
 
 

ISOLATING LOCATIONS OF POTENTIAL EPISODES OF CAVE COLLAPSE AND THEIR 

RELATIONSHIP TO CAVE LEVEL DEVELOPMENT THROUGH MAJOR RIVER SYSTEM 

INCISIONS 

 

 

ETHAN WILLIAM CONLEY 

46 Pages 

 Karst landscapes, in which dissolution of bedrock is the dominant geomorphic process, 

make up 10%-20% of Earth’s land surfaces and supply between 20%-25% of the global 

population with drinking water. Dissolution dominates the genesis of karst systems, creating 

flow pathways, conduits, and caves. Cave patterns from dissolution can be influenced by 

regional factors, such as water table base-level fluctuations correlating to major river system 

incisions. During periods of negligible regional incisions, cave levels may form. Despite the 

significant role dissolution plays in karstic genesis, physical erosional processes can enhance the 

formation of these karst systems and should not be ignored. For example, the lowering of the 

water table within a cave can expose the cave to more vadose conditions – leading to a decrease 

in roof-supporting buoyancy and ultimately the catastrophic failure of conduit ceilings resulting 

in areas of cave collapse. Cave collapse is an important indicator of the past hydrogeological and 

geomorphological conditions of a karst system; however, the location and extent of cave collapse 

are not always easily identifiable. Identifying areas that have experienced cave collapse can help 

uncover key clues for dissecting regional geologic history in terms of delineating cave levels for 

estimating previous base-levels and for reconstructing the timing of river system incisions. Using 

a LiDAR-derived digital elevation model (DEM), this study improves on previously constructed 



 
 

models for the delineation of cave levels as well as explores a new methodology for isolating 

areas that have experienced cave collapse. For cave level delineation, a histogram generated 

from extracted cave entrance elevations is clustered into four distribution groups. Two separate 

methods of delineation are explored, one using visual breaks in the data and the other utilizing 

Jenks Natural Breaks. For isolating areas of cave collapse, a weighted overlay was constructed 

utilizing three parameters – slope, distance from caves, and distance from streams. A sensitivity 

analysis was conducted to determine the most effective weighted distribution, resulting in a 

distribution of 70%, 20% and 10% respectively.  Visible correlations exist between areas with a 

high probability of past collapse and the contacts between cave levels, as well as with other karst 

features. This indicates that cave collapse may preferentially occur at the boundaries between 

cave levels. It is necessary to ground truth the results of the cave collapse probability map to 

further validate its accuracy, but this study indicates that the methodology may be effective – 

especially as an initial indicator to determine applicable locations to carry out future studies to 

explore cave collapse such as isotopic cosmogenic analysis. 
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CHAPTER I: INTRODUCTION 

Karst landscapes, in which dissolution of bedrock is the dominant geomorphic process, 

make up 10%-20% of Earth’s land surfaces (Palmer, 1991) and supply between 20%-25% of the 

global population with drinking water (Ford and Williams, 2007). Dissolution dominates the 

genesis of karst systems, creating flow pathways, conduits, and caves (Dreybrodt and Gabrovsek, 

2003; Jennings, 1985; Martin and Dean, 2001; Parise and Pascali, 2003; Siemers and Dreybrodt, 

1998). Some features within karst systems can be influenced through regional scale events such 

as major river system incisions (Anthony & Granger, 2007; Springer et al, 2015). River system 

incisions can control regional scale water table base-levels, influencing the levels at which caves 

develop in a karstic region. When base-level is static for an extended period, a cave level may 

form as a visual representation of that base-level elevation (Palmer, 2007).  

Periods of static base-level create cave passages, which can be grouped together by 

elevations (Palmer, 2007). These different groupings are considered as cave levels (Palmer, 

2007). Cave levels are important karst geomorphic features as they can provide evidence to both 

assist in deciphering the timing of cave system development and to improve upon genesis models 

for major river system incisions. Cave level boundaries are often defined by a change in 

predominate horizontal flow to vertical flow. This transition is created by an episodic lowering 

of the local base level that is a response to regional discharge changes. Cave level formation is 

also linked to the presence of fluvial terraces, or flat areas indicative of the long periods of static 

base-level (Worthington, 2005). Analysis of cave entrance elevations has been used to derive 

levels of caves (Peterson et al., 2011; Jacoby et al., 2013). 

Despite the significant role dissolution plays in the initial genesis, physical erosional 

processes enhance the formation of these karst systems (Palmer, 1991) and should not be ignored 
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(Aley, 1965; Bosch and White, 2007; Dogwiler and Wicks, 2004; Palmer, 1991; Sanders, 1981). 

River incisions can trigger physical alterations to karst systems, such as episodes of cave 

collapse (Hill and Polyak, 2014; Lollino et al., 2013) caused by a drop in water level resulting in 

a loss of roof supporting buoyancy (Girihagama et al., 2015). Cave collapse not only 

dramatically changes the landscape and creates new hydrological dynamics for the system, but 

also exposes the geological evidence necessary to identify cave levels.  

