FIL 404: Working Topic 4 Basic Time Value of Money Problems

Always start with the question: is there a series of payments that are equally spaced apart in time and equal or related in amount? ("Related" would mean changing by a constant percentage from period to period.)
A) If there is no series of payments (or there is a series of unequal/unrelated payments), it is a non-annuity problem (or series of non-annuity problems), structured as

$$
\text { BAMT } \mathrm{x}(1+\mathrm{r})^{\mathrm{n}}=\text { EAMT }
$$

B) If there is series of equal or related payments it is annuity problem, structured as

$$
\text { PMT } \times \text { FAC }=\text { TOT }
$$

1) If TOT (large amount that corresponds to series of small PMTs) exists intact in the present, we have PV of Annuity problem and FAC should be PV of Annuity factor:

$$
\begin{array}{cc}
\operatorname{PMTx}\left(\frac{1-\left(\frac{1}{1+\mathrm{r}}\right)^{\mathrm{n}}}{\mathrm{r}}\right)=\text { Тот } & \text { OR } \quad \text { PMT } x\left(\frac{1-\left(\frac{1+\mathrm{g}}{1+\mathrm{r}}\right)^{\mathrm{n}}}{\mathrm{r}-\mathrm{g}}\right)=\text { Toт } \\
\text { Level } & \text { Constant \% Change }
\end{array}
$$

2) If TOT will not exist intact until a future date, we have FV of Annuity problem and FAC should be FV of Annuity factor:

$$
\begin{array}{cc}
\operatorname{PMT~x}\left(\frac{(1+\mathrm{r})^{\mathrm{n}}-1}{\mathrm{r}}\right)=\text { TOT } & \text { OR } \quad \text { PMT } x\left(\frac{(1+\mathrm{r})^{\mathrm{n}}-(1+\mathrm{g})^{\mathrm{n}}}{\mathrm{r}-\mathrm{g}}\right)=\text { TOT } \\
\text { Level } & \text { Constant } \% \text { Change }
\end{array}
$$

Multiply either of the ordinary annuity factors shown above, which are consistent with end-of-period PMTs, by $(1+r)$ if there are beginning-of-period PmTs.

Computing PV of Annuity factor on scientific calculator without writing things down or using calculator memory. Consider PV of Annuity factor for 7\%, 13 periods:

$$
\left(\frac{1-\left(\frac{1}{1.07}\right)^{13}}{.07}\right)=8.35765
$$

a. Type 1.07, hit y^{x} key, type 13, and hit = key (should be 2.40985). Then hit $1 / \mathrm{x}$ key. Gives you right-hand side of factor's numerator (should be .41496).
b. Instead of subtracting it from 1, subtract 1 from it and then undo resulting negative value. Type $-1=$ (should be -.58504), then hit $+/-$ key. Now you have entire numerator of .58404 . c. Divide by typing $\div .07=$ (should get the factor's correct value: 8.35765).

