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Abstract

This paper examines a class of interest rate rules, studied in Evans and Honkapohja (2003, 2006),
that respond to public expectations and to lagged variables. Their work is extended by considering
varying levels of commitment that correspond to varying degrees of response to lagged output. Under
commitment the policymaker adjusts the nominal rate with lagged output to impact public expectations.
Within this class of rules, I provide a condition for non-explosive and determinate solutions. Expecata-
tional stability obtains for any non-negative response to lagged output. Simulation results show that
modified commitment, as advocated by Blake (2001), is best under least squares learning. However, in
the presence of parameter uncertainty and/or measurement error in the policymaker’s data on public ex-
pectations, the best policy is one of partial commitment, where the response to lagged output is less than
under modified commitment. The case for partial commitment is strengthened if the gain parameter in
the learning mechanism is high, which can be interpreted as the use of few lags by public agents in the
formation of expectations or as an indication of low credibility of the policymaker. The appointment of
a conservative central banker ameliorates these concerns about modified commitment.
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1 Introduction

The gains from commitment for a monetary policymaker have been established both theoretically (Barro

and Gordon (1983) and Clarida, Gali and Gertler (1999)) and empirically (McCallum and Nelson (2004))1 .

Another strand of work on monetary policy (Howitt (1992) and Bullard and Mitra (2001))2 advocates the

view that monetary policy rules should be learnable, meaning they lead to dynamically stable systems

when public expectations deviate from full rationality. Setting policy under commitment implies that the

policymaker acts to impact public expectations, so the way the public forms expectations could be critical

to the outcome of such an approach. The present work addresses the question of whether there are gains

from commitment under learning.

Interest rate rules that respond explicitly to public expectations, studied by Evans and Honkapohja (2003,

2006), have the desirable properties of determinacy and expectational stability under both commitment and

discretionary policies3 . Within this class, the optimal policy rule under rational expectations is identical in

both cases with one exception. Under commitment, policy responds to lagged values of output while under

discretion it does not. As Woodford (1999a) emphasizes, if public agents are forward looking, commitment

requires that policy be history dependent. The more the policymaker wants to impact public expectations,

the greater the response to lagged variables.

Since the existence of gains to commitment under learning is an open question, I study a continuum of

responses to lagged output that includes the optimal rational expectations discretionary and commitment

policies as special cases. There are other reasons to consider such a range of policies. First, if the policymaker

has biased estimates of the model parameters, he or she may over- or under-react to lagged output under

commitment. I also consider the possibility that the policymaker’s knowledge of public expectations is

imprecise. For the expanded set of rules, I provide a condition under which there are non-explosive and

determinate rational expectations equilibria. These equilibria are expectationally stable for any non-negative

response to lagged output.

Simulations of the model under learning allow a comparison of policy outcomes for various specifications

of policy and the learning mechanism. Public expectations are formed with recursive least squares using

constant gain. The gain parameter is a key component, indicating agents’ sensitivity to new information,

and has natural interpretations in terms of the number of lags used in the estimation, the rationality of the

agents and the credibility of the policymaker.

1Time consistency of monetary policy has been a relevant issue going back to Kydland and Prescott (1977) and continuing
with Woodford’s (1999b, 2003) discussion of a timeless perspective.

2Other examples include Honkapohja and Mitra (2003) and Beechey (2004).
3Evans and McGough (2005) study determinancy and expectational stability for different policy rules and specifications of

the Phillip’s curve.
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One can regard any policy response to lagged output as a type of commitment in that it is an attempt

to influence expectations. The commitment optimum under rational expectations, as derived4 in Evans and

Honkapohja (2006), is referred to as full commitment. Blake (2002) argues for a particular5 intermediate

response to lagged output called modified commitment for the present study. The results from the simulations

demonstrate that, under least squares learning, the policy outcome under modified commitment minimizes

the policymaker’s loss in comparison to full commitment, discretion and all other settings for the response

to lagged output. However, the results also indicate that if there is uncertainty about the parameters of the

model, the policymaker should not respond to lagged output as strongly as the full or modified commitment

settings suggest. I refer to such a policy prescription as partial commitment.

Implementing expectations based interest rate rules raises questions about the policymaker’s knowledge

of public expectations. Evans and Honkapohja (2006) note that the introduction of white noise errors to the

policymaker’s estimates of public expectations does not alter their results concerning expectational stability.

However, whether such errors affect the policy outcomes under learning remains an open question.

The results presented here show that the introduction of such errors substantiate the case for partial

commitment. In the presence of errors in the policy rule, the response to lagged output should be weaker than

the full or modified commitment recommendations. Moreover, for higher levels of the gain parameter, the

optimal response to lagged output falls further. If agents are placing heavy emphasis on recent information,

possibly due to a lack of credibility of the policymaker, partial commitment is the best approach under

learning.

The results are verified for different parameter values found in the literature. The model studied here is

the standard New Keynesian approach where the policymaker faces a trade-off between stabilizing output

and inflation, described in Clarida, Gali and Gertler (1999). Results are very similar for different values of

the model parameters, but they are sensitive to changes in the policymaker’s preference parameter measuring

his or her relative interest in these two goals.

A significant factor underlying the optimality of partial commitment is the asymmetry of the losses

across the magnitude of the response to lagged output, in that an excessive response can leads to very poor

outcomes from the policymaker’s perspective. This paper provides support for a conservative central banker

(Rogoff 1985) since a lower emphasis on output stabilization diminishes the impact of this asymmetry and

increases the range for non-explosive and determinate policies.

The learning rule in the simulated model uses constant gain, meaning the emphasis agents place on new

information does not change over time. Therefore, learning has a significant impact on the dynamics of the

4Woodford (1999a) and Blake (2001) refer to this as the timeless perspective policy.
5Jensen and McCallum (2002) also discuss this point.
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model at all times. Orphanides and Williams (2002, 2006) study an alternative model of monetary policy

under constant gain learning and show that the nature of optimal policy changes when expectations deviate

from full rationality. Constant gain6 is an important aspect of the dynamics in Bullard and Cho (2005),

who show how the economy can shift to a deflationary equilibrium when agents continually update their

estimate of the policymaker’s inflation target.

The approach to expectation formation employed here follows a large literature on learning and con-

vergence to rational expectations that relaxes the extreme informational requirements on agents required

by rational expectations. Bray (1982) is one of the earliest efforts, while Marcet and Sargent (1989) give

convergence criteria for least squares learning. Evans and Honkapohja (2001) provide an overview of this

literature and define expectational stability for a wide variety of learning mechanisms and models. Howitt

(1992) contains one of the earliest suggestions that monetary policy rules should be stable under learning.

More recently, Bullard and Mitra (2002) and Honkapohja and Mitra (2004) have studied the expectational

stability of various interest rate rules for monetary policy.

The paper is organized as follows. Section 2 describes the model, and derives conditions for optimal policy

for varying levels of commitment. Section 3 shows the computation of the rational expectations equilibrium,

and section 4 introduces the expectations based interest rate rule and demonstrates the condition for non-

explosiveness and determinacy. Section 5 describes the learning mechanism and the proposition concerning

expectational stability. Section 6 reports the initial simulation results while Section 7 discusses those for the

model with errors in the policy rule and examines the simulation results for alternative parameters values.

Section 9 concludes.

