrations of Cd, Cu, Ni, and Zn 

detected in wetland effluent shows a dramatic increase during periods of deicing, (Bäckström et 

al., 2004; Huber et al., 2016) and during the winter season the surface runoff system becomes a 

source of contamination. Thus, the interaction between metals and salt necessitates the analysis 

of Cl- as it is important to consider heavy metal release in areas prone to traffic area runoff 

(Huber et al., 2016). Norrstrom (2005) applied 3.55 g/L (0.1M) of NaCl into two soil columns 

and found that 37% and 45% of Cd was released from each column respectively. Road salt as 

NaCl results in a large remobilization of Cd, Cu, and Pb, while road salt as MgCl2 releases higher 

levels of Cd (Nelson et al., 2009; Huber et al., 2016). The mobilization of Pb can be increased by 

de-icing salts as it is driven by negatively charged particle transport (Norrström, 2005).  

However, the overall extent of mobilization depends upon the type and amount of heavy metals 

present, the type of salt influencing salinization, the soil properties, and the hydrogeology 

(Norrström, 2005; Acosta et al., 2011).  
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Phytoremediation 

 With the increasing concentrations of heavy metals in the environment, methods for 

remediation are of great importance. Remediation can be accomplished by physical, chemical, or 

biological means. Current methods of remediation include isolation, immobilization, physical 

separation, and extraction (Wuana and Okieimen, 2011; Ali et al., 2013). The practice of these 

methods is determined by the cost, effectiveness, availability, general acceptance, toxicity 

reduction, and the ability to be used with mixed wastes (Wuana and Okieimen, 2011). In general, 

the physical and chemical methods are more expensive and require intense labor. In addition, 

physical and chemical methods can cause harmful changes in soil properties and can create 

secondary pollution problems (Ali et al., 2013). An environmentally friendly and cost-effective 

solution to this problem is phytoremediation.   

Phytoremediation refers to the use of plants and their associated microorganisms to 

degrade, remove, or detoxify hydrocarbons, chlorinated solvents, pesticides, and heavy metals 

from soil and groundwater (Susarla et al., 2002; Wuana and Okieimen, 2011; Ali et al., 2013). 

Plants promote the removal of these contaminants by altering the chemical composition of soils, 

increasing organic carbon, improving oxygen flow into the root zone, intercepting chemical 

movement, and affecting the microbial and plant enzyme transformations of chemicals (Paterson 

et al., 1990; Shimp et al., 1993; Simonich and Hites, 1995; Wuana and Okieimen, 2011). While 

phytoremediation is not the best method for removing high levels of contamination, it is an 

economical and effective method for removing low levels of pollution (Wuana and Okieimen, 

2011).  

There are many advantages of phytoremediation when compared to other remediation 

methods. Phytoremediation (a) is economically practical, (b) does not disrupt the environment, 
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(c) is aesthetically pleasing, and (d) can provide resources and habitats for organisms. Some 

disadvantages include phytoremediation (a)  is dependent upon the growth of the plant, (b) is 

difficult to implement in the large scale, (c) requires the plants to be tolerant to the pollutant, (d) 

can release contaminated plants back into the environment, and (e) it requires plant disposal sites 

(Wuana and Okieimen, 2011). Phytoremediation involves two mechanisms, phytoextraction and 

phytofiltration (Wuana and Okieimen, 2011; Ali et al., 2013).  

Phytoextraction refers to the uptake of contaminants in soils by plant roots and the 

subsequent movement of the contaminants into the plant tissues (Wuana and Okieimen, 2011; 

Singh and Kumar, 2017). After the metals are absorbed at the root surface the metal moves from 

the cell membrane into the root’s cells. Upon reaching the cells, a small portion of the metal is 

immobilized in the vacuole while the rest crosses the cellular membranes and into the root 

vascular tissue where it transitions into the stems and leaves, which can be harvested and 

composted (Wuana and Okieimen, 2011). The high concentrations of metals in the composted 

plants can be diluted to safe levels by combining contaminated biomass with non-contaminated 

biomass (Wuana and Okieimen, 2011).  

Phytofiltration differs slightly from phytoextraction as the metals are accumulated in the 

roots and do not get transported into the leaves. This method is beneficial for the removal of 

metals such as Pb, Cd, Cu, Cr, and Ni that accumulate in the roots of plants. (Galal et al., 2016; 

Singh and Kumar, 2017). Galal et al. (2016) revealed significant bioaccumulation factors (BF), 

or capability of a plant to absorb heavy metals from the soil, for milkweed. For every metal 

tested, milkweed had a BF greater than one which indicates the accumulation of heavy metals: 

for Cd the BF was 130, for Fe the BF was 9, for Mn the BF was 8, for Zn and Cu the BF was 7, 
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and for Pb the BF was 2 (Galal et al., 2016); indicating that milkweed has good 

phytoremediation potential. 

Floating Wetlands and Floating Gardens 

 Artificial floating wetlands are systems designed to enhance surface water interactions 

with plants, microorganisms, and the atmosphere to remove contaminants from polluted waters 

(Headley and Tanner, 2008). The use of floating wetlands has been identified as a means to 

capture harmful nutrient loads on rivers (Li et al., 2010; Zhao et al., 2012; McAndrew and Ahn, 

2017; Wang et al., 2018) through phytoextraction and phytofiltration. Floating wetlands have 

been used successfully for the treatment of stormwater (Kerr-Upal et al., 2000; Headley and 

Tanner, 2008), combined stormwater-sewer overflow (Tao et al., 2014), and water supply 

reservoirs (Li et al., 2010). They are composed of a buoyant floating substrate from which 

wetland plant systems grow. Below the substrate, an extensive network of roots and attached 

biofilms are developed within the water column (Li et al., 2010; Wang and Sample, 2014; 

McAndrew and Ahn, 2017). These biofilms contribute to nutrient removal  by providing for the 

biochemical transformation of contaminants (Wang and Sample, 2014) and the filtration of 

particulates (Headley and Tanner, 2012). The hydroponic growth provides the plants with direct 

access to the nutrients in the water column. Thus, the nutrient uptake is greater for plants on 

floating wetlands (Li et al., 2010, Headley and Tanner, 2012; McAndrew and Ahn, 2017; 

Pavlineri et al., 2017). Specifically, heavy metals may be removed by floating gardens via the 

capture of fine suspended particulates by roots and biofilms and by the deposition of sediments 

and their eventual immobilization.  

