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1 Introduction

The superiority of commitment over discretion for monetary policy has theoretical support going back to

Kydland and Prescott (1977) as well as empirical verification from McCallum and Nelson (2004). Under ra-

tional expectations, the policymaker should act to influence public expectations to minimize the fluctuations

in the endogenous variables. However, if expectations are not rational1 , it is an open question whether there

are gains from commitment. The aim of the present work is to determine the optimal level of commitment

for monetary policy when public agents form expectations adaptively.

We study this question in the context of interest rate rules that respond directly to public expectations,

as introduced by Evans and Honkapohja (2001a, 2004). These rules have the desirable properties of de-

terminacy, meaning that there are no similar solutions based on extraneous information, and expectational

stability, which implies that expectations of agents using a reasonable learning mechanism can converge to

the rational expectation. Within this class of rules, commitment implies that the interest rate is a function

of lagged output while discretion implies that it is not. Waters (2005) allows for a continuous range of

responses to lagged output and, hence, varying levels of commitment, and determines the optimal level of

commitment under least squares learning. Following that paper, we refer to the commitment optimum under

rational expectations as full commitment and a lesser response to lagged output as partial commitment.

For public expectations formed with least squares learning, Waters (2005) shows full commitment is

optimal, but also demonstrates that the introduction of parameter uncertainty or errors in the policy rule

makes partial commitment best. The primary finding of the simulation results in the present work is that,

if expectations are formed with the adaptive learning mechanism2 of Cagan (1956), full commitment is not

optimal for any reasonable parameter choices. Comparing these results with those derived using least squares

learning and rational expectations shows that more sophisticated methods of expectations formation imply

an increased likelihood of gains from commitment. With the backward looking learning rule in this paper,

partial commitment is optimal and the gains from that policy over pure discretion are relatively small.

The problem with commitment is the additional persistence in output, while there is little beneficial im-

pact on expectations that are formed adaptively. Under rational expectations, a higher level of commitment

raises the persistence in output and moves the system close to the bound for explosive solutions3 . As one

might expect, the policy outcome deteriorates quickly as the response to lagged output increases beyond

certain points for adaptive learning, least squares learning and rational expectations.

We verify these results for a wide variety of parameter values found in the literature. The gain is one

1The notion that learning is an important consideration for the formation of monetary policy is present in Howitt (1992).
Evans and Honkapohja (2001b) survey learning methods in macroeconomics.

2This approach is also discussed in Evans and Honkapohja (2001b, 2004).
3Explosive solutions are also not expectationally stable, see Waters (2005) for details.
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key parameter measuring the emphasis agents put on recent information. Adaptive expectations can be

thought of as a decreasing weighted average of past data, so low gain implies higher persistence. The

simulation results show that higher gain implies a higher optimal level of commitment. Increased gain

lowers the persistence of the endogenous variables allowing for a higher level of commitment. However, the

improvement in the policy outcome for increased commitment is rather small in these cases, so the practical

relevance of these results is questionable4 .

The results are confirmed for parameter values of the reduced form New Keynesian model found in

McCallum and Nelson (2004), Clarida, Gali and Gertler (2000) and Woodford (1999a). In this framework,

the policymaker has the two goals of stabilizing output and inflation. McCallum and Nelson (2004) compare

policy outcomes under commitment and discretion when agents are fully rational. Following their work,

we also check our results for different preferences of the policymaker concerning the relative importance of

output and inflation stabilization. If the policymaker is primarily concerned with inflation, full commitment

is not as bad compared to other levels of commitment, but some level of partial commitment is still optimal.

This paper adds to a rapidly expanding literature on learning and monetary policy. While rational

expectations is an important benchmark, the importance of public reactions to policy makes learning an

important alternative approach. Honkapohja and Mitra (2001) and Bullard and Mitra (2002) study the

expectational stability of a variety of interest rate rules. Orphanides andWilliams (2005) provides simulation

results for a simple model of monetary policy under least squares learning with constant gain and shows

differences in optimal policy under rational expectations and learning. They also discuss the fact that

higher gain implies that agents use more lags of the data to form expectations. As noted, Waters (2005)

studies the same model as the one in this paper under least squares learning with constant gain. That paper

also provides an interpretation of the gain parameter in terms of the credibility of the policymaker. If a

policymaker is credible, agents will not be excessively swayed by recent data and will place more emphasis

on their previous expectation, implying low gain.