2 The Model

The following New Keynesian model has become standard for the study of interest rate rules in monetary

policy. It has micro foundations described in Woodford (2003) including price stickiness that allows the

policymaker to play a stabilizing role in the economy.

xt = −ϕ (it −E∗

t πt+1) +E∗

t xt+1 + gt (1)

πt = λxt + βE∗

t πt+1 + ut (2)

6Honkapohja and Mitra (2002) give theoretical stability results under bonded memory learning. Carceles-Poveda and
Giannitsarou (2006) use constant gain to study asset price dynamics.
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These equations are expectations augmented IS and Phillip’s curve relationships. The variables xt and πt

are the deviations of output and inflation from their target values. The notation E∗

t indicates private sector

expectations formed in time t where the (∗) is used to show that expectations might not be rational. The

policymaker controls the nominal interest rate it. The parameters ϕ, λ, β are all positive and the discount

rate β is such that β < 1. The stochastic terms gt and ut both have autoregressive structure.




gt

ut


 = F




ĝt−1

ut−1


+




g̃t + w̃t

ũt


 (3)

for F =




µ 0

0 ρ




The parameters µ and ρ lie in the interval (-1, 1), and the shocks ũt, w̃t and g̃t and are iid with standard

deviations σu, σw and σg, respectively. The structure of gt follows McCallum and Nelson (2004) who

decompose this term into a preference shock g̃t and an AR(1) process ĝt = µĝt−1 + w̃t that accounts for

uncertainty about the evolution of the natural rate that enters into the forecast error for output in the IS

equation (1) and represents the portion of the demand shocks about which the public has some information

to use for forecasting.

The policymaker sets the nominal interest rate to stabilize the endogenous variables. Formally the task

is to set it to minimize the loss function

L = Et

∞∑

s=0

βs
(
π2t+s + αx2t+s

)
, (4)

assuming rational expectations for the following derivation. The parameter α measures the relative im-

portance of output and inflation stabilization for the policymaker, the value α = 0 corresponding to pure

inflation targeting. Minimizing the loss function7 over xt+s and πt+s under the constraint of the Phillip’s

curve (2) yields the following first order conditions.

Et (2αxt+s + λωt+s) = 0 for s = 0, 1, 2, 3... (5)

Et (2πt+s + ωt+s−1 − ωt+s) = 0 for s = 1, 2, 3... (6)

2πt − ωt = 0 (7)

The variable ωt+s is the Lagrange multiplier on the constraint for each s = 0, 1, 2, 3.... Optimal policy

7The present approach follows Evans and Honkapohja (2004), Woodford (1999b) and Clarida, Gali and Gertler (1999).
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in time t is governed by (7) but policy in succeeding periods is determined by the above condition (6). The

time consistency problem is evident since, when the policymaker solves the problem in the period t+ 1, the

policy given by (7) will be different than the policy prescribed by (6) in the period t solution.

To find the condition for policy under discretion, the policymaker adopts the optimal policy each period,

solving out ωt for s = 0 from the first order conditions (5) and (7).

λπt + αxt = 0 (8)

Under discretion, the policymaker takes expectations to be fixed and ignores (6), see Clarida, Gali and Gertler

(1999) for a detailed discussion. However, if the policymaker has a "timeless perspective" (Woodford 1999b)

he or she uses the policy that would have been prescribed in past periods, ignoring condition (7), using (5)

and (6) for s = 0. In this case, which I refer to as full commitment, the policymaker acts to influence future

expectations yielding the condition

λπt + α (xt − xt−1) = 0. (9)

Policy under commitment differs from discretion in its response to the previous period’s output gap. The

reason can be seen in (6), where the lagged term appears because the policymaker reacts to the expected

inflation in the Phillip’s curve (2). Under discretion, however, the policymaker ignores the change in expected

inflation, and lagged output does not enter the policy condition (8).

There are several reasons to question full commitment, meaning the policymaker should not be restricted

to these extreme cases. One is potential bias in the policymaker’s estimates of model parameters, while

another is the possibility that the policymaker may not have full information about public expectations. Also,

gains to commitment depend on a forward looking public, so if the public is using a learning mechanism to

form expectations, the policymaker may not want to fully commit. Waters (2005) shows that discretion

is superior to commitment under adaptive expectations, where the public forecast of a variable is simply a

weighted average of the previous period’s forecast and realized value. While the least squares mechanism

studied in the present paper is a more sophisticated method of forming expectations, it remains an open

question whether full commitment is optimal.

Furthermore, Blake (2001) argues that the first order condition (6) improperly assumes certainty equiv-

alence and he derives optimal policy that differs from full commitment. Using a version of the loss function

(4) without discounting over a finite number of periods, he gives an intuitive argument8 for the policymaker

to respond to lagged output, but not to the degree indicated by the full commitment condition (9). This

8He also checks the result with a formal derivation. Jensen and McCallum (2002) also discuss this issue. Evans and
McGough (2006) refer to this approach as the MJB-alternative in their study of the New Keynsian model with inertia.
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approach captures the spirit of the timeless perspective, since including discounting over-emphasizes the loss

in initial periods. For these reasons, we consider the general condition

λπt + α (xt − κxt−1) = 0. (10)

The condition under discretion is a special case of (10) where κ = 0, and full commitment is equivalent to

setting κ = 1.

The effect of Blake’s (2001) approach without discounting is that the second term in (6) is now βωt+s−1.

In this case, optimal policy corresponds to the condition (10), where κ equals the discount factor β < 1,

which I call modified commitment. Woodford (2001) argues in favor of full commitment by using a slightly

different criterion than the loss function (4) for evaluating policy. Under rational expectations the optimal

level of κ is either full commitment at κ = 1 or modified commitment κ = β depending on the approach to

the derivation. I refer to any setting for κ such that 0 < κ < β, when the policymaker’s response to lagged

inflation is less than for modified commitment, as partial commitment.

3 RE Equilibria

One can now solve for the unique minimum state variables9 rational expectations equilibrium (REE) for a

given κ in the general condition (10). Postulating solutions of the form

xt = bxxt−1 + cxut (11)

πt = bπxt−1 + cπut

implies that Etπt+1 = bπ (bxxt−1 + cxut)+ cπρut. Using the method of undetermined coefficients with (10)

and (2) yields

bπ = λbx + βbπbx (12)

λbπ = α(κ− bx)

cπ = λcx + β (bπcx + cπρ) + 1

λcπ = −αcx.

9See McCallum (1983, 1997).
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Combining the first two equations from (12) gives us

βb2x −

(
λ2

α
+ βκ+ 1

)
bx + κ = 0 (13)

The larger root of the quadratic equation (13) is always such that bx > 1 so the smaller root is the potentially

non-explosive solution for bx in (11) and is the focus throughout the paper. Given bx, the solution for bπ

is determined by the first and third equations in (12). Note that the discretionary value κ = 0 admits the

solution bx, bπ = 0, which corresponds to the fact that the minimum state variables solution in this case

depends only on the supply shock ut, as in Evans and Honkapohja (2003). Further, for κ > 0, the relevant

solutions for bx and bπ are real and positive (see Appendix B). Hence, public expectations respond to lagged

output only when the policymaker does, demonstrating the policymaker’s influence on expectations under

commitment. The solutions for the coefficients under full commitment for κ = 1 correspond to those in

Evans and Honkapohja (2006). Similarly, the third and fourth equations from (12) may be combined to

give

cx = λ
[
αβρ− α− λ2 − βλbπ

]−1

and then the fourth equation in (12) determines cπ, completing the solution.