Sedimentation is a principle method in removing heavy metals from water in wetlands 

and while it is not a straightforward physical reaction, various chemical processes are linked to 
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the aggregation and eventual settling of metals. The clay sediment in the riverbed of the Chicago 

River could serve as a site of adsorption for heavy metals. Heavy metals are adsorbed to organic 

matter and sediment by cation exchange and can be physically attached to clay and organic 

matter by electrostatic attraction, leading to a reduction of metals in the water column. Once 

attached, the metals will remain as metal ions. However, the strength of adsorption is dependent 

upon element type and the competition with other elements and can result in either short or long 

term retention (Marchand et al., 2010). Sheoran and Sheoran (2006) found the retention of Pb, 

Cu, and Cr by adsorption to be greater than Zn and Cd and that greater than 50% of heavy metals 

are easily adsorbed and removed by sedimentation.  

In a wetland, the biomass of  macrophytes can influence the sedimentation of suspended 

solids and limit erosion by slowing flow velocity and increasing the hydraulic pathways through 

a system (Lee and Scholz, 2007; Marchand et al., 2010). This is an important factor as the 

dynamic flow conditions of the Chicago River water can be slowed, and metals may be carried 

from the water to the substrate/biota of the floating gardens. Upon entering this substrate, the 

roots of floating plants can serve as traps for suspended solids. Sinicrope et al. (1992) found the 

efficiency of wetland mesocosms for metal removal to be 75-78% for cadmium, chromium, and 

zinc, 84% for lead, and 55% for nickel. The majority of these metals were retained in the soils 

and fine roots. 

 Several studies have proven that floating gardens are effective on stagnant waters in 

removing nitrogen, phosphorous, and heavy metals from water and that they have the capability 

to remove contaminants from water bodies (Zhao et al., 2012; Cao and Zhang, 2014; Wang et al., 

2018). Zhao et al. (2012) evaluated the efficiency of a floating island in the removal of nutrients 

and heavy metals. The study indicated that the average removal rates for total nitrogen and total 
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phosphorous during the summer season were 36.9% and 64.5% respectively. The average 

removal rates for Cr was 79.5%, while the removal of Cu, As, Cd, Hg, and Pb had an average 

removal of 48% (Zhao et al., 2012) and the implementation of floating bed can purify landscape 

water (Wang et al., 2018). The results of the experiments showed that floating beds could 

successfully bring down contaminant concentrations to a safe level. While each of these studies 

are conducted in different ecosystems and utilize different plants for phytoremediation, it is 

significant to note that they all recorded the effects of floating gardens in a controlled system. 

The present study will provide insight into the benefits of floating gardens on flowing rivers and 

could suggest the large-scale applicability to this rising method of remediation. 

 

Objective 

 Since surface waters can carry heavy metal and chloride ions over a large distance, 

methods of in-situ phytoremediation are of growing importance. One promising solution to 

reduce heavy metal concentrations is the use of floating gardens on streams and rivers. However, 

floating gardens are a relatively new concept and the majority of studies focus on their 

effectiveness of nitrogen, phosphorus, and chloride reduction (Zhao et al., 2012; Wang et al., 

2018) with little to no information available on the effectiveness of heavy metal reduction in 

dynamic flow systems. This study works to address the following question: 1) Do floating 

gardens alter the heavy metal concentrations of the river water? To address this question, two 

hypotheses were tested: 1) Heavy metal concentrations (As, Cd, Cr, Cu, Fe, Pb, Mn, Se, Zn) of 

the waters upstream from the floating gardens will be higher than the concentrations 

downstream. 2) The floating gardens will alter the metal concentrations more during the growing 

season than during the dormant season.  
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Methodology 

Study Area 

This study centered on a portion of the Chicago River flowing adjacent to Goose Island 

in Chicago, Illinois (Figure 1). Goose Island canal was constructed in the 1870’s and has 

undergone periods of channelization and dredging. Because commercial boat traffic is no longer 

permitted, dredging of the canal has stopped and meters of loose sediment have accumulated on 

top of hard clay. The canal ranges from 1 meter deep at the northern end to 2.5 meters deep at the 

southern end and is 24-37 meters in width. The site is focused on the eastern edge of the canal 

(Figure 2) at a set of artificially constructed floating gardens built from interconnected tubes of 

coconut husk to provide a buoyant substrate (Figure 3) for local plants, such as Marsh-marigold, 

Rose mallow, and Blue vervain (Table 1). This artificial habitat provides an ecosystem for 

aquatic life and introduces both allochthonous and autochthonous organic matter to the river. The 

eastern bank adjacent to the floating gardens is cement and steel lined, while the bank across 

from the gardens is natural with trees and plants growing along the river (Figure 4).  

The flow conditions at the site are from the northeast to the southwest with a mean 

discharge of 31 ft3/s based upon the last 67 years of water data collected by the USGS (U.S. 

Geologic Survey, 2020). With such conditions, trash buildup and accumulation can occur along 

the northern edge of the gardens. Next to the study site, large impermeable areas of urban 

landscape are drained into the canal, which may lead to heavy metal and chloride pollution. The 

Chicago Metropolitan Water Reclamation District (CMWRD) has collected heavy metal and 

chloride data on a monthly basis at locations two miles upstream on the North Branch of the 

Chicago River (Table 2) and three miles downstream on the South Branch of the Chicago River 

(Table 3) of the canal. In 2018, monthly heavy metal concentrations for As, Cd, Cr, Cu, Pb, Mn, 
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Se, and Zn were less than 2 μg/L on both the North and South Branches of the Chicago River.  