The literature on commitment, discretion and time consistency is extensive, Barro and Gordon (1983)

being a prominent example. Woodford (1999b) and Clarida, Gali and Gertler (1999) argue for commitment

in terms of a timeless perspective for the monetary policymaker. Athey, Atkeson and Kehoe (2005) use a

dynamic game theory approach to study the optimal degree of commitment for a policymaker with private

information. In their framework, full commitment is optimal when the policymaker has no private informa-

tion but otherwise some discretion is indicated. Similarly, in the present work, public agents do not use all

the information availible to the policymaker and full commitment is not recommended.

4These results are also in direct contrast to Waters (2005) who find that higher gain corresponds to a lower optimal level of
commitment under least squares learning.
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The paper is organized as follows. Section 2 describes the underlying model. Section 3 introduces the

expectations based interest rate rules and reviews their properties. Section 4 explains the adaptive learning

rule. Section 5 discusses the simulation results, and section 6 concludes.

2 The Model

The following model has become standard for many studies of the use of interest rate rules in monetary

policy. It has New-Keynesian micro foundations described in Woodford (2003) featuring price stickiness

that allows the policymaker to play a stabilizing role in the economy.

xt = −ϕ (it −E
∗

t πt+1) +E
∗

t xt+1 + gt (1)

πt = λxt + βE
∗

t πt+1 + ut (2)

These equations are thought of as expectations augmented IS and Phillip’s curve relationships. The variables

xt and πt are the deviations of output and inflation from their target values. The notation E∗t indicates

private sector expectations formed in time t where the (∗) is used to show that expectations might not be

rational. The policymaker controls the nominal interest rate it. The parameters ϕ, λ, β are all positive

and the discount rate β is such that β < 1. The stochastic terms gt and ut are both taken to be AR(1)

processes.

gt = µgt−1 + �gt + �gt (3)

ut = ρut−1 + �ut

The parameters µ and ρ lie in the interval (-1, 1), and the shocks �gt, �gt and �ut are iid with standard deviations

σ�g, σ�g and σu, respectively. The structure of gt follows McCallum and Nelson (2004) who decompose this

term into a preference shock �gt and an AR(1) process with innovations �gt that accounts for uncertainty

about the evolution of the natural rate that enters into the forecast error for output in the IS equation (1).

The policymaker sets the nominal interest rate to stabilize the endogenous variables. Formally the task

is to set it to minimize the loss function

L = Et

∞�

s=0

βs
�
π2t+s + αx

2
t+s

�
. (4)

Minimizing the loss function over xt+s and πt+s under the constraint given by (2) yields the following first
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order conditions.

2αxt+s + λωt+s = 0 for s = 0, 1, 2, 3... (5)

2πt+s + ωt+s−1 − ωt+s = 0 for s = 0, 1, 2, 3... (6)

2πt − ωt = 0 (7)

The variable ωt+s is the Lagrange multiplier on the constraint for each s = 0, 1, 2, 3.... Solving out ωt

for s = 0 from the first order conditions yields the following conditions for policy

λπt + 2αxt = 0, (8)

using (5) and (7), and

λπt + α (xt − xt−1) = 0 (9)

using (5) and (6).

Clearly, both of the above conditions cannot be achieved simultaneously, demonstrating the time consis-

tency issue for this model. If the policymaker uses a discretionary approach, taking future expectations as

being fixed and beyond his control, he ignores (6) and sets policy according to the first condition (8). If the

policymaker commits to a timeless perspective (Woodford 1999b), he acts to influence expectations, ignoring

(7) and setting policy using (9).

Policy under commitment differs from discretion in its response to the previous period’s output gap.

The reason for this can be seen in (6), where the lagged term appears because the policymaker reacts to the

expected inflation in the Phillip’s curve (2). Under discretion, however, the policymaker ignores expected

inflation and lagged output does not enter the policy condition (8). In practice, the policymaker’s ability

and desire to impact expectations by responding to lagged endogenous variables should not be restricted to

these two extreme cases. We examine policy under a broader condition that allows for varying levels of

response to lagged output and therefore varying degrees of commitment.

λπt + α (xt − κxt−1) = 0 (10)

The parameter κ shows the degree to which the policymaker responds to lagged output. The discretionary

condition (8) and the commitment condition (9) are special cases of (10) for κ = 0 and κ = 1, respectively.