4 Expectations Based Interest Rate Rules

Evans and Honkapohja (2003, 2006) advocate for monetary policy to be conducted with interest rate rules

that respond explicitly to public expectations. One can compute the optimal form under rational expecta-

tions for the expectations based interest rate rule associated with the policy condition (10). This section

also provides a condition for the non-explosive and determinate solutions, while the following section on

learning addresses expectational stability.

Using (10) to substitute for inflation in the Phillip’s curve (2) gives

xt = λ
(
λ2 + α

)−1 (
ακλ−1xt−1 − βEtπt+1 − ut

)
.

Substituting out xt in the IS equation with the above expression yields the interest rate rule

it = δLxt−1 + δπE
∗

t πt+1 + δxE
∗

t xt+1 + δggt + δuut (14)
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where the parameters are

δL = −ϕ−1
(
λ2 + α

)−1
ακ, δπ = 1 + ϕ−1

(
λ2 + α

)−1
λβ

δx = ϕ−1, δg = ϕ−1, δu = ϕ−1
(
λ2 + α

)−1
λ.

Note that the extent to which the interest rate responds to lagged output, shown by δL, depends on κ, but

the other parameters in the rule do not. Under discretion, κ is zero and it is unaffected by xt−1, but for any

other value, including the full, modified and partial commitment settings, the interest rate responds directly

to xt−1.

The interest rate rule (14) demonstrates the potential impact of parameter uncertainty on the conduct

of policy. For example, if the policymaker’s estimate ϕp is less than the actual ϕ, the magnitude of the

response of it to xt−1 will be too large, which is equivalent to setting κ higher than intended, and simulation

results indicate that such a policy could lead to a large loss10 . For this reason, it is important to study

the behavior of the model when κ > 1, even though the policymaker would never knowingly make such a

choice. To guard against such a possibility, the policymaker may not fully commit and may choose a smaller

response to lagged output than would be indicated by (9).

The next tasks are to determine conditions under which interest rate rules of the form (14) are non-

explosive, determinate and expectationally stable. A determinate equilibrium is unique in that there are no

other similar equilibria based on extraneous variables. Expectational stability implies that the expectations

of agents using a reasonable learning rule converge to the REE. All of these features of interest rate rules

are desirable for a policymaker trying to stabilize endogenous variables.

For analysis of determinacy, expectational stability and for simulations, it is convenient to write the New

Keynesian model with (1), (2) and (14) in matrix form.




xt

πt


 =




(
λ2 + α

)−1
ακ 0

(
λ2 + α

)−1
λακ 0







xt−1

πt−1


 (15)

+



0 −

(
λ2 + α

)−1
βλ

0
(
λ2 + α

)−1
βα







E∗

t xt+1

E∗

t πt+1




+



0 −

(
λ2 + α

)−1
λ

0
(
λ2 + α

)−1
α







gt

ut




10 If the policymaker has a biased estimate of λ, the change in policy would be equivalent to the change caused by varying
the policymaker preference parameter α.
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From the above, one can see that the policymaker acts so that the shock to the IS equation gt does not affect

output and inflation, but the supply shock ut does. Note that if α = 0, meaning the policymaker targets

only inflation, the supply shock does not affect inflation. These observations reflect the trade-off faced by

the policymaker between output and inflation stabilization that arises from the presence of the supply shock.

The next proposition gives a single condition on κ guaranteeing non-explosivesness and determinacy.

Proposition 1 Under rational expectations, for κ such that 0 ≤ κ < 1 +
λ2

α (1− β)
,

• the model defined by the policy condition (10) and the Phillip’s curve (2) has a non-explosive solution

such that bx < 1, and

• the model given by (15) is determinate.

Proof. See appendix A.

The condition for non-explosivenes applies to the matrix form (15) as the policy rule (14) is derived

from the general condition (10). The discretionary and full commitment cases of κ = 0 and 1 yield a

determinate model, as shown in Evans and Honkapohja (2003, 2006), as do any intermediate values of κ

including modified and partial commitment, as well as some values of κ > 1. In the absence of extraneous

variables in the simulated model, indeterminacy should not be a crucial factor in the policy outcomes for

the simulations reported here, but given the number of candidate variables (stock market indices, real estate

market conditions) agents might consider for use in forming expectations in practice, determinacy remains

a desirable property for a policy rule.

One might argue that values of κ such that κ > 1 are not interesting as there is no justification for

such policy. However, as noted above, the policymaker with mistaken estimates of the model parameters

could easily overreact to lagged output. This study reports simulation results using parameters from three

papers in the literature, McCallum and Nelson (2004), Clarida, Gali and Gertler (2000) and Woodford

(1999), referred to as MN04, CGG00 and W99, respectively. The following table gives their estimates for

the parameters in equations (1) and (2).

β ϕ λ

MN04 0.99 0.4 0.05

CGG00 0.99 4.0 0.075

W99 0.99 (0.157)−1 0.024

(16)

There is quite a difference of opinion regarding ϕ and λ that could affect the response of the interest rate

to lagged output, represented by δL in (14). If the policymaker fully commits (κ = 1.0), places relatively
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low emphasis on output stabilization with α = 0.1, and takes the parameter values from MN04 to be

correct, the value for δL is δL,MN = −2.439, but if the true values are those in CGG00, this parameter

should be δL,CGG ≈ −0.237. Here, the policymaker would mistakenly set policy corresponding to a value of

κ ≈ 10.3, which exceeds the bound of 5.625 for determinacy and non-explosiveness given in Proposition 1.

So parameter uncertainty could lead the policymaker to set policy in an explosive and indeterminate range.

Evans and McGough (2006) make a similar argument in the context of Taylor rules in the New Keynesian

model.

Proposition 1 provides an additional rationale for the appointment of a conservative central banker

meaning one with a low weight on output stabilization α. Rogoff (1985) shows a conservative central banker

can diminish the problem of inflation bias11 in models where the policymaker wants to raise output above

the natural rate. In the present framework, the policymaker cares only about deviations from the natural

rate, but a low α may still be desirable since it increases the bound for determinacy and non-explosiveness,

making such issues less problematic.

5 Learning

The next task is to specify the learning mechanism agents use to form expectations. As is common in

the learning literature, I use recursive least squares12 . This mechanism has a natural relationship with

expectational stability and can be used to simulate the model, which also allows for a comparison of policy

outcomes for varying parameter values. Further goals are to find a condition for expectational stability and

to give interpretations for the gain, a key parameter in the learning mechanism.