The Cl- concentrations peaked at 572 mg/L in February of 2018 on the South Branch of the 

Chicago River and 248 mg/L in March on the North Branch of the Chicago River.  

Table 1: Plant species that have experienced successful growth in the floating gardens 

Species Name Common Name 
Acorus calamus Sweet flag 
Caltha palustris Marsh-marigold 
Carex bromoides Brome sedge 
Carex comosa Bristly sedge 
Carex stricta Tussock sedge 
Decodon verticillatus Waterwillow 
Filipendula rubra Queen of the prairie 
Hibiscus moscheutos Rose mallow 
Iris virginica var. shrevei Southern blue flag 
Juncus effusus Common rush 
Justicia americana American water-willow 
Rumex altissimus Pale dock 
Saururus cernuus Lizards tail 
Scirpus cyperinus Woolgrass 
Verbena hastata Blue vervain 
Carex comosa Longhair sedge 
Rumex altissmus Pale dock 

 

Table 2: North Branch Chicago River: 2 miles upstream of the floating gardens; Chicago Water Metropolitan 

Reclamation District 

Date   Cl 
(mg/L) 

As  
(mg/L) 

Cd  
(mg/L) 

Cr  
(mg/L) 

Cu  
(mg/L) 

Pb sol 
(mg/L) 

Mn 
(mg/L) 

Se  
(mg/L) 

Zn  
(mg/L) 

12-Mar-18 248 <0.02 <0.001 <0.003 0.005 <0.01 0.019 0.014 0.022 
9-Apr-18 229 <0.050 <0.005 <0.005 <0.025 <0.030 0.017 <0.001 <0.100 

14-May-18 165 <0.050 <0.005 <0.005 <0.025 <0.03 0.024 <0.05 <0.100 
11-Jun-18 110 <0.050 <0.005 <0.005 <0.025 <0.030 0.016 <0.050 <0.100 
16-Jul-18 111 0.001 <0.002 <0.004 0.002 <0.002 0.013 <0.002 0.018 

13-Aug-18 91 0.001 <0.002 <0.004 0.002 <0.002 0.014 0.001 0.016 
10-Sep-18 100 0.001 <0.002 <0.004 0.002 <0.002 0.013 <0.002 0.011 

8-Oct-18 86 0.001 <0.002 <0.004 0.004 0.002 0.027 <0.002 0.022 
13-Nov-18 122 <0.002 <0.002 <0.004 0.003 <0.002 0.012 <0.002 0.024 
10-Dec-18 151 <0.002 <0.002 <0.004 0.002 <0.002 0.013 0.002 0.021 
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Table 3: South Branch Chicago River: 3 miles downstream of the floating gardens; Chicago Water Metropolitan 

Reclamation District 

Date   Cl 
(mg/L) 

As  
(mg/L) 

Cd  
(mg/L) 

Cr  
(mg/L) 

Cu  
(mg/L) 

Pb  
(mg/L) 

Mn  
(mg/L) 

Se  
(mg/L) 

Zn  
(mg/L) 

22-Jan-18 349 <0.02 <0.001 <0.003 <0.004 <0.01 0.026 <0.005 0.023 
20-Feb-18 572 <0.02 <0.001 <0.003 0.005 <0.01 0.035 0.013 0.027 
19-Mar-18 270 <0.02 <0.001 <0.003 0.006 <0.01 0.027 0.006 0.022 
16-Apr-18 295 <0.050 <0.005 <0.005 <0.025 <0.030 0.043 <0.050 <0.100 

21-May-18 166 <0.050 <0.005 <0.005 <0.025 <0.03 0.027 <0.05 <0.100 
18-Jun-18 73 <0.050 <0.005 <0.005 <0.025 <0.030 0.009 <0.050 <0.100 
23-Jul-18 70 0.001 <0.002 <0.004 0.003 <0.002 0.009 <0.002 0.015 

17-Sep-18 57 0.001 <0.002 <0.004 0.002 <0.002 0.007 <0.002 0.010 
19-Nov-18 132 <0.002 <0.002 <0.004 0.003 <0.002 0.012 0.001 0.025 
17-Dec-18 156 <0.002 <0.002 <0.004 0.003 <0.002 0.018 <0.002 0.022 
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Figure 1: Goose Island Canal in relation to Chicago, Illinois 
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Figure 2: Study location on the eastern edge of Goose Island Canal. It is important to make note of the garden size 

(3 m x 30 m) in relation to the river size (30 m x 37 m). 
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Figure 3: Floating substrate made of coconut husk used for planting on the gardens. 

 

Figure 4: View from east to west showing the natural bank on the opposite side of the floating gardens. 
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Figure 5: Upstream and downstream sampling locations. 

Water Sampling 

 Grab samples were drawn 10 cm below the surface of the river upstream and downstream 

(Figure 5) of the floating gardens with a MasterFlex E/S portable sampler during the growing 

season (July-August) and dormant season (November-December) of the gardens. The dates of 

sampling for the growing season were: 7/6/19, 7/8/19, 7/30/19, 8/5/19, and 8/13/19 and the dates 

for the dormant season were: 10/24/19, 11/5/19, 11/7/19, 11/16/19, and 11/19/19 (Figure 6). 

During both the growing season and the dormant season, five sampling events took place, each 

consisting of four sets of 10 water samples. For each upstream and downstream sampling event, 

10 grab samples were collected to analyze for heavy metals and 10 grab samples were collected 

to analyze for anions. Each sample was drawn directly from the upstream or downstream 

location and placed into an acid washed 30 ml sample bottle. The dissolved heavy metal samples 

were filtered in the field through a 0.4- µm membrane filter and acidified to a pH of 2 with 
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concentrated sulfuric acid. The anion samples were filtered in the ISU lab with a 0.4- µm 

membrane filter prior to analysis. All samples were transported in an ice chest back to ISU where 

they were then frozen. During each sampling event, a YSI Sonde was used to measure in-situ 

temperature (°C), dissolved oxygen (mg/L), and pH. 