Areas of cave collapse are not always easily identifiable. To better understand 

catastrophic rock failure and its impacts on karst systems, identifying locations where collapse 

has occurred is fundamental. Increasing the number of documented areas that have experienced 

cave collapse will also assist future studies in developing models of major river system incisions. 

Previous studies have linked  the lowering of local and regional water table base levels to periods 

of rapid river incision (Anthony & Granger, 2007; Springer et al., 2015). Cave level formation at 

Mammoth Cave (Kentucky), the longest known cave in the world, was closely controlled by the 

local history of fluvial entrenchment linked to rivers in the Interior Low Plateaus that are 

influenced by the Ohio River (Davies, 1960; Powell, 1970; White, 1988; Bocchini and Coltorti, 

1990; Granger et al., 2001).  

Other theories that are currently being explored state that the incision of the Ohio River 

(Woodside et al., 2015) and the Colorado River (Hill and Polyak, 2014) also influence areas of 

cave collapse. The lowering of local and regional base-level may initiate episodes of cave 

collapse. As the water table drops, a cave passage transitions to vadose conditions, creating a 

decrease in roof-supporting buoyancy (Girihagama et al., 2015). The significant loss in buoyancy 

that forces the cave passage ceiling upwards during a change in base-level causes the ceiling to 

fail and collapse entirely. Cave collapse not only creates significant visual surficial changes, but 
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also can create blind valleys and ultimately expose the fluvial terraces associated with cave 

levels. 

Blind valleys are important features when discussing areas that have experienced 

episodes of karstic collapse. Blind valleys, also known as karst windows, are areas of collapse 

that allow entry into the underground environment (Sauro, 2019). Karst windows can vary in size 

from a few meters to hundreds of meters (Sauro, 2019). Karst windows lack the presence of 

standing water as any water that enters the depression is pirated into the subsurface. A key aspect 

in the identification of blind valleys is the lack of surficial drainage patterns exiting the 

depression. Typically, with topographic depressions there are visible fluvial channels from which 

the water exits the depression, but with karst windows these are not present. The lack of drainage 

channels can be visually observed utilizing high resolution aerial imagery. Blind valleys are 

important in the context of this study as they serve as a benchmark for previously identified areas 

of collapse, providing context to the results. 

Exposed streams within blind valleys exhibit steep-sided profiles. Stream profile shape 

offers insight into where along a karst stream profile collapse has previously occurred (White 

and White, 1983; Woodside et al., 2015). Locations along the stream profile that exhibit a “V” -

shaped channel (in cross-section view) and lack near vertical walls are indicative of natural 

downcutting processes. Steam profile cross-sections with vertical bedrock walls are indicative of 

karst collapse. For these areas to be the result of natural downcutting, the rate of incision would 

have had to be extremely rapid, and similar profile shapes would be expected throughout the 

entirety of the system. Areas with vertical bedrock walls are additional support for likely areas of 

collapse with the presence of large, angular sediments, but again the presence of these sediments 

is largely time dependent. This idea can be transferred to thinking strictly about slope in karst 
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areas. From this idea, it is reasonable to suggest that in karstic regions, areas of collapse will 

have steeper slopes than areas that have not experienced collapse.  

Cosmogenic analysis of bedrock and cave sediment is an accurate methodology to 

compliment studies in river system incision history (Granger et al., 1997; Springer et al., 1997); 

however, the utilization of these analyses is expensive. If cosmogenic isotope analysis is to be 

employed by a study exploring areas of potential cave collapse and differing cave levels, it 

would be extremely useful to have a pre-determined, well-supported location as to where to 

collect samples for such a study. As geospatial tools have improved and the resolution of 

geospatial data have increased, spatial analyses may be able to provide accurate preliminary 

assessments for areas that have experienced past episodes of cave collapse. Identified areas can 

be ground-truthed with aforementioned techniques. 

Prior to utilizing geospatial data, it is important to understand the role that spatial 

resolution with play in the analysis. Spatial resolution requirements of geospatial data differ 

depending on the application, including characterizing complex topographic environments. 

Several studies have explored the impact that horizontal resolution has on the effectiveness of 

analysis in different geographic and geologic settings (Hammer et al., 1995; Zhang et al., 1999; 

Peterson et al., 2011; Jacoby et al., 2013; Ferro-Famil & Pottier, 2016). Low resolution spatial 

data are well adapted to characterizing or analyzing phenomena at a large scale as they operate in 

large spatial coverage modes (Ferro-Famil & Pottier, 2016). However, these lower resolutions 

are not always as well suited for small-area environments and cannot distinguish minute 

characteristic details required to fully understand and describe the study area (Ferro-Famil & 

Pottier, 2016). Other studies have shown that a finer resolution does not necessarily result in 
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higher accuracy, as displayed by the Mahalingam et al. (2016) exploration of resolution 

influence on landslide predictive accuracy for landslide susceptibility mapping. 