Henceforth, we refer to the commitment optimum under rational expectations when κ = 1 as full commitment

and any setting of κ such that 0 < κ < 1 as partial commitment. Our goal is to examine the determinacy

5



and stability of the model and the performance of policy for varying levels of κ.

3 Expectations Based Interest Rate Rules

Evans and Honkapohja (2001a, 2004) advocate for monetary policy to be conducted with interest rate rules

that respond explicitly to public expectations. We can compute the optimal form for the expectations based

interest rate rule associated with the policy condition (10).

Using (10) to substitute for inflation in the Phillip’s curve (2) gives

xt = λ
�
λ2 + α

�−1 �
ακλ−1xt−1 − βEtπt+1 + ut

�
.

Substituting out xt in the IS equation with the above expression yields the interest rate rule

it = δLxt−1 + δπEtπt+1 + δxEtxt+1 + δggt + δuut (11)

where the parameters are

δL = −ϕ−1
�
λ2 + α

�−1
ακ, δπ = 1 + ϕ

−1
�
λ2 + α

�−1
λβ

δx = ϕ−1, δg = ϕ
−1, δu = ϕ

−1
�
λ2 + α

�−1
λ.

Note that the extent to which the interest rate responds to lagged output, shown by δL, depends on κ, but

the other parameters in the rule do not. Under discretion κ = 0 and it is unaffected by xt−1, but for any

other value, including the full commitment case κ = 1, it responds directly to xt−1.

The policy rule (11) has the desirable properties that the associated rational expectation equilibria are

non-explosive, determinate and expectationally stable for any parameters and any reasonable choice of κ.

To make this statement precise, following Evans and Honkapohja (2001a, 2004) let the rational expectation

equilibria be of the form

xt = bxxt−1 + cxut (12)

πt = bπxt−1 + cπut,

which allow us to solve for the unique minimum state variables (McCallum 1983, 1997) solution for the

system with the condition for optimal policy (10) and the expectations augmented Phillip’s curve relation
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(2). We omit the derivation, see Waters (2005) for details, but note that for the discretionary case κ = 0,

the solution includes bx, bπ = 0, indicating that, under discretion, the solution depends only on the supply

shock ut. For κ > 0 the relevant solution for bx is such that bx > 0 and an important question is whether

this parameter is in the range for non-explosive solutions bx < 1.

Another important question is the determinacy of the model with (10), (2) and the policy rule (11).

Determinacy means that there are no solutions nearby based on extraneous information such as sunspot

variables, see Blanchard and Khan (1980) for a full explanation. The exclusion of such equilibria is clearly

desirable for a monetary policy rule.

Furthermore, we check the expectational stability of the equilibria, as defined in Evans and Honkapohja

(2001b), which is particularly important for the present study with adaptive agents. Expectational stability

governs the behavior of a model where agents do not have full rationality. Given a method for updating

expectations, expectational stability determines whether these expectations will converge over time to the

rational expectations equilibrium values.

We now summarize the results from Waters (2005) for the class of interest rate rules corresponding to

different levels of commitment, parameterized by κ.

Proposition 1 Given κ ≥ 0, for the model with equations (10), (2) and (11), rational expectations equilib-

rium of the form 12,

• there is a non-explosive solution such that bx < 1 if κ < 1 +
λ2

α (1− β)
.

• the equilibrium determinate for κ < 1 +
λ2

α
.

• the equilibrium is expectationally stable for non-explosive equilibria.

Expectations based interest rate rules yield equilibria that have the desirable properties of non-explosiveness,

determinacy and expectational stability for values of κ corresponding to monetary policy set under discretion

(κ = 0), commitment (κ = 1) and partial commitment (0 < κ < 1). However, the above proposition does

raise concerns, particularly for the commitment case, since the bounds for explosiveness and determinacy

could be very close to κ = 1 for reasonable parameter values. A major goal of the present work is to

check whether policy under commitment could lead to instability in the economy due to the proximity of

the associated equilibria to explosive and indeterminate regions.
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4 Adaptive Agents

This section presents a simplified version of the model, which clarifies the role of expectations and the

policymaker. We then specify the adaptive learning mechanism to be used in the simulations and characterize

its relationship to other types of learning.

