
An Improved Way to Model the Evolution of Heterogeneous Forecasts

George A. Waters�

Bank of Finland

Snellmaninaukio

PO Box 160

00101 Helsinki

Finland

September 28, 2010

Abstract

The �-BNN dynamic retains the desirable features of the BNN dynamic with a continuous derivative
the lack of which complicates the analysis of the cobweb model under the latter. Both dynamics
satisfy positive correlation and inventiveness, and there is an intuitively appealing steady state where
one strategy dominates, which is not possible with the multinomial logit dynamic. Under the �-BNN
dynamic, there is an unstable 2-cycle, as with the BNN dynamic, but its is not asymptotically unstable.
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While the assumption that there is a unique representative forecast is common in macroeconomics,

researchers should recognize that changing forecasting strategies is quite possible and could be an important

determinant of economic dynamics. Much work in this area has focused on the cobweb model where the

multinomial logit (MNL) dynamic describes switching between rational and naive forecasting strategies1 .

However, this dynamic and imitative dynamics such as the replicator are problematic when some strategies

are at or close to extinction. Waters (2009a) introduces the Brown, von Neumann and Nash (1950),

henceforth BNN, dynamic in this context and shows that it does not have such problems and that there

is a more natural interpretation of the steady states, compared to other dynamics. The major drawback

is that the BNN dynamic does not have a continuous derivative where the payo¤s are equal, a situation

that often arises in non-trivial applications. Fortunately, the �-BNN dynamic, an extension suggested by

Weibull (Nobel Seminar, 1994), is continuous in the payo¤ while retaining the desirable features of the BNN

dynamics such as positive correlation, a weak monotonicity condition, and inventiveness, which means that

strategies with no followers can gain some if they perform well.

Let qk;t be the fraction of followers and �k;t be the payo¤ of strategy k in time t. A general dynamic �k

describes the evolution of qk;t within the simplex �q =

�
(q1;t; :::::; qH;t) j

HP
h=1

qh;t = 1

�
according to the vector

of payo¤s �t = (�1;t; :::::; �H;t) such that qk;t+1 = �k (qt; �t) where qt 2 �q: The population average payo¤

��t =
HX

h=1

qh;t�h;t determines the excess payo¤ b�k;t = �k;t � ��t for strategy k in time t.

The ��BNN dynamic depends on the positive excess payo¤s in the population where the � parameterizes

the speed of adjustment of the fractions of followers of the di¤erent strategies.

qk;t+1 =
qk;t + [b�k;t]�+

1 +
HP
h=1

[b�h;t]�+
; (1)

This dynamic2 is a special case of the class of excess payo¤ dynamics (Sandholm 2006), which satisfy positive

correlation and inventiveness.

De�nition 1 The dynamic �k satis�es positive correlation i¤

HX

h=1

(qh;t+1 � qh;t) b�h;t > 0 unless b�h;t = 0

for all h.

Positive correlation requires that the change of the fractions of the population using di¤erent strategies

is correlated with their payo¤s, so strategies with higher payo¤s gain adherents on average, ensuring out-of-

equilibrium dynamic paths re�ect strategic incentives. Though this is the weakest monotonicity condition

1Sethi and Franke (1995) develop the cobweb model with naive and rational forecasts. Brock and Hommes (1997) discuss
the nature of the chaotic dynamics arising under MNL. Hommes (2006) surveys the succeeding literature.

2This particular form is found in Nash�s (1951) proof of the stability of the Nash equilibrium.
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in the literature, the multinomial logit models commonly used to describe switching between forecasting

strategies does not satisfy positive correlation, see Waters (2009a).

De�nition 2 The dynamic �k satis�es inventiveness if strategies with positive excess payo¤ in time t

have a positive fraction of followers in time t+ 1.

Inventiveness (Weibull, Nobel Seminar, 1994) ensures that strategies needn�t be permanently extinct if

they perform well, which is the case under imitative dynamics such as the replicator3 . Inspection shows

that the �-BNN dynamic satis�es inventiveness.