An unpublished database compiled by the Wittenberg University Speleological Society 

(WUSS) contains the geographic locations of cave openings in and around Carter Caves State 

Resort Park (CCSRP). In 2011, Peterson et al. (2011) began efforts to identify and delineate cave 

levels within the park by pairing the cave data provided in the WUSS database with elevations 

utilizing a digital elevation model (DEM) with 30-meter by 30-meter horizontal resolution. This 

study resulted in a preliminary delineation of four cave levels within CCSRP. Due to the regional 

similarities, the results from CCSRP were compared to those of similar studies at Mammoth 

Cave and the Cumberland Plateau (Anthony and Granger, 2004; Granger et al., 2001), and 

correlations were found. 

Peterson et al. (2011) utilized data with a low horizontal resolution of 30-meter by 30-

meter to classify a study site area of approximately 106 km2. With access to better resolution 

data, Jacoby et al. (2013) utilized the methods provided by Harlan (2009) to perform cave level 

identification at CCSRP employing a DEM with 10-meter by 10-meter horizontal resolution and 

a 0.363± vertical accuracy. The hypothesis of Jacoby et al. (2013) was that improving the 

horizontal resolution of the DEMs would provide a more accurate distinction between cave level 

elevations. The refinement of the horizontal resolution resulted in the introduction of a possible 

fifth cave level within CCSRP. As high-resolution spatial data such as LiDAR data continues to 

become more widely available, the question arises of the effectiveness of a lower resolution such 

as 10-meter by 10-meter. This study further explores the comparisons between different tiers of 

resolution by once again duplicating the methods of Peterson et al. (2011) and Jacoby et al. 
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(2013), except this time utilizing LiDAR data with 0.68-meter horizontal resolution and a 15± 

centimeter vertical accuracy (KGS, 2016).  

LiDAR derived elevation data are a great option for improving upon the accuracy of 

previous studies. LiDAR elevation data are different in that it is not created by resampling a 

lower resolution dataset. For example, some 10m x 10m elevation datasets are the result of 

resampling a 30m x 30m elevation dataset – meaning that the newly resampled 10m x 10m 

dataset has the elevation source data of the 30m x 30m dataset but has a higher spatial resolution. 

LiDAR data utilize lasers to measure the elevation of the ground, so the elevation data not only 

have a high spatial resolution, but the elevation data itself have also high resolution. Another 

reason why LiDAR data can be a better option is its ability to provide multiple returns from the 

same laser pulse. Multiple returns allow for the user to distinguish the bare ground terrain from 

surficial features such as dense tree canopies. This helps ensure that the collected elevation data 

are actually the ground surface and not the elevation of the tree canopy. LiDAR elevations could 

also prove to be more accurate than elevations collected using a GPS receiver.  The precision and 

accuracy of data collected with GPS receivers decreases when used in forested landscapes 

(Deckert and Bolstad, 1996; Naesset and Jonmeister, 2002; Rodriquez-Perez et al. 2006, 2007; 

Danskin et al., 2009). GPS uses microwave signals – dense vegetation and topography can 

interfere with the satellite microwave signals, negatively impacting the vertical accuracy (Veal et 

al., 2001). LiDAR elevations are largely unaffected by dense vegetation and topographic 

features; so, LiDAR elevations in this type of geographic area may prove more accurate. 

Theoretically, the use of LiDAR data should improve results and expand the utility of 

geospatial analysis within complex systems such as karst. However, LiDAR is not always 

accessible; so, determinations will also be made on whether it is necessary to obtain LiDAR data, 
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or if a lower resolution such as 10m x 10m would suffice. We hypothesize that an increase in 

DEM resolution will improve the accuracy of cave level delineation. 

 Given an increased understanding of the spatial resolution utilized in this project, this 

study also aims to isolate locations with the highest probabilities of past cave collapse episodes. 

To do this, a weighted overlay operation utilizing slope percentage and the geographic locations 

of both cave entrances and streams is carried out in and around the Carter Caves State Resort 

Park boundary. We hypothesize that the likelihood for cave collapse will decrease as the distance 

away from cave entrances and streambeds increases. We also hypothesize that based on the 

known locations of the previously derived cave levels, areas of high probability of collapse may 

correlate to the contacts between cave levels. 
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CHAPTER II: MATERIALS & METHODS 

Site Description 

Carter Caves State Resort Park (CCSRP), located in Carter County, KY consists of 

approximately 106 km2 of deeply incised valleys, characteristic of the Cumberland Plateau 

(Engel and Engel, 2009) (Figure 1). Located within the northwest-central portion of Carter 

County, Kentucky, elevations range from 344m at the highest point to about 200 m at base-level.  

Approximately one-quarter of Carter County consists of karst landscapes, and there are over 200 

named pits and caves within a 40 km radius of CCSRP (Angel and Peterson, 2015; Engel and 

Engel, 2009; Jacoby et al., 2011a; Jacoby et al., 2011b; Jacoby et al., 2013; McGrain, 1966; 

Peterson et al., 2011).   