The model with the IS (1), Phillip’s curve (2) and the policy rule (11) can be reduced by substituting

out the interest rate it, yielding the following system.



xt

πt


 =




�
λ2 + α

�−1
ακ 0

�
λ2 + α

�−1
λακ 0






xt−1

πt−1


 (13)

+



0 −

�
λ2 + α

�−1
βλ

0
�
λ2 + α

�−1
βα






Etxt+1

Etπt+1




+



0 −

�
λ2 + α

�−1
λ

0
�
λ2 + α

�−1
α






gt

ut




A number of points are apparent in the above representation. As κ rises toward 1.0, the full commitment

value, output shows increasing persistence, which could lead a poor policy outcome. The policymaker acts

so that output expectations Etxt+1 and the demand shock gt do not affect output or inflation. The fact

that ut continues to play a role reflects the trade-off between output and inflation stabilization faced by the

policymaker in the presence of a supply shock. Since output expectations do not affect the endogenous

variables under this policy rule, we present the learning mechanism in terms of inflation expectations.

Expectations are determined by the following method introduced in Cagan’s (1956) study of hyperinfla-

tion.

E∗t πt+1 = E
∗

t−1πt + τ(πt−1 −E
∗

t−1πt) (14)

When making a forecast, agents use their previous expectation E∗t πt−1, which embodies past information,

and the most recent realization of inflation πt−1. The gain parameter τ measures the relative importance

agents place on these two pieces of information. An alternative interpretation is that expectations are a

weighted average5 of past values of πt.

Agents using adaptive expectations are not fully rational, but in a stationary environment, expectations

converge to a distribution around the rational expectations equilibrium values, see Evans and Honkapohja

5Formally E∗t πt+1 = τ
n−1�

j=1

(1− τ)j−1 πt−j+ (1− τ)nE∗t−nπt−n+1 for any integer n ≥ 2. As n→∞ the last term goes to

zero.
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(2001b) for details. In comparison to the typical implementation of least squares learning6 adaptive ex-

pectations are formed using less information. The adaptive mechanism (14) is equivalent to least squares

learning where agents estimate a model with only constant parameters, as opposed to a linear model of the

endogenous variables. Furthermore, agents here do not make use of information about the contemporaneous

shocks ut and gt, as in Evans and Honkapohja (2001a, 2004). Whether it is appropriate to assume that

public agents have information and calculation abilities equivalent to trained econometricians remains an

open question. By comparing the results using adaptive expectations to those in Orphanides and Williams

(2005) and Waters (2005) using recursive least squares, we can determine the importance of the specification

of the learning mechanism for the study of monetary policy.

5 Simulations

Simulations of the model with adaptive learning allow for a comparison of policy outcomes for different

levels of commitment, parameterized by κ. The results from proposition 1 show that at higher levels of

commitment, the parameter κ approaches its bounds for determinacy and non-explosive solutions under

rational expectations. Furthermore, Waters (2005) argues that full commitment is not optimal under least

squares in certain circumstances. Hence, there is reason to believe that the full commitment value may not

be optimal under the adaptive learning mechanism (14). The overriding conclusion is that full commitment,

when κ = 1.0, is not optimal policy for a wide variety of parameter values. There is also a relationship

between the gain parameter τ and the optimal level of commitment under learning, though there is reason

to treat this result with caution.

We report results for parameter choices for the reduced form IS (1) and Phillip’s curve (2) equations from

McCallum and Nelson (2004), Clarida, Gali and Gertler (2000) and Woodford (1999a), henceforth MN04,

CGG00 and W99, respectively. McCallum and Nelson (2004) compare commitment and discretionary

outcome for the present model under full rationality and examine the impact of changes in the policymaker’s

preference parameter α, which measures the relative importance of output versus inflation stabilization. We

also check our results for alternative values of α used by MN04. For all simulations we use the following

parameter settings from MN04 determining the behavior of the stochastic elements gt and ut in (3).

µ ρ σ�g σ�g σu

0.95 0.8 0.005 0.02 0.005
.

6Examples include Orphanides and Williams (2005) and Waters (2005).
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The possible parameter values for (1) and (2) are as follows.

.