The most common speci�cation of the cobweb model with heterogeneous forecasting strategies allows

producers to forecast output prices using either a rational or naive forecast. Let q be the fraction using the

rational forecast, which is equivalent to perfect foresight in the absence of stochastic terms in the model.

While the rational forecast is more accurate than the naive forecast, which simply uses the price in the

previous period, the producer must pay a cost C > 0 to use it. With linear demand and supply determined

by these two forecasting strategies, price dynamics4 are given by the following, where bb = b=B is the ratio

of the supply elasticity b and the demand elasticity B.

pt+1 = �

"
bb (1� qt)
bbqt + 1

#
pt: (2)

The variable pt is the deviation of the price from a positive steady state. Clearly, pt = 0 is a steady state

of (2), though there is also the possibility of a 2-cycle if the bracketed term equals one.

The dynamics of qt governing the choice of forecasting strategy are given by the �-BNN dynamic (1),

which depend on the excess payo¤s for the rational and naive strategies b�R;t and b�N;t. The payo¤s to

the two strategies are pro�ts for the �rms, taking into account the cost of the rational forecast. With two

strategies, the excess payo¤s take the following form.

b�R;t = (1� qt) (�R;t � �N;t) (3)

b�N;t = qt (�N;t � �R;t) : (4)

The di¤erence in the rational and naive payo¤s �R;t and �N;t is important so let the payo¤ di¤erence function

be  (pt; qt) = �R;t � �N;t. Computation (Waters, 2009a) yields the following expression for  (�).

3Sandholm (2006) compares imitative and excess payo¤ dynamics.
4See Waters (2009a) for a detailed development of the model. The equation for price dynamics and the payo¤s are equivalent

to those found in Brock and Hommes (1997).
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 (pt; qt) = p
2
t

2
64
Bbb
�
bb+ 1

�2

2
�
bbqt + 1

�2

3
75� C (5)

The non-negativity restriction on excess payo¤s in the �-BNN dynamic (1) complicates the analysis, so we

express the dynamics for qt as follows.

qt+1 =

8
>>>>><
>>>>>:

qt
1� qt (pt; qt)

� for  (pt; qt) � 0

1�
1� qt

1 + (1� qt)  (pt; qt)
� for  (pt; qt) > 0

9
>>>>>=
>>>>>;

(6)

Whether qt rises or falls depends on whether the payo¤ di¤erence  (pt; qt) is positive or negative. The

function F describe the motion of (pt; qt).

De�nition 3 The evolution function F where (pt+1; qt+1) = F (pt; qt) is determined by the price dynamics

(2),and the evolution of qt (6) along with the payo¤ di¤erence function  (pt; qt) in (5).

Now that the dynamics of the model are concisely described, consider �rst the existence of the steady

state such that (pt; qt) = F (pt; qt). As noted above, a zero price deviation is a steady state of the price

dynamics equation (2). If pt = 0, then  (pt; qt) = �C meaning the naive forecast payo¤ dominates, so

(pt; qt) = (0; 0) is a steady state. The stability of this steady state is determined by the Jacobian of the

evolution function evaluated at the origin. Intuitively, the relevant stability concept implies that if (pt; qt)

is su¢ciently close to the steady state, then the path given by F will remain within a neighborhood of the

steady state. This concept is weaker than asymptotic stability, which implies convergence to a steady state.

See Lakshmikantham and Trigiante (2002) for a formal discussion of the stability of di¤erence equations.

Proposition 4 The origin is a stable steady state of F for bb � 1 but is not stable for bb > 1.

Proof. The origin is a steady state of (2) and the  (�) � 0 case of (6) by inspection. The Jacobian for

these two equations evaluated at the origin is J(0;0) =

0
B@
�bb 0

0 1

1
CA. If bb < 1,one eigenvalue of J(0;0) are

less one and the other equals one, so the time path of (pt; qt) will remain within a given neighborhood of the

origin. However, if bb > 1, there is an eigenvalue larger than one and the origin is not stable. The Jacobian

is the identity matrix in the special case of bb = 1, which yields stability.