Assume agents update expectations using a model, called the perceived law of motion (PLM), that

corresponds in structure to the minimum state variables solutions (11). Let the vectors yt and vt be such

that yt = (xt, πt)
′ and vt = (gt, ut)

′. Now, the PLM can be written as

yt = a+ byt−1 + cvt. (17)

The REE corresponds to the case where a =



0

0


, b =




bx 0

bπ 0


 and c =



0 cx

0 cπ


, but, under

learning, agents do not know these values and must update their estimate of ξt = (at, bt, ct) over time. The

PLM (17) with time subscripts for at, bt and ct denotes agents beliefs at time t about parameter values and

11See Walsh (2003) for a full discussion of inflation bias.
12As noted Orphanides and Williams (2002) is closely related. Fuhrer and Hooker (1993) is another example of a monetary

policy analysis using least squares learning.
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implies that E∗

t yt+1 = at + btE
∗

t yt + ctE
∗

t vt+1 or

E∗

t yt+1 = at + bt (at + btyt−1 + ctvt) + ctFvt. (18)

This equation shows how agents use past information about the endogenous variables, estimates about

parameter values in the PLM and current values of the shocks to form expectations.

Given such a description about expectations formation and the model (15), one can describe the actual

law of motion (ALM) governing the endogenous variables. Agents update the parameters to find ξt and

use the new shocks vt to form expectations E∗

t yt+1 with (18), which then determines the contemporaneous

value of yt via the model13 (15). One key question is whether the parameters ξt will converge over time to

their values in the REE, given by (12).

Evans and Honkapohja (2001) define expectational stability, which implies the convergence of many

learning mechanisms including least squares learning (see appendix B). For the present model, one can show

the following.

Proposition 2 The REE given by (11, 12) for model (15) under the PLM (17) is expectationally stable for

any κ ≥ 0.

Proof. See appendix B.

Expectational stability obtains for any level of response to lagged output, providing further support for

interest rate rules of the form (14) and extending the expectational stability results of Evans and Honkapo-

hja (2003, 2006). The condition in Proposition 1 thereby guarantees non-explosiveness, determinacy and

expectational stability.

To formally define the least squares learning mechanism, let zt be such that

zt =
(
1, y′t−1, v

′

t

)
.

The recursive least squares algorithm14 is given by

Rt = Rt−1 + τ t
(
zt−1z

′

t−1 −Rt−1
)

(19)

ξt = ξt−1 + τ tRtzt−1
(
yt−1 − ξt−1zt−1

)′
,

where Rt acts as an updated covariance matrix. The realization for ξt then determines the expectations

13Note that exogenous variables and parameter estimates dated time t are used to form expectations of future variables, but
endogenous variables dated time t are not.

14See Evans and Honkapohja (2001) and Marcet and Sargent (1989) for details.
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in (15), which then determine xt and πt. So the dynamics of the model are defined by the recursive

least squares updating equation (19), the expectations (18) derived from the PLM, the model (15) and the

stochastic shocks.

A key parameter in the learning mechanism is the gain parameter τ t, which indicates the emphasis that

agents place on recent information. To form an expectation, agents update their forecasting model (the

PLM) from the previous period using the new realizations of the endogenous variables. A high gain indicates

that agents’ estimates of (at,bt, ct) are more sensitive to recent information.

If the gain parameter is decreasing over time such that τ t = 1/t, then the updating equations (19) are

equivalent to recursive least squares using all lags, given an appropriate initial condition. The expectational

stability result in Proposition 2 implies that recursive least squares will converge to the REE from (11) and

(12), given that the PLM (17) is of the same form as the minimum state variables solutions (11) (see Evans

and Honkapohja (2001b), section 2.6 and chapter 10).

To study the impact of learning on policy, decreasing gain is not an appropriate assumption, since the

impact of learning on the dynamics is decreasing over time. Following much of the learning literature, I

adopt a constant gain τ t = τ̄ , the value of which has a number of interrelated interpretations. Orphanides

and Williams (2002) explain that the learning mechanism (19) with constant gain updates expectations

using a rolling window of past data. A lower gain parameter means that agents are using more lags to make

their estimates15 . Furthermore, since least squares learning with decreasing gain approaches the rational

expectation equilibrium, one can think of the gain parameter as a measure of the rationality of agents, lower

gain indicating a higher degree of rationality. A third interpretation can be found in Waters (2007), who

argues that low gain implies high credibility of the policymaker. Given that the policymaker is trying to

keep output and inflation near certain targets, if agents have faith in the abilities of the policymaker, they

will not be excessively swayed by recent data and will tend to keep their beliefs about the target values

that they have formed over time. Conversely, if agents do not trust the policymaker to keep the economy

near the targets or even to keep fixed targets, they will place greater emphasis on recent realizations when

forming expectations, corresponding to high gain.

6 Simulations

Simulating the New Keynesian model with expectations based interest rate rules under constant gain learning

allows a comparison of policy outcomes for varying degrees of commitment. The primary goals are to

determine whether there are gains to commitment and to find the optimal magnitude of response to lagged

15A constant gain parameter τ̄ corresponds to 2/τ̄ lags of data used.
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output for the interest rate, which is parameterized by κ in the policy rule (14). Since the full commitment

value of κ = 1.0 is close to the bound for non-explosive and determinate solutions for some reasonable

parameter values, it is questionable whether this policy remains optimal under learning. The simulation

results show that the modified commitment setting κ = β minimizes the loss under least squares learning with

constant gain. However, this and the following section show that consideration of parameter uncertainty and

the introduction of measurement error in the policymaker’s observations of public expectations complicates

these results.

The choice of parameter values for this section follows McCallum and Nelson (2004), MN04 in (16),

who study full commitment versus discretionary outcomes for a number of different policy rules under full

rationality. They report gains from commitment over discretion for the policymaker for a number of policy

rules under different degrees of output stabilization. The parameters are calibrated so that the time periods

correspond to quarterly data. The parameter values that determine the behavior of the stochastic variables

gt and ut in (1) and (2) are as follows.

µ ρ σw σg σu

0.95 0.8 0.005 0.02 0.005

Further, let α in the loss function (4) be α = 0.25, which is an intermediate value of those studied by

McCallum and Nelson (2004) and indicates equal weight on output and inflation stabilization. I report

results for values of the gain parameters from τ̄ = 0.01 to τ̄ = 0.15, which correspond to agents using a

rolling window of 200 and 3.3̄ years of past data, respectively. The smaller value 0.01 is the lowest considered

by Orphanides and Williams (2006) while τ̄ = 0.15 is much larger than the values they consider, but in line

with the values used in other studies16 .

<Figures 1 and 2 here>

Figures 1 and 2 give sample paths for the output and inflation gaps for simulations under recursive least

squares with τ̄ = 0.1. Agents begin the simulations with beliefs about the parameter values corresponding

to the REE, but with constant gain their estimates may continue to fluctuate. For this simulation in Figure

1, the parameter κ is set to κ = 1.3, which is in the range where the REE is determinate and non-explosive.

The RE value for bx ≈ 0.98 is close to one, leading to the persistence in the series in Figure 1. In contrast,

for Figure 2, κ = 0.9, the corresponding value is bx ≈ 0.85, and the policymaker is able to keep output and

inflation closer to their target values.