The bedrock units in the study area are Mississippian and Pennsylvanian in age.  A 

sequence of carbonates with a maximum thickness of about 25 m are bounded stratigraphically 

by siliciclastic units (Engel and Engel, 2009) (Figure 2).  The oldest unit exposed near CCSRP is 

the Mississippian-aged Borden Formation. The Borden Formation is composed of shale, which 

prevents further downcutting in the region. The Borden also acts as the bed of some reaches in 

Tygarts Creek, which runs through CCSRP (Ochsenbein, 1974; Engel & Engel, 2009). Above 

the Borden Formation, the Mississippian-aged Newman Formation is the primary cave forming 

unit within CCSRP (Ochsenbein, 1974; Engel & Engel, 2009). It is approximately 60 m thick 

and is heavily jointed, allowing for aggressive recharge events to further drive dissolution of the 

carbonate bedrock (McGrain, 1966; Engel & Engel, 2009). With a regional dip of approximately 

2⁰ to the east-southeast, multiple levels of caves have developed in the nearly horizontal 

carbonate units; an offset of at least 5 m separates the levels (Pfeffer et al., 1981; Hobbs III & 

Pender, 1985; Harlan, 2009). Acting as a resistive cap in and around CCSRP, the Pennsylvanian-
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aged Pennington Formation is a 100 m thick sandstone unit overlying the Newman Formation 

(Ochsenbein, 1974; Engel & Engel, 2009). The contact between the Newman Formation and the 

Pennington Formation occurs uniformly at 273 m (Jacoby et al., 2013). Readers are directed to 

Engel and Engel (2009) and Ochsenbein (1974) for further detailed descriptions of the 

stratigraphy, regional structure, and topography of CCSRP.  Wittenberg University Speleological 

Society (WUSS) has compiled an unpublished database containing the geographic locations of 

cave openings (Figure 2). 

Multiple karst characteristics that are directly tied to this study have been previously 

identified at CCSRP and are important to highlight for future context. Francis et al. (2018) 

determined that limestone stream segments have a greater steepness index (SI), the slope of the 

transformed stream profiles, than sandstone stream segments. The authors further noted a distinct 

change in slope or SI values at the contact between the sandstone and limestone units, with 

stream segments within limestone having steeper slopes. Similarly, Thaler and Covington (2016) 

identified higher steepness values for limestones when capped by a sandstone within the Buffalo 

National River Basin in Arkansas, USA. Karst windows, or blind valleys, are also present within 

CCSRP. Several studies have identified the dry surface channel associated with the Horn Hollow 

fluvial karst system as being a blind valley.  Lying between the entrances of Horn Hollow Cave 

and Laurel Cave, the valley is perched 14 m above Cave Branch Creek (McGrain, 1966; 

Woodside et al., 2015). The stretch between the entrances of Horn Hollow Cave and Laurel Cave 

acts as the surface and subsurface drainage system associated with Horn Hollow Creek 

(Dogwiler & Wicks, 2004; Angel & Peterson, 2015). 
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 Figure 1:  A) Carter Caves State Resort Park (CCSRP) is in northeast Kentucky, USA. B) 
CCSRP’s extent is indicated by the yellow outline. The white box outlines the lower 
portion of Horn Hollow. 
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Figure 2:  Distribution of the sandstone and limestone within CCSRP. Locations of cave 
openings also identified. 
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LiDAR Data 

Twelve LAZ files (compressed point cloud data) were download from KGS Geo Portal 

(University of Kentucky - https://kgs.uky.edu/kgsmap/KGSGeoPortal/KGSGeoPortal.asp). The 

LiDAR data have an average of 0.68 m or better horizontal resolution and vertical accuracy of 

15.0 centimeters (KGS, 2016). LAZ files are not compatible in ArcGIS, so the files were 

uncompressed into LAS files (LASzip Version 3.4.3.). Once converted, a LAS dataset was 

created, and all LAS files were imported into the data set. Next, a point file information was 

generated from the LAS files. Once created, calculation of the mean point spacing was 

completed from statistics in the attribute table. This mean point spacing was used to create a new 

terrain from the multipoint data. The surfaces were converted to a raster (0.68 m horizontal 

resolution) to allow for spatial analyses using the elevation data present in the layer. 

Cave Levels 

 Using the cave opening dataset (WUSS), the Latitude and Longitude coordinates of the 

individual caves were plotted in the GIS. Following the plotting of caves, elevations from the 

LiDAR DEM were extracted from each cell containing a cave opening. A histogram of the cave 

elevations was generated; cave levels were delineated both visually and by Jenks Natural Breaks 

method (Slocum et al., 2009) to explore which methodology is more accurate. 

Digitization and Euclidean Distance 

 A stream network was derived using the generated LiDAR raster by computing both flow 

direction and flow accumulation. This method was chosen over other options such as using 

previously derived stream networks like those provided by the USGS’ National Hydrography 

Dataset because it was imperative that the resulting stream network aligned with our LiDAR 
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DEM. Prior to derivation of both flow direction and flow accumulation, sinks were filled. The 

decision to fill sinks becomes a bit more complicated in karst systems due to the presence of 

natural pits and depressions in the form of sinkholes, or other collapse features. Filling sinks in a 

karst system assumes that all depressions are the result of an error (Jacoby et al., 2011). This 

study is not primarily focusing on these small pits, so the decision to fill sinks was solely based 

on creating a stream network that is representative of a surface drainage network (Jacoby et al., 

2011). If sinks were not filled, the depressions evident in the DEM would “collect” water and 

eliminate further flow downstream (Jacoby et al., 2011). A well-defined stream network is 

essential for the methods of this study, which is a justifiable reason for filling sinks.  