 

Figure 6: Sampling events during both the growing (top row) and dormant (bottom row) seasons. 

 

Chemical Analysis 

Surface water samples were analyzed for heavy metal concentrations (Al, As, Be, Cd, Cr, 

Cu, Pb, Mn, Se, Zn) and anion concentrations (Cl-) at Illinois State University. Heavy metal 

concentrations were measured using a PerkinElmer Optima 8300 Inductively Coupled Plasma 

Atomic Emission Spectrometer (ICP-AES) and anion concentrations were measured on a Dionex 

ICS-1100 Ion Chromatograph. Metal standards were made by diluting a purchased stock solution 

Figure 6: Sampling events during both the growing (top row) and dormant (bottom row) seasons. 
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from Inorganic Ventures containing all the metals listed in table 4 and the anion (Cl-) samples 

were compared to anion standards made in the Illinois State University Laboratory for 

Environmental Analysis. The detection limits for the ICP-AES (Table 5) were provided by Tony 

Ludwig, the instrument technician for the Illinois State University Chemistry Science Laboratory 

Building. Sample duplicates, sample blanks, and independent standard calibration were used to 

maintain quality assurance and quality control.   

 

Table 4: Stock standard solutions from Inorganic Ventures 

ICP Calibration Standard- Trace 
Metals 

IV-Stock-13 Matrix: HNO3  
Analyte μg/mL Analyte μg/mL 
Al 500 Cu 100 
As 100 Mn 100 
Be 100 Pb 100 
Cd 25 Se 25 
Cr 100 Zn 100 

 

Table 5: Final standard concentrations used for calibration curves 

Standard 

As, Be, Cd, Cr, 
Cu, Mn, Pb, Se, 

Zn 
Al 

μg/L μg/L 
1 0.001 0.005 
2 0.01 0.05 
3 0.1 0.5 
4 1.0 5.0 
5 10 50 
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Table 6: Detection limits of ICP-AES at Illinois State University, provided by Tony Ludwig 

Detection Limits-: ICP-AES 
Analyte μg/L Analyte μg/L 
Al 1 Cu 0.4 
As 1 Mn 0.1 
Be 0.09 Pb 1 
Cd 0.1 Se 2 
Cr 0.2 Zn 0.2 

 

Data analysis 

The data were separated by element (Al, Be, As, Cd, Cl, Cr, Cu, Fe, Pb, Mn, Se, Zn) for 

the growing season and the dormant season. Due to each of the metals being below the detection 

limits, no data analysis of the metals occurred. Dissolved oxygen, pH, and temperature values 

were tested for normality using a Shapiro-Wilks test and found to be normally distributed. Paired 

t-tests (α = 0.05) were used to assess any statistical differences for each pair (upstream vs. 

downstream).  

Results 

Heavy Metals 

To determine the influence of the floating gardens on heavy metal concentrations in the 

Chicago River, upstream versus downstream data sets from the growing season (July-August) 

were compared to those of the dormant season (October-November). These sampling events 

revealed levels below the detection limits (BDL) for each of the tested metals (Al, As, Be, Cd, 

Cr, Cu, Pb, Mn, Se, Zn) thus data analysis of the heavy metals was unable to occur. However, at 

concentrations below the detection limit of the ICP-OES, each of the metals were less that the 

United States Environmental Protection Agency (USEPA) secondary (SMCL) and maximum 
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contaminant levels (MCL) (EPA, 2009; EPA 2020). The USEPA SMCL guideline for Al ranges 

from 50 μg/L to 200 μg/L, the MCL for Be is 4 μg/L, for Cd the MCL is 5 μg/L, for Cr the MCL 

is 100 μg/L, for Mn the SMCL is 50 μg/L and for Zn the SMCL is 500 μg/L.  

 

Table 6: Upstream vs. downstream concentrations of DO, pH, and temperature during the growing and dormant 

seasons 

Species Location 
Growing Season Dormant Season 

N Mean P N Mean P 

DO (mg./L.) Upstream 5 5.28 0.634 5 6.24 0.381 
Downstream 5 5.17 5 6.50 

pH Upstream 5 7.51 0.215 5 7.14 0.41 
Downstream 5 7.37 5 7.33 

Temp. (°C) Upstream 5 23.04 0.477 5 11 0.25 
Downstream 5 23.08 5 10.9 

 

Table 7: Upstream growing vs. upstream dormant and downstream growing vs. downstream dormant for DO, pH, 

and temperature 

Species 
p-value 

Upstream Downstream 
DO (mg./L.) 0.079 0.073 

pH 0.841 0.222 
Temp. (°C) < 0.001*  < 0.001*  

 

Table 8: Upstream vs. downstream concentrations of Cl- during the growing and dormant seasons 

Species Location 
Growing Season Dormant Season 

N Median (mg/L) P N Median (mg/L) P 

Cl Upstream 5 124.828 0.839 5 165.839 0.493 
Downstream 5 117.943 5 171.227 
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Table 9: Upstream growing vs. upstream dormant and downstream growing vs. downstream dormant for Cl- 

Species 
p-value 

Upstream Downstream 

Cl (mg/L) < 0.001 < 0.001 
 

 

 

Figure 8: Upstream vs. downstream values for the growing and dormant season. The box and whisker plots 

represent the range of concentrations with outliers plotted as individual point and the line representing the median 

concentrations. A: Dissolved oxygen, B: pH, C: Temperature 
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Figure 9: Upstream vs. downstream chloride concentrations during both the growing and dormant season. The box 

and whisker plots representing the range of concentrations with the outlier plotted as individual points and the line 

representing the median concentration.  