β ϕ λ

MN04 0.99 0.4 0.05

CGG00 0.99 4.0 0.075

W99 0.99 (0.157)−1 0.024

Figures 1 and 2 show time series graphs for inflation and output for partial and full commitment, re-

spectively, along with inflation expectations. The parameter values for the figures are from MN04 with

α = 0.25, an intermediate value of the ones used by MN indicating roughly equal weights on output and

inflation stabilization. Expectations track inflation closely though their backward looking nature under (14)

is apparent. The graph for expectations is quite smooth as well since it embodies many lags of inflation and

does not respond to specific stochastic shocks. As anticipated from inspecting the matrix model (13), the

full commitment case shows a high degree of persistence in the output gap. In trying to affect expectations

by responding to lagged output, the policymaker ends up creating persistent deviations of output from its

target. The partial commitment case in figure 2, where κ = 0.6, shows far less persistence in output and a

superior policy outcome.

Tables 1 and 2 report computed losses for different levels of commitment over various parameter settings

and verifies that full commitment is not optimal under adaptive learning. Each cell is an average of the

losses, computed with (4), from runs of 200 periods7 . Each column shows the losses for κ from 0 to 1, which

ranges from discretion to full commitment, for different choices of the gain parameter τ and the policymaker

preference parameter α. Orphanides and Williams (2005) use gain parameters equivalent to 0.0125, 0.025

and 0.05 in their study of monetary policy under recursive least squares. The tables in the present work

focus on τ =0.05, 0.1 and 0.15 since the results for lower values of τ are very similar to those for τ =0.05, as

shown in the first two columns of table 1. The losses in bold show the minimum values for each column.

The primary result is that full commitment is not optimal across all parameter choices for the reduced

form model, the poliycmaker’s preferences and the gain. In each column, the loss for κ = 1.0 is markedly

inferior to all other partial commitment and discretionary policy settings. Furthermore in each column for

tables 1 and 2 the optimal setting for κ is between 0.0 and 1.0 indicating some level of partial commitment

and the outcome under discretion (κ = 0.0) is only slightly worse than the optimal value. The last two

column of table 1 report results for α = 0.01, as in MN04, which shows little emphasis on output stabilization.

Proposition 1 indicates that the bounds on κ for non-explosive and determinate solutions are looser for a low

7There is also a 20 period starting interval, so the results do not depend on the initial values. The averages are typically
computed from 10,000 runs, though sometimes less if the average loss converged quickly.
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α, so conditions for commitment might be improved. Here, partial commitment is still optimal8 , but the

policy outcome for full commitment is not as bad, relative to lower values for κ. We conclude that the extra

persistence in output is the primary reason for the inferior outcomes under full commitment, as expected.

With adaptive agents, attempts by the policymaker to influence expectations have clear pitfalls.

There is a relationship between the value of the gain parameter and optimal policy. For the different

parameters choices for (1) and (2) and α = 0.25, the larger the value of τ , the higher the optimal level of

commitment. Larger gain implies more persistence in expectations, which directly affects inflation here, so

inflation stabilization is relatively more important, and the problems with output stabilization associated

with high κ are relatively less of a concern. However, this conclusion should be treated cautiously, since the

improvement in the loss from the higher κ is rather small. In the context of least squares learning, Waters

(2005) argues that, because the policy outcome deteriorates so sharply as κ increased beyond a certain level,

a lower setting for κ is safer given the parameter uncertainty for this model.

6 Conclusion

The optimal degree of commitment depends on how public agents form expectations. The results from

the present work in the context of related results demonstrate that commitment is more likely to succeed

with informed, sophisticated agents. Under rational expectations, full commitment is best, but under least

squares learning, parameter uncertainty or errors in the policy function, partial commitment is optimal. For

adaptive learning examined here, partial commitment is optimal for any reasonable parameter values.

Our results are in the context of interest rate rules that respond to expectations and lagged output. The

degree of response to lagged output corresponds to the level of commitment. Higher commitment leads to

greater persistence in output, but the policymaker has difficulty affecting expectations formed adaptively, so

the benefits of commitment are mitigated. The simulation results are robust to a wide variety of parameters

from the literature.

Naturally, the importance of these results depends on one’s view of the appropriate way to model ex-

pectations. Rational expectations is the dominant paradigm, though some empirical work in the present

context, such as Roberts (1997) and Gali and Gertler (1999), raises doubts about assuming full rationality.

Furthermore, the assumptions about the available information and calculating ability of agents required by

rational expectations are difficult to justify, which has spawned a large and growing literature on learning in

macroeconomics, see Evans and Honkapohja (2001b). The possible presence of backward looking agents is

a serious reason to question the wisdom of full commitment.