16See Evans and Honkapohja (1993) for an example where the gain parameter with the optimal performance was 0.15.
Orphanides and Williams (2002) use semi-annual data so a gain of 0.05 is equivalent to a gain of 0.025 here.
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<Figure 3 here>

To gain intuition about the problem facing the policymaker, Figure 3 graphs the losses for κ ∈ [0.0, 1.1]

and α ∈ [0.1, 1.0] taking an average of the losses from 10,000 runs17 . A number of observations can be made

from Figure 3. First, the loss is minimized in the neighborhood of κ = 1.0 for all levels of alpha, though

there is an asymmetric change in the loss for κ above and below the minimizing value. Here is evidence in

favor of partial commitment if there is uncertainty about the true parameter values, since accidentally using

a policy equivalent to an excessively large κ could lead to a very bad outcome. It is notable, however, that

the asymmetry is less severe for lower levels of alpha, in line with Proposition 1, which shows that a lower

alpha raises the bound on κ for determinacy and non-explosiveness. Again, a conservative central banker

reduces the risks associated with an excessive response to lagged output. Preliminary simulations indicate

that this asymmetry is present under rational expectations as well, though I leave a full investigation of this

issue for future work.

To give some precision to these observations, the table in Figure 4 gives numerical values of losses for

different values of κ including those for discretion, partial commitment and full commitment, with α = 0.25.

For this section the reader should focus on the first column of losses. Using the parameters of MN04, as

in Figure 3, the minimum loss is achieved at the partial commitment setting of κ = 0.99. Hence, modified

commitment is optimal under least squares learning.

<Figure 4 here>

7 Imperfect Information for the Policymaker

To this point I have made the assumption that the policymaker has perfect knowledge of public expectations.

Evans and Honkapohja (2004) state that the results concerning expectational stability hold with white noise

measurement error in the expectations in the policy rule (14). Here, I study whether the introduction of

such errors would impact the policy outcomes under learning. Simulation results reported in this section

show that such errors can have a definite effect. In the presence of such uncertainty, the policymaker should

not respond to lagged output as strongly as the full or modified commitment settings indicate.

To examine this issue, I include the error terms εx,t and επ,t, both white noise with variances σx and σπ,

17For all reported results, the loss for each run is calculated over 200 periods using (4) after 600 periods for initialization.
The initial values ξ0 are set to their RE values. Since losses are computed with discounting, longer runs do not provide much
extra information.
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to the policy rule (14) to form18

it = δLxt−1 + δπ (E
∗

t πt+1 + επ,t) + δx (E
∗

t xt+1 + εx,t) + δggt + δuut. (20)

Substituting this equation into (1) shows that the model is identical to (15), but adds the additional noise

−εx,t −

(
1 +

λβ

α+ λ2

)
επ,t to the preference shock g̃t. Introducing measurement error has the effect of

adding unobservable shocks to the demand side of the model. Besides measurement error, the extra noise

could be interpreted as any unseen factors affecting the connection between the policymaker’s instrument

it and the endogenous variables, decisions within financial institutions being one of many examples. Since

the source of the errors is unimportant to the simulation results, I make the simplifying assumption that

επ,t = 0 and run simulations for different levels of σx, adjusting σg so that the magnitude of the sum of the

shocks does not change19 .

<Figure 5 here>

Introduction of the policy rule errors has an obvious affect on the public’s forecasting ability under

learning. Figure 5 shows agents’ parameter estimates over time for bx, bπ, cx and cπ and demonstrates this

conclusion clearly. In the case of small or zero errors in the interest rate rules, estimates of these parameters

appear to be constant20 near their RE values, given by (12). However, for larger σx = 0.01, as in Figure 5,

the variation of these parameters is quite visible. Greater variation in the parameter values leads to higher

volatility in expectations, see (18), and in output and inflation, as well. Larger errors in the interest rate

rule (20) lead to policy mistakes, making the task of estimating the values ξt of the perceived model (17)

more difficult. The problem is increasingly severe at higher levels of commitment, when the policymaker

is influencing public expectations, and for higher values of the gain parameter τ̄ , when agents are putting a

great deal of emphasis on recent information when estimating ξt.

In the cases with significant variation in ξt, the estimated values in the PLM (17) can easily slide into

regions when the system appears to be explosive. To ensure that the policy rules are operational, I impose

a bound or projection facility21 on the elements of ξt. Each element of ξt is bounded by a unit interval

centered at its RE value. The size of the interval is set to be large enough so that the variation in the

elements of ξt can have an impact on the endogenous variables but also to be strict enough so that the

simulated data does not exhibit unreasonably wild swings. In Figure 6, the estimates of cx hit the bound

18The form of this rule is identical to that found in Evans and Honkapohja (2003).
19Formally, σ2g + σ

2
x = (0.02)

2 .
20For example, of the four paramters, cx always has the largest mean squared deviation (MSD), and for σx = 0.001 its MSD

is 0.0005, but for σx = 0.01, as shown in Figure 3, the MSD is 300 times higher at 0.15.
21This term originally comes from Marcet and Sargent’s (1989) study of least squares learning.
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a number of times. Grandmont (1998) has questioned whether imposing a projection facility excessively

restricts agents’ behavior, and our results are sensitive to changes in the bound. Imposing a projection

facility implies that agents have a certain amount of faith that the economy will not fluctuate excessively.

Investigating whether and how such bounds should be imposed and interpreted is a large area for future

research. Here, I simply note that expanding or removing the projection facility makes the errors in the

policy rule (20) more of a concern for the policymaker.

For each of the parameterizations in (16), the table in Figure 4 reports losses for varying κ for the case of

no policy errors and for errors with σx = 0.01 where their impact is equal to that of the preference shocks.

For all three parameterizations under learning, the modified commitment setting κ = β = 0.99 remains

optimal within the class of rules (14), but within the class of rules (20) with errors in the policy rule, a

partial commitment setting of κ < β is optimal, κ = 0.94 in the case of MN04.

The table in Figure 4 also reports losses in the discretionary case where κ = 0.0 to ascertain the magnitude

of the gains to commitment. Assuming rational expectations, McCallum and Nelson (2004) report a ratio

of losses between the discretionary and fully rational cases of 1.29. Under learning, the ratios between

discretion and both full and modified commitment are larger at approximately 1.78. Using the alternative

parameterizations, CGG00 and W99, the qualitative conclusions are unchanged.

<Figure 6a and 6b here>

The tables in Figures 6a and 6b report the loss minimizing κ’s under learning for constant gain τ̄ = 0.025

and τ̄ = 0.15 respectively, for varying levels22 of the policymaker preference parameter α and magnitude of

policy rule shocks σx. The surface of losses in Figure 3 shows that the loss minimizing setting for κ does

not depend on α, and, indeed, modified commitment where κ = 0.99 is best for all choices of α in the cases

where there are no or minimal errors (σx = 0.001) in the policy rule, according to the table in Figure 6a.

However, for larger magnitudes of policy rule errors partial commitment values of κ < 0.99 minimize the

policymaker’s loss and vary inversely with α. The more significant the measurement error in the policy

rule and the greater the policymaker’s emphasis on stabilizing output, the less the interest rate rule should

respond to lagged inflation. Results using constant gain of τ̄ = 0.01 and τ̄ = 0.05 were nearly identical to

Figure 6a.

The case for partial commitment is even stronger for the higher constant gain parameter τ̄ = 0.15 as in

the table in Figure 6a. Modified commitment is still best for any α in the absence of policy rule errors,

but partial commitment with κ < 0.99 is optimal for minimal errors (σx = 0.001) if the the policymaker

22The range for α corresponds to McCallum and Nelson (2004).
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is sufficiently concerned about output stabilization. With one exception23 , higher gain leads to a lower

optimal level of commitment. The finding of a negative optimal κ in the lower right hand entry of Figure

6b is intriguing, though these are extreme parameter settings where policy rule errors account for all of the

preference shocks and the policymaker is primarily concerned with output stabilization.