 
Other Parameters 

Dissolved Oxygen 

For the growing season, the upstream and downstream mean was 5.28 mg/L and 5.17 

mg./L respectively. For the dormant season, the upstream and downstream mean was 6.24 mg/L 

and 6.50 mg./L respectively (Figure 8A, Table 6). The results of the paired t-test indicated that 

there was not a statistically significant difference in upstream vs. downstream concentration 

during either the growing (p = 0.634) or dormant (p = 0.381) season. Significant differences 

were not detected seasonally with p = 0.079 upstream and p = 0.073 downstream. The mean up 

concentration of 5.28 mg/L in the growing season was not statistically different (p = 0.079) from 

the median value of 6.24 mg/L measured during the dormant season. The mean downstream 
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concentration in the growing season was not statistically different (p = 0.073) from the median 

value of measured during the dormant season (Table 7). 

 

pH 

For the growing season, the upstream and downstream mean was 7.51 and 7.37 

respectively. For the dormant season, the upstream and downstream mean was 7.14 and 7.33 

respectively (Figure 8B, Table 6). The results of the paired t-test indicated that there was not a 

statistically significant difference in upstream vs. downstream pH during either the growing (p = 

0.215) or dormant (p = 0.41) season. The mean upstream in the growing season was not 

statistically different (p = 0.81) from the mean value measured during the dormant season. The 

mean downstream pH in the growing season was statistically different (p = 0.22) from the 

median value measured during the dormant season (Table 7). 

 

Temperature 

For the growing season, the upstream and downstream mean was 23.08 °C and 23.08 °C, 

respectively. For the dormant season, the upstream and downstream mean was 11.0 °C and 10.9 

°C, respectively (Figure 8C, Table 6). The results of the Paired T-test indicated that there was not 

a statistically significant difference in upstream vs. downstream concentration during either the 

growing (p = 0.477) or dormant (p = 0.25) season. Significant differences were detected 

seasonally with P < 0.001 upstream and downstream. The mean upstream temperature in the 

growing season was statistically different (p < 0.001) from the mean value measured during the 

dormant season. The mean downstream temperature in the growing season was statistically 
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different (p < 0.001) from the mean downstream temperature during the dormant season (Table 

7). 

 

Chloride 

Chloride was detected in the water column during both the growing and dormant season 

with higher concentrations detected during the dormant season (Figure 9, Table 8). For the 

growing season, the upstream and downstream median was 124.8 mg/L and 117.9 mg/L 

respectively. For the dormant season, the upstream and downstream median was 165.8 mg/L and 

171.2 mg/L respectively. The results of the Mann-Whitney Rank Sum test indicated that there 

was not a statistically significant difference in upstream vs. downstream concentration during 

either the growing (p = 0.839) or dormant (p = 0.493) season. The median upstream 

concentration in the growing season was statistically different (p < 0.001) from the median value 

measured during the dormant season. The median downstream concentration. in the growing 

season was statistically different (p < 0.001) from the median value measured during the dormant 

season (Table 9). 

Discussion 

Absence of metals 

Each of the metals analyzed (Al, As, Be, Cd, Cr, Cu, Mn, Se, Pb, and Zn), were BDL of 

the ICP-OES. Thus, the concentrations for Cu, Pb, and Zn detected in this study were lower than 

what was found by Komínková et al. (2016) at combined sewage overflow sites, which implies 

that the four CSO locations on the canal are not significantly contributing to heavy metal 

contamination. In addition, with each of the heavy metals having concentrations, the 

concentrations of Al, As, Be, Cd, Cr, Cu, Mn, Se, Pb, and Zn were below the surface water 
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levels determined by the World Health Organization. The absence of such metals in the Chicago 

River could be influenced by the chemistry of the river itself, the chemistry of the individual 

metals, or the surface area and surface charge of sediments in the river. The World Health 

Organization has collected data on heavy metal concentrations from surface waters across the 

world and determined the levels of Al, As Be, Cd, Cr, Cu, Mn, Se, and Zn to be on the 

microgram scale.  In the neutral to alkaline waters of the Chicago River, the solubility of metals 

such as Al, As, Be, Cd, Cr, Cu, Pb, Mn, Se, and Zn is low. These metals may precipitate onto 

either sediments or suspended particles in the water (Garbarino et al., 1995) which could help to 

explain the absence of such metals in the water. 

In nature, aluminum is most abundant as insoluble aluminum oxide (Ksp = 1.9 x 10-33 )  

present in water via the reaction (2Al2O3 + 6H+ -> Al3+ + 3H2O). Although no Al was detected in 

this study, dissolved Al concentrations typically range from 1 μg/L to 50 μg/L (World Health 

Organization, 2010). The CMWRD did not determine Al levels in the North and South Branches 

of the Chicago River and direct comparisons cannot be made (Table 2, Table 3). With a detection 

limit of 1.0 μg/L, it is possible that similar concentrations to those determined by the World 

Heath Organization in 2010 were present but unable to be detected in this study.  

Arsenic is mainly present as H3AsO4 derived from the chemical reaction (As2S3 + 6H2O -

> 2H3AsO3 + 3H2S) and will undergo either adsorption onto suspended sediment or precipitate 

with  aluminum hydroxides, iron(III), and manganese oxyhydroxides (Magalhães, 2002). This 

causes the accumulation of As in sediments and in water it is generally found in concentrations 

ranging from 1 μg/L to 2 μg/L.  (World Health Organization, 2010). The CMWRD determined 

As levels in the North and South Branches of the Chicago River to range from 0.1 μg/L to less 
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than 5 μg/L (Table 2, Table 3). With a detection limit of 1.0 μg/L, it is possible that similar 

concentrations were present but unable to be detected in this study.  

Be commonly occurs as beryllium oxide (BeO) and, upon contacting water, reacts to 

form beryllium hydroxide (Be(OH2) which has a low solubility (Ksp = = 6.92 x 10-22) in alkaline 

waters (ROPP 2013). The low solubility of Be was noted in a study of the surface water of the 

Great Lakes with Be concentrations ranging from less than 0.004 μg/L to 0.12 μg/L (World 

Health Organization, 2014). The CMWRD did not determine Be levels in the North and South 

Branches of the Chicago River and direct comparisons cannot be made (Table 2, Table 3). As the 

detection limit for Be was 0.09 μg/L, it is possible that similar concentrations were present but 

unable to be detected in this study.  