When the price remains close to the steady state, the naive forecasting strategy performs well and there

is no reason for agents to incur the cost of the rational forecast, so the presence of a stable steady state at
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(pt; qt) = (0; 0) is quite natural. There is a related result in Branch and McGough (2008) using a modi�ed

replicator dynamic, though the model of Brock and Hommes (1997) using the MNL dynamic cannot have

steady states where one strategy dominates.

Both models have a 2-cycle related to the one described next. To simplify the analysis, let the evolution

function bF be such that bF (pt; qt) = F (�pt; qt) for pt < 0, which has the e¤ect of re�ecting negative price

deviations to positive values, for a positive initial p0 > 0. To study the stability of a two cycle, one must

focus on the second iterate of the evolution function, and the second iterates of F and bF are identical.

Proposition 5 For � 6= 1;bb > 1, there exists a 2-cycle of F (and steady state of bF ) given by (�p�; q�) = 
�

r
C

2b
;
bb� 1
2bb

!
. The evolution function bF has a continuous derivative at (p�; q�), i.e. the Jacobians are

identical for the cases of  (pt; qt) 7 0. The steady state (p
�; q�) of bF is not stable.

Proof. The 2-cycle requires that the bracketed term [�] in the price dynamics equation (2) must be one,

which determines q�. The payo¤ di¤erence function  (pt; qt) must be zero given q
�, which determines p�.

The stability analysis makes use of the Jacobian bJ(p�;q�) of bF at its steady state (p�; q�) =
 r

C

2b
;
bb� 1
2bb

!
.

The equations describing bF are identical to those for F in De�nition 3, except that the negative sign in the

price dynamics equation (2) does not appear. Using the  (pt; qt) � 0 case of the function for the evolution

of qt (6), the Jacobian is

bJ(p�;q�) =

0
BB@
1 �

r
2C

b

 
2bb
bb+ 1

!

0 1

1
CCA :

Furthermore, the Jacobian using the  (pt; qt) � 0 of (6) is identical. With ones on the diagonal of bJ , and

non-zero elements o¤ the diagonal imply that for any points o¤ the p� and q�axes, time paths governed by

bF move away from (p�; q�), so it is not stable.

That bF has a single Jacobian governing the neighborhood around (p�; q�) is the primary di¤erence with

the analysis of the case where � = 1. In that case, there are distinct Jacobians for (pt; qt) 7 0, and the

steady state is asymptotically unstable5 , but we cannot make such a conclusion for � 6= 1.

As mathematical analysis, the present work is not particularly sophisticated, but that is precisely the

point. The �-BNN dynamic has desirable characteristics not found in other dynamics and avoids the

di¢culties that can arise from the lack of a global continuous derivative for � = 1, see Waters (2009a, b).

The cobweb model with the �-BNN dynamic has chaotic dynamics in the presence of the 2-cycle described

in Proposition 2. There are bifurcations in both the ratio of supply and demand elasticities bb and the speed
5Asymptotic stabililty implies that under bF�1 (pt; qt) ; then (pt; qt)! (p�; q�) as t!1. Waters (2009b) proves exponential

instability, an even stronger stability concept, of the 2-cycle under the BNN dynamic.
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of adjustment parameter �. For varying parameter choices there are both periodic and strange attractors6

as in other studies. One novel aspect of the �-BNN dynamic is the behavior for large values of �. Unlike

the MNL approach with high search intensity, the the variables in the cobweb model show little variation

for su¢ciently large �.

The �-BNN dynamic has all of the positive attributes of excess payo¤ dynamics along with a continuous

derivative that alleviates much of the di¢culty in analyzing behavior under the BNN dynamic. Excess payo¤

dynamics satisfy positive correlation and inventiveness and admit naturally interpretable steady states where

one strategy dominates. The �-BNN dynamic has great promise for modeling the evolution of heterogeneous

forecasting strategies.
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