Weighted Overlay 

 To isolate areas within CCSRP that have likely experienced episodes of cave collapse, 

layers containing slope, distance from cave entrances, and distance to streams were utilized to 

create a weighted overlay (Figure 3). To create the weighted overlay, the classes being used had 

to be assigned a percent weight defining the contribution of the class to the resulting layer (in 

this case past cave collapse probability). Weighted percentages are organized in the order of 

slope, distance from caves, and distance from streams (slope%_cave%_stream%).  

To incorporate a cell’s distance to the streams and to the nearest cave opening into a 

weighted overlay, the distance data need to be represented in an ordinal manner to allow GIS to 

recognize the significance of the features in relation to cave collapse probability. The best option 

in the case of these two features was to perform a Euclidean Distance operation, which assigns 

cells a numerical value based on distances to the nearest stream and cave entrance, respectively. 

A Euclidean Distance operation also allows for customization of output cell size, maintaining the 

original resolution of the data. The caves and streams Euclidean Distance layers were classified, 
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with 1 assigned to cells furthest away from the nearest feature and 10 assigned to cells the closest 

to the nearest feature (Figures 3B and 3C) (Table 1).  This is beneficial to the study as the 

likelihood for cave collapse may decrease as the distance away from cave entrances and 

streambeds increases. LiDAR derived slope was reclassified to an ordinal scale of 1-10, with 1 

assigned to raster cells with the lowest slope and 10 assigned to the steepest slopes (Figure 3A) 

(Table 1). All processed and reclassified layers maintained the same cell size of the LiDAR data 

(0.68m x 0.68m). 

Slope was assigned the highest weight in all weighted distributions because collapse 

features, such as dolines, are characterized by vertical, steep-sided walls (Ford and Williams, 

2007; Woodside et al., 2015; Sauro, 2019 ). Steep-sided walls are distinct to collapse dolines 

when compared to the gentle slopes of solution dolines that are formed through a gradual process 

of sagging or settling of overlying materials (Jennings, 1985).  

Distance from known caves was assigned the second highest weight because generally 

when a cave collapses, another branch of that cave system would still exist.  

Distance to streams was assigned the lowest weight because although water flow is 

crucial for the creation of caves, streams may form independent from cave genesis or form at a 

lower cave level altogether.  

Based on data availability, the geographic extent for these three layers varied. As a result 

of the differences in processing extents, only probabilities two (2) through ten (10) of the final 

weighted overlay occurred within our study area. The areas with calculated values of probability 

one fell outside of the study area, essentially being eliminated when clipped down to the final 

extent.  
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To determine the best weight combination for the three parameters, a sensitivity analysis 

was conducted.  The sensitivity analysis examined 16 combinations of slope, distance to caves, 

and distance to streams to determine the importance of each parameter and to optimize an output 

that effectively portrays the significance of the individual parameters. Weighted percentage 

combinations ranged from 90%_5%_5% to 34%_33%_33% (Table 1). Once all weighted 

overlays were created with the varying percent weights (Table 1), cell counts for each resulting 

probability class (ranging from 1-10 with 1 being least likely and 10 being most likely) were 

compiled and graphed in excel.   
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Figure 3: A) Reclassified slope layer with 1 being the lowest slope and 10 being the steepest 
slope  B) Reclassified cave layer with 1 being the farthest from cave entrance and 10 being the 
closest to cave entrance  C) Reclassified streams layer with 1 being the farthest from stream and 
10 being the closest to stream. For all three of these layers, values of 1 carry the least weight and 
values of 10 carry the most weight for weighted overlay analysis. 
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Rank
Distance to Stream 

(m)
Distance to Cave 

Opening (m) Slope (%)

1 1112 - 727 2841 - 2395 5.1 - 0
2 727 - 600 2395 - 2050 9.5 - 5.1
3 600 - 512 2050 - 1727 14.0 - 9.5
4 512 - 438 1727 - 1437 18.4 - 14.0
5 438 - 368 1437 - 1170 23.5 - 18.4
6 368 - 298 1170 - 925 29.7 - 23.5
7 298 - 223 925 - 691 37.5 - 29.7
8 223 - 149 691 - 457 48.5 - 37.5
9 149 - 70 457 - 230 63.5 - 48.5

10 70 - 0 230 - 0 87 - 63.5

Parameter
Table 1: Parameter values associated with the ranks of reclassified input layers. 
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CHAPTER III: RESULTS & DISCUSSION 

Cave Elevations and Level Designations 

 To determine how the extracted cave elevation data changed from the LiDAR DEM to 

the 10-m DEM, we took the LiDAR cave elevations and subtracted the 10-m cave elevations. 