Cd is known to form insoluble compounds with a heavy metal such as arsenic, 

magnesium, calcium, strontium, barium, and radium (ROPP 2013). In surface waters, Cd 

concentrations are commonly below 1 μg/L and median concentrations of 110 stations 

throughout the world detected < 1 μg/L of Cd in waters. For example, the Rhine and Danube 

canal in 1988 experienced levels of Cd in surface water ranging from 0.02 μg/L to 0.3 μg/L 

(World Health Organization, 2011). The CMWRD determined Cd levels in the North and South 

Branches of the Chicago River to range from less than 0.1 μg/L to less than 0.5 μg/L (Table 2, 

Table 3). As the detection limit for Cd was 0.1 μg/L, it is possible that similar concentrations 

were present but unable to be detected in this study.  

In waters, dissolved Cr is present in low amounts as insoluble Cr(OH)3 (Ksp = = 6.3 x 10-

31). The average concentration of Cr in surface waters is 0.5 μg/L to 2 μg/L with dissolved Cr 

concentrations ranging from 0.02 μg/L to 0.3 μg/L and levels increasing up to 84 μg/L in highly 

industrial areas (World Health Organization, 1996). The CMWRD determined Cr levels in the 
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North and South Branches of the Chicago River to range from less than 0.3 μg/L to less than 0.5 

μg/L (Table 2, Table 3). As the detection limit for Cr was 0.2 μg/L, it is possible that similar 

concentrations were present but unable to be detected in this study.  

Cu will remain insoluble at the pH and temperature ranges of Chicago River water 

(ROPP 2013), and the concentrations of Cu in surface water can vary from 0.05 μg/L to 1 mg/L 

with a median value of 0.01 mg/L in the United States (World Health Organization, 2004). The 

CMWRD determined Cu levels in the North and South Branches of the Chicago River to range 

from less than 0.2 μg/L to 0.6 μg/L (Table 2, Table 3). As the detection limit for Cu was 0.4 

μg/L, it is possible that similar concentrations were present but unable to be detected in this 

study.  

Pb has a low solubility in neutral to alkaline river waters and levels typically range from 

3 μg/L to 30 μg/L (World Health Organization, 2011). The CMWRD determined Pb levels in the 

North and South Branches of the Chicago River to range from less than 0.2 μg/L to 3 μg/L 

(Table 2, Table 3). As the detection limit for Pb was 1 μg/L, it is possible that similar 

concentrations were present but unable to be detected in this study. 

For Se, levels in surface water can range from 0.06 μg/L to 4 mg/L with concentrations 

increasing as pH decreases due to the formation of soluble selenite compounds (World Health 

Organization, 2011). The CMWRD determined Se levels in the North and South Branches of the 

Chicago River to range from less than 0.3 μg/L to less than 5 μg/L (Table 2, Table 3). Similar to 

the metals discussed above, with a detection limit of 2 μg/L it is possible that similar 

concentrations were present but unable to be detected in this study. 

The concentrations of the heavy metals Al, As, Cd. Cr, Cu, Pb, and Se detected in this 

study were similar to the concentrations detected by the World Health Organization and 
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CMWRD in surface waters. However, such similarities were not present for Mn, Pb, and Zn. In 

surface waters worldwide, levels of Mn typically range from 1 μg/L to 200 μg/L with median 

concentrations of around 16 μg/L (World Health Organization, 2011). The CMWRD determined 

Mn levels in the North and South Branches of the Chicago River to range from 4 μg/L to 1 μg/L 

(Table 2, Table 3). Based on these ranges and the detection limit of 0.1 μg/L, it is expected that 

measurable amounts of Mn should be present in the Chicago River water. However, this is not 

what was found in this study. Zn is naturally present in water and concentrations typically range 

from 5 μg/L to 10 μg/L with some concentrations reaching up to 1.0 mg/L (World Health 

Organization, 2003). The CMWRD determined Zn levels in the North and South Branches of the 

Chicago River to range from less than 10 μg/L to 1 μg/L (Table 2, Table 3). Based these ranges 

and that detection limit of 0.2 μg/L, it is expected that measurable amounts of Zn should be 

present in the Chicago River water. However, this is not what was found in this study with levels 

unable to be determined. The lack of detection of Mn and Zn in this study could be caused by 

errors discussed in the potential error section.  

 

Chloride interaction with metals  

Chloride concentrations at the study site did not experience significant changes upstream 

or downstream during either season. However, seasonal differences were detected with the 

concentration increasing from 117.9 mg/L to 124.8 mg/L in the growing season to 165.8 mg/L to 

171.2 mg/L in the dormant season. Snow events and freezing temperatures occurred during the 

week of November 5, 2019 and road salt application took place throughout the city, contributing 

to the seasonal Cl- changes. While it is expected that the increase in Cl- concentrations seasonally 

would lead to an increase in the mobilization of the heavy metals by inducing ion exchange and 
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causing colloid dispersion (Bäckström et al., 2004; Norrström, 2005; Nelson et al., 2009; Acosta 

et al., 2011; Huber et al., 2016), this was not able to be determined due to the lack of heavy metal 

detection in the water samples.  

 

Role of gardens 

This study did not provide an indication on the effectiveness of the floating gardens to 

alter the water quality of the Chicago River as no heavy metals were detected in the waters. 

However, if metals were to have been detected, potential removal by wetlands could be caused 

by chemical, physical, and biological processes, which include adsorption to sediments and 

organic matter, absorption and biogeochemical changes in plant and bacteria cycles, and 

deposition of suspended solids (Sinicrope et al., 1992; Sheoran and Sheoran, 2006; Marchand et 

al., 2010). With a surface area of approximately 90 m2, the floating gardens have a high potential 

for biofilm growth, which may influence metal removal in the waters. Algae was present in 

visual observations during each sampling event and is a possible uncontrolled mechanism for 

metal removal.  