8We also check the case where α = 1.0 and find that the optimal κ is even lower than for lower α’s, as anticipated.
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An important topic for future research is to determine the most appropriate way to model the formation

of expectations. This is a difficult question involving a number of different mechanism, some with free

parameters to be estimated. However, to gain a deeper understanding of public reactions to policy, even

partial answers are beneficial.
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Figure 1

For this simulation, the value of κ is κ = 1.0, the value for full commitment. The value of the gain parameter
is τ = 0.1.
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Figure 2

For this simulation the value of κ is κ = 0.6, corresponding to partial commitment. The value of the gain
parameter is τ = 0.1.
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Table 1

κ δL τ = 0.025 τ = 0.05 τ = 0.1 τ = 0.15 δL τ = 0.05 τ = 0.15

0.0 0.000 0.7317 0.9910 1.8814 3.3355 0.000 0.6571 1.1149

0.2 -0.495 0.7249 0.9854 1.8506 3.2270 -0.400 0.6303 1.0670

0.4 -0.990 0.7221 0.9793 1.8436 3.2045 -0.800 0.6574 0.9910

0.6 -1.485 0.7239 0.9893 1.8039 3.0217 -1.200 0.6864 0.9861

0.8 -1.980 0.7903 1.0303 1.8340 2.9552 -1.600 0.8756 1.1482

1.0 -2.475 3.9291 5.8461 9.5409 13.5700 -2.000 1.6741 1.9886

α = 0.01α = 0.25

κ δL τ = 0.025 τ = 0.05 τ = 0.1 τ = 0.15 δL τ = 0.05 τ = 0.15

0.0 0.000 0.7317 0.9910 1.8814 3.3355 0.000 0.6571 1.1149

0.2 -0.495 0.7249 0.9854 1.8506 3.2270 -0.400 0.6303 1.0670

0.4 -0.990 0.7221 0.9793 1.8436 3.2045 -0.800 0.6574 0.9910

0.6 -1.485 0.7239 0.9893 1.8039 3.0217 -1.200 0.6864 0.9861

0.8 -1.980 0.7903 1.0303 1.8340 2.9552 -1.600 0.8756 1.1482

1.0 -2.475 3.9291 5.8461 9.5409 13.5700 -2.000 1.6741 1.9886

α = 0.01α = 0.25

Losses are computed from an average of runs of 200 periods and multiplied by 100. Parameter values
are from MN04. The parameter κ represents the level of commitment and the parameter δL is the policy
function parameter on lagged output. Numbers in bold are the minimum values for the column
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Table 2

κ δL τ = 0.05 τ = 0.1 τ = 0.15 δL τ = 0.05 τ = 0.1 τ = 0.15

0.0 0.000 0.9719 1.7556 2.9896 0.000 1.0144 1.9833 1.4988

0.2 -0.049 0.9483 1.7418 2.9279 -0.031 1.0042 1.9829 1.4936

0.4 -0.098 0.9487 1.7048 2.7284 -0.063 0.9970 1.9606 1.4788

0.6 -0.147 0.9507 1.6485 2.5615 -0.094 0.9998 1.9361 1.4680

0.8 -0.196 1.0527 1.6943 2.5101 -0.125 1.0297 1.9595 1.4946

1.0 -0.244 4.9804 7.2844 9.7369 -0.157 4.9522 10.7041 7.8281

CGG00 W99

κ δL τ = 0.05 τ = 0.1 τ = 0.15 δL τ = 0.05 τ = 0.1 τ = 0.15

0.0 0.000 0.9719 1.7556 2.9896 0.000 1.0144 1.9833 1.4988

0.2 -0.049 0.9483 1.7418 2.9279 -0.031 1.0042 1.9829 1.4936

0.4 -0.098 0.9487 1.7048 2.7284 -0.063 0.9970 1.9606 1.4788

0.6 -0.147 0.9507 1.6485 2.5615 -0.094 0.9998 1.9361 1.4680

0.8 -0.196 1.0527 1.6943 2.5101 -0.125 1.0297 1.9595 1.4946

1.0 -0.244 4.9804 7.2844 9.7369 -0.157 4.9522 10.7041 7.8281

CGG00 W99

Losses are computed from an average of runs of 200 periods and multiplied by 100. Parameter values are
from CGG00 and W99. The policy preference parameter is α = 0.25. The parameter κ represents the level
of commitment and the parameter δL is the policy function parameter on lagged output.
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