We then calculated the average of those values which was -0.73 m (Figure 4). This tells us that 

on average, the 10-m cave elevations are slightly higher than the LiDAR cave elevations.  
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Figure 4: Comparison of LiDAR derived and 10-m derived cave entrance elevations (Jacoby et 
al., 2013). LiDAR cave elevations are on average 0.73 m lower than 10-m derived caves.  The 
orange dotted line represents the 1:1 line. 
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Differences in spatial resolution can impact the assigned elevation value of a single point 

in a GIS. If the resolution of elevation data is low, the accuracy of the elevation assigned to a 

single point may also be lower because lower resolutions assign greater areas a single elevation 

value, leading to a more generalized result. If the resolution is higher, rather than clumping 

surrounding elevations to satisfy an average value, the differences in topography will be better 

delineated and represented. An example of this phenomenon can be observed in Figure 5. Figure 

5A displays a theoretical area within a study site with differences in elevation indicated by 

contour lines and represents the use of lower resolution data. Figure 5B represents the same 

theoretical area but is representing the use of a higher resolution data. In Figure 5A, the cave, 

along with the entire extent of the cell, is represented with an elevation of 285 m. It can be 

inferred through the presence of contour lines that the elevation of the cave is lower than that, but 

because of the low resolution, the assigned elevation of the cell result does not agree. With 

Figure 5B, the resolution has improved the accuracy significantly, and the cave has an improved 

elevation of 240 m. These concepts apply to any example where an improvement in data 

resolution exists, whether from 30-m to 10-m or 10-m to LiDAR data. 
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Figure 5: Example of how changing resolution can impact assigned 
cave entrance elevations. Φ symbol represents cave entrance location.  
A) Lower resolution data with an assigned cave elevation of 285 m  B) 
Higher resolution data with an assigned cave  elevation of 240 m 
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The location of higher elevation cave openings should be noted. The LiDAR-generated 

elevations have placed all but one cave within the limestone units, whereas previous reported 

elevations obtained using the lower resolution data sited several higher elevation cave openings 

within the extent of siliciclastic units. The LiDAR derived cave elevations average 0.73 m lower 

than the 10m cave elevations. This results in some of the “siliciclastic” caves being shifted down 

into the proper carbonate lithology. Although cave formation is possible in siliciclastic units, it is 

not a common feature of the units in this area. This proved to be a source of error for both 

Peterson et al. (2011) and Jacoby et al. (2013). The resolution of the 10-m DEM made it appear 

as though six cave entrances were contained within the sandstone unit (Jacoby et al., 2013). For 

five of these caves, the higher resolution of the LiDAR data resolved this error. The contact 

between the Newman and Pennington Formations is characteristically very steep. Based on the 

reasoning expressed by Figure 5, the ability of LiDAR data to better delineate elevation 

differences within areas of steep slope explains this difference between the data sets. 

 Jacoby et al. (2013) identified four cave levels within CCSRP utilizing Jenks Natural 

breaks method with 10-m data (Figure 6A). The original study utilizing 30-m data (Peterson et 

al., 2011) also identified four cave levels.  Regionally, similar cave level designations have been 

presented for the geologically similar Mammoth Caves system (Davis, 1930; Granger et al., 

2001). Davis (1930) identified four distinct tiers of cave passages and explained their formation 

through the steady lowering of base-level., which has since been revised to forming from river 

system incisions (Sweeting 1950; Palmer, 1987; Anthony, 2005).  
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With the extracted elevations, a histogram was created displaying the frequency of cave 

openings at each elevation (Figure 7). Using the 117 cave elevations derived from the LiDAR 

DEM data, four cave levels were identified. Two different derivations of cave levels were 

created with the LiDAR data. Utilizing visual breaks methodology in the histogram, breaks 

among layers occurred at 237 m, 245 m, and 251 m (Figure 6B). The Jenks Natural Breaks 

methodology was chosen as the statistical method for delineation as its intended purpose is to 

identify real classes within the data by minimizing the difference between data values in the 

same class while maximizing the differences between classes (Slocum et al., 2009) (Figure 7).  

The Jenks Natural Breaks calculated layer breaks at 233 m, 244 m, and 255 m (Figure 6C) 

(Figure 7). 

Jacoby et al.’s (2013) cave levels generated using Jenks Natural Breaks were similar in 

thickness to the cave levels at Mammoth Caves and Cumberland Plateau, indicating validity to 

the results. Visually, the LiDAR cave levels which were derived using natural breaks were more 

similar to the cave levels produced by Jacoby et al. (2013) (6A & 6C). This is especially the case 

when looking at just the thicknesses of each layer.  For the above reasons, as well as for the sake 

of statistical consistency, the LiDAR cave levels derived using natural breaks are chosen over 

those derived using visual breaks.  
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Figure 6: A) Cave levels derived from 10-m DEM data and a Jenks Natural Breaks statistical 
methodology (Jacoby et al., 2013)  B) Cave levels derived using LiDAR DEM data and aa visual 
breaks methodology  C) Cave levels derived using LiDAR DEM data and a Jenks Natural Breaks 
statistical methodology 
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Figure 7: Histogram displaying frequency of cave opening elevations extracted from the  
LiDAR generated DEM. Red lines display the breaks derived from Jenks Natural Breaks 
method and Black lines display the visual breaks in the data. 
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Weighted Overlay 

 This study sought to effectively differentiate areas that have experienced past collapse. 