 Plant uptake and biologic processes are an important means for heavy metal removal in 

wetlands and could potentially cause reduced heavy metal concentrations in the river. In floating 

wetland plants, the roots serve as the primary pathway for metal removal. Although the rate of 

heavy metal removal varies greatly depending on plant growth and metal concentration, the 

uptake per unit area is highest for herbaceous plants such as those in the floating gardens. This 

uptake by plants is a passive movement that involves the exchange of cations through the cell 

wall  and the absorption to anionic sites (Briggs and Lundegardh, 1957; Sheoran and Sheoran, 

2006). The absorption onto anionic sites in cell walls allows for wetland plant tissues accumulate 
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greater heavy metal concentrations than the surrounding environment. However, the 

bioaccumulation of heavy metals within plants was not in the scope of this study and was not 

examined.   

 

Study limitations and future directions 

A significant limitation in this study is the size of the gardens compared to the size of the 

Chicago River. As the gardens only stretch over a fraction of the river, they have a small area of 

influence and are unlikely to affect the chemistry of the waters that are not in direct contact with 

the gardens. In addition, by only collecting surface water samples and not collecting plant 

samples it is possible that additional processes are occurring that were not detected. While the 

large variety of plants on the floating gardens serve to provide resources for aquatic organisms, it 

is possible that a monocultural system of a metal removing plant such as Phragmites 

australis would lead to greater results.  

This study could be expanded in the future by performing a sediment analysis of the 

riverbed to determine heavy metal concentration in the sediments. The results of such an analysis 

could provide the heavy metal concentration in the sediment and support the idea that the heavy 

metals are not suspended in the water column at measurable levels and are instead precipitating 

onto the riverbed. In addition, it would be beneficial to determine heavy metal content of the 

plants in the floating gardens by using an ICP-OES. This would provide additional insight on the 

absorption of the heavy metals onto the biofilms and roots of the plants and hep to explain the 

lack of metals in the water.  
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Potential Error  

The transport of the heavy metal samples may have led to potential error in the heavy 

metal concentrations. Due to the two-hour transport time from Chicago, IL to Illinois State 

University in Normal, IL, the heavy metals samples were not able to be immediately frozen upon 

collection. In addition, potential error may have occurred in the development of the diluted 

standard solutions and the development of the calibration curves used for determining the 

concentrations of the heavy metals.  

Conclusion 

 Heavy metal contamination can have severe impacts on aquatic ecosystems around the 

world. Wetlands and floating gardens can help reduce heavy metal concentrations by promoting 

processes such as sedimentation, adsorption, and biologic uptake. While many studies have 

shown that wetlands may have success in reducing heavy metal concentrations, there is limited 

information available on the role of floating gardens in an uncontrolled river system. The results 

of this study show that the heavy metal (As, Cd, Cr, Cu, Fe, Pb, Mn, Se, and Zn) concentrations 

in the Chicago River are at non-concerning levels. While it was unable to be determined if the 

floating gardens were effective in reducing the concentrations of heavy metals, it is possible that 

if heavy metals were present such removal would occur. This study is useful in understanding the 

heavy metal concentrations in the Chicago River and could serve to support studies on changing 

concentations in the river.   
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Appendix 1: Heavy Metal Concentrations 

Sample Al As  Be  Cd  Cr  Cu  Mn  Se  Pb  Zn  

US = Upstream 
DS = Downstream 

BDL: Below Detection Limit 
μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L 

US-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-6-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 
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DS-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-8-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-7-30-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 
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DS 8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS 8-13-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 
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DS-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-10-24-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-5-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 
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DS-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-7-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-16-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

US-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 
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DS-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

DS-11-19-19 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 

Appendix 2: Chloride Concentrations 

Sample Chloride 

US = Upstream 
DS = Downstream mg/L 

US-7-6-19 124.11 

US-7-6-19 125.55 

US-7-6-19 126.31 

US-7-6-19 126.93 

US-7-6-19 127.38 

US-7-6-19 127.77 

US-7-6-19 128.07 

US-7-6-19 128.61 

US-7-6-19 128.71 

US-7-6-19 129.01 

DS-7-6-19 130.20 

DS-7-6-19 130.45 

DS-7-6-19 130.37 

DS-7-6-19 131.00 

DS-7-6-19 131.04 

DS-7-6-19 132.79 

DS-7-6-19 131.62 

DS-7-6-19 131.61 

DS-7-6-19 131.71 

DS-7-6-19 131.95 

US-7-8-19 130.44 

US-7-8-19 133.23 

US-7-8-19 138.36 

US-7-8-19 137.83 

US-7-8-19 127.29 

US-7-8-19 137.92 

US-7-8-19 110.14 

US-7-8-19 135.78 

US-7-8-19 135.50 

US-7-8-19 138.28 

DS-7-8-19 139.18 

DS-7-8-19 135.11 

DS-7-8-19 138.28 
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DS-7-8-19 138.80 

DS-7-8-19 132.61 

DS-7-8-19 148.90 

DS-7-8-19 113.55 

DS-7-8-19 138.85 

DS-7-8-19 138.67 

DS-7-8-19 64.57 

US-7-30-19 117.92 

US-7-30-19 107.56 

US-7-30-19 108.87 

US-7-30-19 117.57 

US-7-30-19 117.31 

US-7-30-19 117.57 

US-7-30-19 116.76 

US-7-30-19 117.68 

US-7-30-19 116.84 

US-7-30-19 116.93 

DS-7-30-19 115.66 

DS-7-30-19 115.07 

DS-7-30-19 116.83 

DS-7-30-19 116.47 

DS-7-30-19 117.03 

DS-7-30-19 116.93 

DS-7-30-19 117.33 

DS-7-30-19 117.67 

DS-7-30-19 116.63 

DS-7-30-19 117.28 

US-8-5-19 87.39 

US-8-5-19 102.56 

US-8-5-19 103.60 

US-8-5-19 105.28 

US-8-5-19 104.46 

US-8-5-19 104.77 

US-8-5-19 105.19 

US-8-5-19 104.01 

US-8-5-19 103.96 

US-8-5-19 104.81 

DS 8-5-19 105.56 

DS 8-5-19 104.18 

DS 8-5-19 104.51 

DS 8-5-19 105.66 
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DS 8-5-19 105.94 