A significant deterioration of the performance of modified commitment requires some combination of

policymaker concern about output stabilization, policy rule errors and/or high gain. Introduction of any one

of these factors by themselves does not alter greatly the conclusion that modified commitment is preferable.

For example, if policy rule errors are at their maximum σx = 0.02 while the policymaker is primarily focused

on inflation stabilization α = 0.01 and the gain is small τ̄ = 0.025, the loss minimizing κ is 0.98 (Figure 6a)

and the gain over modified commitment κ = 0.99 is less than 10−5. However, increasing α with the higher

policy rule errors changes this conclusion making partial commitment better and raising the gain parameter

in addition lowers the loss minimizing κ even more.

<Figure 7 here>

To clarify the results concerning the optimality of partial commitment for this class of interest rate rules

(20), I closely examine four cases under modified commitment where the standard deviation of the policy

rule errors takes the value of σx = 0.001 or 0.01, and the gain parameter takes the values τ̄ = 0.025 and 0.15.

The table in Figure 7 reports the mean deviation of the estimates of bx, bπ, cx and cπ from their RE values,

their squared deviation from the mean of the simulated values, the mean squared error of the forecasts for

output and inflation, and the skewness of the losses over the 10,000 runs. Orphanides and Williams (2002)

report systematic bias in agents’ estimates even in the absence of stochastic shocks in the model. Here, bias

and fluctation in the estimates of the parameters are evident and coincide with larger forecast errors.

The first two columns are cases with minimal policy rule errors when modified commitment κ = β = 0.99

is best. In both cases, the bias and fluctuation in the parameter estimates and the forecast errors are

smaller than the cases in the third and fourth columns. The presence of significant policy rule errors has a

detrimental effect on agents forecasting ability, most notably for output. The losses in the first two columns

show positive skewness, as expected given the asymmetry in Figure 3, though it is not sufficient to affect the

optimality of modified commitment. The most notable entry in Figure 7 is the high, positive skewness in

the case with large policy rule errors and gain, (σx, τ̄) = (0.01, 0.15). In this case, the prevalence of some

losses far above the mean makes a setting of κ = 0.91 (see Figure 6b) better than modified commitment.

However, comparing the second and third columns, the case where (σx, τ̄) = (0.001, 0.15) corresponds to

a loss minimizing κ of κ = 0.99 while the case where (σx, τ̄) = (0.01, 0.025) has a lower loss minimizing

23At α = 0.01 and σx = 0.01 the loss minimizing κ is 0.98 for τ̄ = 0.025 but 0.99 for τ̄ = 0.15. This result was verified for
20,000 runs, but the difference in loss between κ = 0.99 and κ = 0.98 for the lower gain was less that 10−6.
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κ = 0.94 even though the skewness is less than in the second column. Hence, larger bias and/or variation

in the parameter estimates or the larger policy rule errors in the third column must also be a factor behind

the optimal κ being below modified commitment.

Simulations of the model under partial commitment in the case where (σx, τ̄) = (0.01, 0.025) for a fixed

ξ, further disentangle the influence of these factors. Fixing the agents estimate of ξ at the biased value

from Figure 7 yielded a loss of 0.09120, which is a slight improvement over the 0.0925 shown in Figure 4 but

not nearly as good as the loss achieved at the optimal κ = 0.94. Fixing the estimate of ξ at the rational

expectations value yielded a loss of 0.09219, which is worse than the outcome under the biased ξ, so the bias

actually improved the policy outcome in the presence of policy rule errors. Hence, the fluctuations in the

estimates of ξ play a role in the deterioration of the performance of modified commitment, but the presence

of the policy rule errors are a major factor.

<Figure 8 here>

The deterioration of policy outcomes at modified commitment for larger policy rules errors and higher

gain is evident from the distribution of the losses shown in Figure 8. These curves track the height of the

midpoints of a histogram over 100 intervals of width 0.003. For the case where (σx, τ̄) = (0.01, 0.15) the

mean is to the right, and the tail is fatter compared to the other distributions. The jump at 0.3 for this

case indicates there are a number of cases with losses above the maximum of 0.3 as well..

Close examination of these four cases shows that larger policy rule errors, greater variation in the estimates

of ξ and higher gain lead to increased incidence of large losses and worse policy outcome under modified

commitment, necessitating a partial commitment setting for κ < β. Conversely, for smaller policy rule

shocks and low gain, the fluctuations in ξ are minimal, the asymmetry of the losses seen in Figure 3 do not

play a significant role and the modified commitment setting κ = β is optimal under learning.

The interpretation of the results with respect to σx is straightforward. Larger errors in the policy

rule indicate a lower level of knowledge on the part of the policymaker and a public who is less able to

correctly learn the values of the forecasting model. Policymakers cannot set interest rates as accurately and

expectations show more instability leading to worse outcomes from a policy perspective.

The impact of a higher τ̄ is more open to interpretation. The gain parameter can represent the lags of

data used by agents in their estimation, the rationality of agents and/or the credibility of the policymaker.

A marked policy deterioration only appears when τ̄ is raised to 0.15, a relatively high value indicating that

agents are using only 3.3 years of data to make their estimates. This higher gain could be reasonable if there

is a perceived shift of regime in the economy or if the policymaker has very low credibility. The policymaker

is less able to commit when he or she has low credibility or poor information about the connection between
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the policy instrument and the other endogenous variables in the economy.

The conclusion that a policymaker with weak credibility should not aggressively commit rests on the

assumption of constant gain, however. If the model is expanded to allow the gain parameter to fall as

the policymaker gains credibility, then the policymaker may have incentive to stick to a higher level of

commitment. Such a model is studied in Waters (2007) who uses an endogenous gain mechanism introduced

by Marcet and Nicolini (2004).

8 Conclusion

Relaxing the assumption of full rationality for the formation of expectations raises a number of related issues

for the design of monetary policy rules. One concern is whether a rule is stable under learning while another

is whether a rule minimizes the policymaker’s loss under learning. Evans and Honkapohja (2003, 2006)

introduce a class of expectations based interest rate rules and study the former issue. The present work

extends their analysis to a broader class of rules allowing for varying degrees of response to lagged variables

and goes on to study the latter question for such rules.

Within the present framework, one can meaningfully discuss varying levels of commitment. The greater

the policymaker’s degree of commitment, the more he or she will adjust the interest rate in response to

lagged output to affect public expectations. The commitment optimum under rational expectations or full

commitment is a special case as is the modified commitment value advocated by Blake (2001). I provide

a condition for non-explosive and determinate equilibria for this class of rules and show that expectational

stability holds for any non-negative response to lagged output.

Simulation results show that modified commitment minimizes the policymaker’s loss under least squares

learning in the baseline case. However, parameter uncertainty, errors in the policy rule and high gain are

all factors that could, in combination, make a policy of partial commitment best implying a lower response

to lagged output than modified commitment. An excessive response to lagged output can lead to very

bad outcomes for the policymaker, so he or she should act to minimize that possibility. The presence of a

conservative central banker makes such issues less problematic, however.

The gain parameter has important economic interpretations in terms of the lags used to form expectations,

the rationality of the agents and the credibility of the policymaker. When agents are using only recent data

(high gain), indicating a low credibility, the case for partial commitment becomes stronger.