Limiting the number of cells associated with the higher probabilities narrows the lens and makes 

for a more isolated output. Using the sensitivity analysis to optimize the results in this way, we 

aimed to achieve less than 2%, but more than 1%, of the total amount of cells to be included in 

probabilities nine and ten combined (Table 2) (Figure 8). The range of 1% to 2% of total cells in 

classes nine and ten was decided on after seeing the results. When results fell outside of that 

range, the probabilities were either too consistent with slope inputs or were more spatially 

generalized. Results that fell within the range were spatially consistent and higher probability 

cell count variations were minimal. Considerations were made to include probability eight, but 

after review of the output, these values were omitted due to an increased generalization of 

results. The upper threshold of 2% is exceeded when slope weight decreases to approximately 

50% (Table 2). Once the slope weight drops below 50%, higher probabilities become poorly 

delineated and were less defined. The lower threshold of 1% was exceeded when slope weight 

increased to approximately 90% (Table 2). The weighted combination of 90%_5%_5% met the 

criteria (between 1% & 2%) but was eliminated from consideration to prevent slope from 

skewing the results (Figure 8) (Table 2). When slope weight exceeds 90%, the results were a 

function of slope and minimized the significance of the distances to the caves and the streams. 

Based on these limitations, a slope weight between 75% and 65% was considered optimal 

(Figure 8) (Table 2). For this range of weighted slope, outputs do not vary enough to raise 

concern on what weight was used, as long as it is within that range. The weighted distribution of 

70%_20%_10% (Figure 9) was chosen as it allowed slope to be the driving factor of the output 

but provided optimal weight for both distance from cave openings and streams. 
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Table 2: Outcome of sensitivity analysis 

Weighted Distribution 
(slope%_cave%_stream%)

Percentage of 
probabilities 9 & 10 out 

of total cell count 
90%_5%_5% 1.1%

80%_15%_5% 1.0%
75%_20%_5% 1.3%
70%_15%_15% 1.2%
70%_20%_10% 1.4%
70%_25%_5% 1.5%
65%_20%_15% 1.5%
65%_25%_10% 1.5%
60%_40%_0% 1.6%
60%_30%_10% 1.6%
50%_20%_30% 2.0%
50%_30%_20% 2.0%
45%_35%_20% 2.0%
34%_33%_33% 3.0%
30%_50%_20% 4.6%
30%_20%_50% 4.1%
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Figure 8: Sensitivity analysis results illustrating the cell counts for each resulting probability class, ranging from 1-10 
with 1 being least likely and 10 being most likely. 
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Figure 9: 70% slope, 20% caves, & 10% streams weighted overlay displaying 
probabilities of past cave collapse in and around CCSRP. Black boxes indicate extents 
for Figures 10 and 11. 
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The weighted overlay (using 70%_20%_10% distribution) provides clear delineation 

between areas that have and do not have a high probability of past collapse (Figure 9). Several 

features indicate that this may be an effective methodology for cave collapse identification, 

including karst windows, contacts between lithologies, terraces between areas of high 

probability, and the visual correlation between high probabilities of collapse and contacts 

between known cave levels formulated previously in this study. 

 Karst windows have been previously identified at CCSRP (Woodside et al., 2015). A 

karst window is an area within cave systems that are exposed to light, typically because of cave 

passage collapse (Espinasa & Borowsky, 2000). The first example of this is in the lower reaches 

of the Horn Hollow Cave System, connecting the downgradient entrance of Horn Hollow Cave 

to the upgradient entrance of Laurel Cave (Figure 10). The segment is a clear blind valley with 

steep walls and a lack of surficial drainage paths, indicating that water entering this valley must 

exit through an existing cave passage (Woodside et al., 2015). While the extent of the window 

was not defined with as much area defined by the maximum probability as other reaches, the 

extent of the window aligns with cells designated with the highest probability values. The second 

example in CCSRP consists of an interconnected series of karst windows (Figure 11).  Figure 11 

shows evidence of a potential flow path that enters and exits the subsurface several times. At 

each exit/entrance location, the area is marked by a high probability of past collapse. The 

predictability and pattern of these high probability cave entrances and exits attest to the linkage 

of the system. 
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Figure 10: A view of the karst window located between the lower Horn Hollow entrance 
and upper Laurel Cave entrance outlined by the dashed brown line. The high 
probabilities within the karst window isolate steep faces that have been previously 
observed and deemed as cave collapse. 
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Figure 11: A series of karst windows in the western reaches of CCSRP. The blue line is 
displaying a theoretical path of interconnectivity. It is a possibility that this route was at one 
point completely entrained in the subsurface prior to a collapse of ceiling materials leaving 
behind these karst windows. 
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Contacts between lithologies, especially in karst systems between a carbonate and non-

carbonate, often yield identifiable features such as fluviokarst (Francis et al., 2018; Bočić, 2003; 

Jakucs, 1977). Fluviokarst landscapes consist of both fluvial and karst features (Francis et al., 

2018; White and White, 1983). There may also be areas of high relief marking the contact. Areas 

of steep relief at contacts between the sandstone and limestone is evident throughout the CCSRP 

extent (Figure 12). Francis et al. (2018) aimed to determine and assess how erosional resistance 

of the sandstone and limestone at CCSRP relates to the overall development of the system. 