DS 8-5-19 106.14 

DS 8-5-19 105.43 

DS 8-5-19 107.30 

DS 8-5-19 105.94 

DS 8-5-19 106.86 

US-8-13-19 133.36 

US-8-13-19 132.50 

US-8-13-19 132.78 

US-8-13-19 121.82 

US-8-13-19 131.54 

US-8-13-19 130.94 

US-8-13-19 120.32 

US-8-13-19 133.77 

US-8-13-19 121.70 

US-8-13-19 134.31 

DS 8-13-19 117.60 

DS 8-13-19 118.21 

DS 8-13-19 119.80 

DS 8-13-19 116.36 

DS 8-13-19 120.86 

DS 8-13-19 119.13 

DS 8-13-19 118.68 

DS 8-13-19 114.99 

DS 8-13-19 131.90 

DS 8-13-19 124.00 

US-10-24-19 166.23 

US-10-24-19 148.65 

US-10-24-19 152.55 

US-10-24-19 121.25 

US-10-24-19 74.58 

US-10-24-19 87.48 

US-10-24-19 108.45 

US-10-24-19 160.39 

US-10-24-19 79.66 

US-10-24-19 100.05 

DS-10-24-19 146.14 

DS-10-24-19 64.80 

DS-10-24-19 79.23 

DS-10-24-19 165.32 

DS-10-24-19 80.77 
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DS-10-24-19 64.86 

DS-10-24-19 163.31 

DS-10-24-19 95.16 

DS-10-24-19 72.27 

DS-10-24-19 144.75 

US-11-5-19 165.45 

US-11-5-19 166.50 

US-11-5-19 166.89 

US-11-5-19 167.26 

US-11-5-19 167.71 

US-11-5-19 166.18 

US-11-5-19 168.21 

US-11-5-19 168.53 

US-11-5-19 168.96 

US-11-5-19 169.29 

DS-11-5-19 167.09 

DS-11-5-19 170.45 

DS-11-5-19 171.11 

DS-11-5-19 171.35 

DS-11-5-19 171.85 

DS-11-5-19 172.24 

DS-11-5-19 172.46 

DS-11-5-19 172.86 

DS-11-5-19 173.45 

DS-11-5-19 173.28 

US-11-7-19 82.87 

US-11-7-19 133.36 

US-11-7-19 134.58 

US-11-7-19 129.58 

US-11-7-19 118.09 

US-11-7-19 134.07 

US-11-7-19 109.18 

US-11-7-19 132.60 

US-11-7-19 97.03 

US-11-7-19 137.58 

DS-11-7-19 109.33 

DS-11-7-19 137.12 

DS-11-7-19 133.93 

DS-11-7-19 134.34 

DS-11-7-19 134.21 

DS-11-7-19 134.82 
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DS-11-7-19 131.81 

DS-11-7-19 131.67 

DS-11-7-19 134.17 

DS-11-7-19 134.20 

US-11-16-19 183.07 

US-11-16-19 144.28 

US-11-16-19 165.49 

US-11-16-19 177.33 

US-11-16-19 198.78 

US-11-16-19 206.38 

US-11-16-19 207.70 

US-11-16-19 156.34 

US-11-16-19 155.06 

US-11-16-19 195.46 

DS-11-16-19 195.38 

DS-11-16-19 195.03 

DS-11-16-19 199.77 

DS-11-16-19 206.01 

DS-11-16-19 194.41 

DS-11-16-19 198.12 

DS-11-16-19 192.74 

DS-11-16-19 191.35 

DS-11-16-19 194.49 

DS-11-16-19 200.75 

US-11-19-19 182.43 

US-11-19-19 182.27 

US-11-19-19 182.42 

US-11-19-19 182.35 

US-11-19-19 182.58 

US-11-19-19 182.14 

US-11-19-19 182.47 

US-11-19-19 183.97 

US-11-19-19 183.50 

US-11-19-19 146.18 

DS-11-19-19 181.76 

DS-11-19-19 181.77 

DS-11-19-19 173.05 

DS-11-19-19 181.69 

DS-11-19-19 181.51 

DS-11-19-19 181.99 

DS-11-19-19 143.49 
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DS-11-19-19 153.17 

DS-11-19-19 181.50 

DS-11-19-19 181.52 

Appendix 3: Field Parameters 

Sample Temp DO pH 

US = Upstream 

DS = Downstream 
°C mg/L   

US-7-6-19 23.40 4.38 7.51 

DS-7-6-19 23.40 4.90 7.42 

US-7-8-19 21.40 5.55 7.64 

DS-7-8-19 21.50 5.57 7.75 

US-7-30-19 22.90 5.90 7.22 

DS-7-30-19 23.10 5.17 7.22 

US-8-5-19 23.70 5.34 7.55 

DS 8-5-19 23.60 4.92 7.21 

US-8-13-19 23.80 5.22 7.65 

DS 8-13-19 23.80 5.28 7.23 

US-10-24-19 15.10 5.45 7.48 

DS-10-24-19 15.00 5.16 7.45 

US-11-5-19 11.30 6.87 7.34 

DS-11-5-19 11.30 6.88 7.31 

US-11-7-19 10.90 7.28 7.28 

DS-11-7-19 10.90 8.40 7.46 

US-11-16-19 9.40 6.45 7.42 

DS-11-16-19 9.30 7.02 7.25 

US-11-19-19 11.00 5.16 7.53 

DS-11-19-19 10.90 5.03 7.17 
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