Expectations based interest rate rules continue to demonstrate desirable characteristics for monetary

policy, but the present work does offer a few caveats for practical implementation. For an extended range

of responses to lagged output they exhibit non-explosive, determinate and expectationally stable solutions.
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Some degree of commitment minimizes the loss for the policymaker when agents use a learning mechanism

to form expectations. However, it is often the case that the policymaker should be cautious about the

commitment optimum under rational expectations and engage in partial commitment. The prerequisites

for partial commitment, parameter uncertainty and policy rule errors, clearly exist to some degree, so the

policymaker must be vigilant.

These results point to some important areas for future work, namely determining the extent to which

parameter uncertainty and policy rule errors are present in estimated models of monetary policy. Further-

more, credibility is an important aspect of monetary policy but has proved to be an elusive feature to model

formally. Interpreting the gain parameter as an indication of credibility may open new avenues for research

on monetary policy. The present paper gives practical guidance on the design of rules and areas that need

attention for deeper understanding of monetary policy.

Appendix A
Proof of Proposition 1:

Proof. To demonstrate determinacy, first, define a new variable xLt for the lag of the output gap such that

xLt+1 = xt. Under rational expectations Etπt+1 = πt+1+εt+1 for some iid, mean 0 shock εt. The the model

(15) can be written in the form




1 0
−ακ

α+ λ2

0 1
−λακ

α+ λ2

1 0 0







xt

πt

xLt



=




0
−λβ

α+ λ2
0

0
αβ

α+ λ2
0

0 0 1







xt+1

πt+1

xLt+1



+K




ut

gt

εt




.

Multiplying both sides by the inverse of the 3x3 matrix on the left hand side gives the model the following

form. 


xt

πt

xLt



= J




xt+1

πt+1

xLt+1



+ K̃




ut

gt

εt




where K̃ is the appropriate transformation of K. The condition for determinacy (see Blanchard and Kahn

(1980) and Evans and Honkapohja (2006)) is that the matrix J must have two eigenvalues with modulus

less than one and one eigenvalue with modulus greater than one.

A straightforward computation shows that one eigenvalue e of J is 0, while the other two must satisfy

e2 −

(
β +

α+ λ2

ακ

)
e+

β

κ
= 0.
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For one root to be greater than one and one root to be less than one the right hand side of the equation

above must be negative for e = 1, which is equivalent to the condition κ < 1 +
λ2

α (1− β)
.

Non-explosiveness requires that the negative solution of bx in the quadratic condition (13) be less than

one. Since the positive root is always greater than one, the non explosiveness condition requires that the

left hand side of (13) be less than zero at bx = 1 which is true for κ < 1 +
λ2

α (1− β)
as well.

Appendix B
Proof of Proposition 2:

To prove proposition 2, I first prove the following lemma.

Lemma 3 Given κ ≥ 0 and the associated REE value of bx,

i) bx is real,

ii) bx − κ ≤ 0,

iii) bx − κ > −1.

Proof. The relevant root of (13) is

bx = (2β)
−1


λ2 + α

α
+ βκ−

√(
λ2 + α

α
+ βκ

)2
− 4βκ


 ,

which is real if the radicand rad is positive. The radicand can be written

rad = β2κ+ 2βκ

(
λ2 − α

α

)
+

(
λ2 + α

α

)2
,

and is minimized at κ = −
1

β

(
λ2 − α

α

)
so, substituting, the minimum value attained by rad is

4λ2

α
> 0.

Hence, the radicand is always positive for positive parameters, and bx is real.

The difference bx − κ can be written

bx − κ = (2β)−1


λ2 + α

α
− βκ−

√(
λ2 + α

α
− βκ

)2
− 4βκ


 .

Therefore bx − κ ≤ 0 if 4βκ > 0 which is true if κ ≥ 0.

The condition in iii), bx − κ > −1, is equivalent to

2β +
λ2 + α

α
− βκ >

√(
λ2 + α

α
− βκ

)2
− 4βκ.
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Squaring both sides and simplifying yields another equivalent condition

β +
λ2 + α

α
> −κ (1− β) ,

which is true for κ ≥ 0, β < 1 and positive parameters.

To study expectational stability of (15), consider the general model

yt =ME∗

t yt+1 +Nyt−1 + Pvt

with vt = Fvt−1 from (3). Expectations E∗

t yt+1 are formed according to (18) and substituting them into

equation above gives the ALM in the form yt = T (at−1, bt−1, ct−1) zt−1 for the map

T (a, b, c) =
(
M (a+ ba) , Mb2 +N, M (bc+ F ) + P

)

suppressing the time subscripts in the T− map. For the model (15) with REE (11) the matrices are such

that M =



0

−λβ

α+ λ2

0
αβ

α+ λ2


 and B =




bx 0

bπ 0


 . Expectational stability is defined according to the matrix

differential equation

d

ds
(a, b, c) = T (a, b, c)− (a, b, c)

where s is notional time, distinct from the periods denoted by t. The REE solutions are fixed points of the

differential equation where T (a, b, c) = (a, b, c) , and expectational stability is defined in terms of stability of

the differential equation.

The associated REE from (11) has the form

yt = Byt−1 +Cvt.

The conditions for expectational stability (see Evans and Honkapohja (2001), chapter 10) are that the

matrices

DTa = M (I +B)

DTb = B′
⊗M + I ⊗MB

DTc = F ′
⊗M + I ⊗MB

must have eigenvalues with modulus less than one.
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The proof of proposition 2 follows.

Proof. The matrices for the condition for expectational stability are

DTa =




−bπλβ

α+ λ2
−λβ

α+ λ2
bπαβ

α+ λ2
αβ

α+ λ2




DTb =




−bπλβ

α+ λ2
−bxλβ

α+ λ2
0

−bπλβ

α+ λ2
bπαβ

α+ λ2
bxαβ

α+ λ2
0

bxαβ

α+ λ2

0 0
−bπλβ

α+ λ2
0

0 0
bπαβ

α+ λ2
0




DTc =




−bπλβ

α+ λ2
−µλβ

α+ λ2
0 0

bπαβ

α+ λ2
µαβ

α+ λ2
0 0

0 0
−bπλβ

α+ λ2
−ρλβ

α+ λ2

0 0
bπαβ

α+ λ2
ραβ

α+ λ2




.

The eigenvalues of DTa are 0 and
αβ

α+ λ2

(
1−

λ

α
bπ

)
. Using the second equation from (12), the non-zero

eigenvalue is
αβ

α+ λ2
(1 + bx − κ), which is less than one since

α

α+ λ2
, β < 1 and bx−κ ≤ 0 from Lemma 3.

The the matrix DTb has two eigenvalues equal to 0. It also has eigenvalues
αβ

α+ λ2

(
bx −

λ

α
bπ

)
and

−bπλβ

α+ λ2
. Using the second equation from (12), the two non-zero eigenvalues are

αβ

α+ λ2
(bx + bx − κ), and

αβ

α+ λ2
(bx − κ) , the second of which is less than one, since

α

α+ λ2
, β < 1 and bx − κ ≤ 0 from Lemma 3.