Within the system, sandstone stream reaches maintain greater equilibrium than limestone stream 

reaches (Francis et al., 2018). Limestone responds to both physical and chemical weathering 

whereas the sandstone will erode following physical weathering processes. This results in the 

water moving from the sandstone to the limestone maintaining its aggressiveness as it is yet to be 

neutralized by the non-soluble sandstone (Bogli, 1964). This aggressive water encourages 

dissolution and drives the limestone to a greater state of disequilibrium. This also leads to more 

subsurface piracy, further enhancing the equilibrium of the sandstone cap. The lithologic contact 

at CCSRP between the limestone and sandstone is marked by a steep contact. From the weighted 

overlay, the contact between the carbonate and siliciclastic units is well-defined (Figure 12). So, 

even if the contact is not marking an area of collapse in this case, it is still a useful result in 

accurately identifying the transition from a non-carbonate to carbonate lithology, which further 

supports the conclusions drawn by Francis et al. (2018). 
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Figure 12: Lithologic contact with probabilities 9 & 10 visible. Horn Hollow karst 
window (Fig. 8) is for spatial reference. 
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Karst terraces are correlated with periods of a static regional base-level (Worthington, 

2005). Many of the isolated areas of collapse are separated by what we interpret to be karst 

terraces. Based on the levels previously derived, the cave levels at CCSRP are directly tied to the 

karst terraces. Within Horn Hollow, several bands of cells classified as high probability of 

collapse were separated by areas of lower probability (Figure 13A). The high probabilities align 

with the boundaries of these cave levels suggesting that cave collapse may preferentially occur at 

the boundaries between cave levels (Figure 13B). It could additionally be interpreted as an 

indication for several episodes of collapse. As the water table drops, it may only expose a select 

number of cave levels to vadose conditions, leading to only those levels collapsing due to the 

loss in buoyancy. As the base-level changes over the course of time, this could repeat several 

times. This idea may apply both at CCSRP and in other systems with similar hydrogeological 

genesis.  
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Figure 13: A) Karst terraces situated between areas of high probability of collapse 
indicated by arrows. B) Visible relationship between areas with high probability of 
collapse and the contacts between cave levels.  
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This methodology is not constrained to a single study site. Any location that is 

characterized by karst topography and has sufficient data, including but not limited to cave 

entrance coordinates, can be analyzed for both cave level delineation and collapse identification. 

Based on the results of this paper, if there is geospatial data with resolutions of 10-m or better, 

cave levels and isolated areas of cave collapse can be identified. To further test the effectiveness 

of this methodology, the study could be duplicated at sites similar to CCSRP like Mammoth 

Caves or Cumberland Plateau. Results from future studies such as those could provide 

opportunities to revise and strengthen these methods. At that point, the study could be extended 

to explore regions that may differ slightly in characteristics, such as the history of incisions and 

collapse in the Grand Canyon. 
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CHAPTER IV: CONCLUSIONS 

Overall, the methodology used in this study is exploratory.  The generated output isolated 

areas with a of high probability of past karstic collapse. Areas of high collapse probability are 

shown to have visible correlations with previously identified karst windows. These high 

probability areas also align with LiDAR generated cave-level boundaries and emphasize the 

dramatic contact between CCRSP’s sandstone and limestone units. The correlation with cave 

level boundaries also provides further justification for cave levels derived from natural breaks 

being a more accurate methodology than doing so with visual breaks.  

On the opposite side of the probability spectrum, low probabilities mark flat cave terraces 

and areas dominated by siliciclastic lithology. This evidence suggests that despite the 

experimental nature of the methods, they are promising for both the preliminary identification of 

collapsed areas and for other potential geospatial karstic research endeavors. These methods 

could also be tested at locations with similar karstic characteristics such as Mammoth Caves or 

Cumberland Plateau. 

When deciding on an appropriate resolution for this methodology, there is a difference in 

results between the 10-m and LiDAR data, but that difference is not incredibly significant. If 

performing a study such as this, the decision to use either LiDAR data or 10m data may not 

matter as much as previously hypothesized. An improvement in results is probable with LiDAR 

data, but the study can still be completed with relatively similar results if 10m resolution is all 

that is available. 

For future studies, this methodology also provides much needed guidance for selecting sample 

locations for a more in depth and definite identification of cave collapse utilizing cosmogenic 

analysis. Cosmogenic analysis is an expensive methodology but could yield convincing evidence 
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for areas of past collapse. This would also provide a necessary ground truthing of this 

methodology to ultimately determine its effectiveness. In addition to isotopic analysis, the results 

of this study may lend guidance to improving incision models for major river systems. The 

visible terraces and cave levels from this study can be used as a piece of a larger puzzle and 

could be duplicated in other karst regions to further progress hypotheses and interpretations for 

the genesis of these river systems.  
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