The condition on the first non-zero eigenvalue of DTb,
αβ

α+ λ2
(bx + bx − κ) < 1 is equivalent to

1−
1

2

(
α

α+ λ2

)

√(

λ2 + α

α
+ βκ

)2
− 4βκ+

√(
λ2 + α

α
− βκ

)2
− 4βκ


 < 1,

using the expressions for bx and bx − κ in Lemma 3. The condition is satisfied as long as both radicands

from the roots of bx and bx − κ are positive. Lemma 3 proves that bx is real, hence bx − κ is as well, both

radicands are positive, and the eigenvalue is less than one.

The matrix DTc has two repeated eigenvalues of 0 and
αβ

α+ λ2

(
µ−

λ

α
bπ

)
=

αβ

α+ λ2
(µ+ bx − κ), using

the second equation from (12) again. The non-zero eigenvalue is less that one since
α

α+ λ2
, β, µ < 1 and

bx − κ < 0 from Lemma 3.
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The lemma also guarantees the bx − κ > −1 so all the non-zero eigenvalues for the three matrices are

greater than −1 as well.

Therefore, the moduli of all the eigenvalues of DTa,DTb and DTc are all less than one and the model

(15) is expectationally stable for any REE.
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Figure 1: The value of κ is κ = 1.3 which is in the range for determinate and nonexplosive equilibria. The
value of the gain is τ̄ = 0.1.
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Figure 2: The value of κ is κ = 0.9, which is in the range for determinate and nonexplosive equilibria. The
value of the gain is τ̄ = 0.1
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Figure 3: Mean losses over 10,000 runs for varying α and κ
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κ σx =0.01 σx =0.01 σx =0.01

0.0 0.12792 0.13042 0.11547 0.11809 0.13677 0.13857

0.90 0.08064 0.08950 0.05868 0.06729 0.11492 0.12571

0.91 0.07920 0.08950 0.05776 0.06686 0.11343 0.12525

0.92 0.07780 0.08887 0.05692 0.06653 0.11182 0.12490

0.93 0.07648 0.08847 0.05615 0.06633 0.11013 0.12474

0.94 0.07525 0.08828 0.05546 0.06627 0.10836 0.12487

0.95 0.07416 0.08836 0.05488 0.06635 0.10657 0.12547

0.96 0.07324 0.08876 0.05440 0.06661 0.10485 0.12677

0.97 0.07252 0.08955 0.05405 0.06704 0.10332 0.12913

0.98 0.07204 0.09078 0.05382 0.06768 0.10218 0.13306

0.99 0.07186 0.09254 0.05374 0.06854 0.10171 0.13924

1.00 0.07202 0.09490 0.05382 0.06963 0.10231 0.14863

1.01 0.07257 0.09794 0.05407 0.07098 0.10449 0.16251

1.02 0.07357 0.10176 0.05449 0.07259 0.10890 0.18256

CGG00 W99MN04
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Figure 4: Each entry shows the mean loss over 10,000 runs for varying κ across different parameterizations
of the model. The cells in bold are the minimum losses for each the column.
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Figure 5: The above graph shows the evolution of agents’ estimates of cπ, bx, bπ and cx, from top to bottom.
The value of the gain is τ̄ = 0.15, and the standard deviation of the policy rule errors is σx = 0.01.
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a) τ = 0.025

σx \ α 0.01 0.1 0.25 0.5 1

0 0.99 0.99 0.99 0.99 0.99

0.001 0.99 0.99 0.99 0.99 0.99

0.01 0.98 0.97 0.94 0.90 0.42

0.02 0.98 0.92 0.84 0.30 0.05

b) τ = 0.15

σx \ α 0.01 0.1 0.25 0.5 1

0 0.99 0.99 0.99 0.99 0.99

0.001 0.99 0.99 0.99 0.96 0.93

0.01 0.99 0.95 0.91 0.84 0.26

0.02 0.98 0.9 0.68 0.03 -0.04
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0 0.99 0.99 0.99 0.99 0.99
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0.02 0.98 0.92 0.84 0.30 0.05

b) τ = 0.15

σx \ α 0.01 0.1 0.25 0.5 1

0 0.99 0.99 0.99 0.99 0.99

0.001 0.99 0.99 0.99 0.96 0.93

0.01 0.99 0.95 0.91 0.84 0.26

0.02 0.98 0.9 0.68 0.03 -0.04

Figure 6: Each entry shows the loss minimizing value of κ for different values of σx and α. These are
determined by calculating the mean loss across 10,000 runs of 200 periods each for κ = 0.00, 0.01, 0.02, ..., 1.02.
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σx = 0.001 σx = 0.001 σx = 0.01 σx = 0.01

τ = 0.025 τ = 0.15 τ = 0.025 τ = 0.15

b x

-3.36E-04 -2.96E-03 -1.84E-02 -1.17E-01

1.52E-05 5.28E-07 1.14E-03 2.53E-02

b p

1.98E-04 -1.29E-03 1.02E-02 6.67E-02

5.39E-06 2.59E-06 2.78E-04 2.66E-02

c x

1.48E-04 -9.67E-04 1.09E-02 2.12E-02

3.40E-04 4.26E-03 3.02E-02 1.13E-01

c p

-5.99E-05 9.14E-03 -1.19E-02 -4.11E-02

5.52E-05 1.47E-02 4.89E-03 8.95E-02

x forecast
1.33E-05 1.50E-05 1.29E-04 2.71E-04

π  forecast
5.35E-05 5.31E-05 5.46E-05 5.58E-05

0.748 1.819 0.838 39.282

mean squared error

Skewness of Losses

mean deviation from RE

mean squared deviation

mean deviation from RE

mean squared deviation

mean deviation from RE

mean squared deviation

mean deviation from RE

mean squared deviation

mean squared error

σx = 0.001 σx = 0.001 σx = 0.01 σx = 0.01

τ = 0.025 τ = 0.15 τ = 0.025 τ = 0.15

b x

-3.36E-04 -2.96E-03 -1.84E-02 -1.17E-01

1.52E-05 5.28E-07 1.14E-03 2.53E-02

b p

1.98E-04 -1.29E-03 1.02E-02 6.67E-02

5.39E-06 2.59E-06 2.78E-04 2.66E-02

c x

1.48E-04 -9.67E-04 1.09E-02 2.12E-02

3.40E-04 4.26E-03 3.02E-02 1.13E-01

c p

-5.99E-05 9.14E-03 -1.19E-02 -4.11E-02

5.52E-05 1.47E-02 4.89E-03 8.95E-02

x forecast
1.33E-05 1.50E-05 1.29E-04 2.71E-04

π  forecast
5.35E-05 5.31E-05 5.46E-05 5.58E-05

0.748 1.819 0.838 39.282

mean squared error

Skewness of Losses

mean deviation from RE

mean squared deviation

mean deviation from RE

mean squared deviation

mean deviation from RE

mean squared deviation

mean deviation from RE

mean squared deviation

mean squared error

Figure 7: Each column reports summary statistics over 10,000 runs for the chosen paramter values.

33



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

100

200

300

400

500

600

700

800
tau = 0.025, sigma = 0.001
tau = 0.025, sigma = 0.01
tau = 0.15, sigma = 0.001
tau = 0.15, sigma = 0.01

Figure 8: Each curve tracks the distribution of the mean losses of 10,000 runs of 200 periods each for the
chosen parameters. The histograms are generated across 100 intervals of width 0.003.
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