The Distributive Property

The distributive property enters time value of money analysis in situations that, in our coverage, we characterize as "annuities" (payments equally spaced in time, equal/related in amount). Per the distributive property,

$$
\begin{gathered}
y(a)+y(b)+y(c)=y(a+b+c), \quad \text { e.g., } \\
10(2)+10(4)+10(7)=10(2+4+7)=10(13)=130
\end{gathered}
$$

But $10(2)+3(4)+12(7)$ cannot be combined/simplified.
And the distributive property works only with amounts we multiply by, not with those by which we divide:

$$
\begin{gathered}
12 / 6+12 / 3+12 / 4 \text { [which is } 2+4+3=9] \\
\neq 12 /(6+3+4) \text { [which is } 12 / 13=.923 \text {] }
\end{gathered}
$$

Cash Flow Series Equal to a Big Future Amount

In a "non-annuity" sequence, we must deal with each cash flow separately. If you deposit $\$ 100$ at the end of year $1, \$ 800$ at the end of year 2 , and $\$ 300$ at the end of year 3 , how much will you have by the end of year 3 if your account balance earns a 4% annual rate of return?

$$
\begin{aligned}
& \$ 100(1.04)^{2}+\$ 800(1.04)^{1}+\$ 300(1.04)^{0} \\
= & \$ 100(108.16)+\$ 800(1.04)+\$ 300(1.00) \\
= & 108.16+\$ 832.00+\$ 300.00=\$ 1,240.16
\end{aligned}
$$

What if you instead deposit $\$ 100$ at the end of years 1 through 3 and the account balance earns a 4% annual rate of return? We can compute this FV of Annuity case as we did for the "nonannuity" series above:

$$
\begin{gathered}
\$ 100(1.04)^{2}+\$ 100(1.04)^{1}+\$ 100(1.04)^{0} \\
=\$ 100(108.16)+\$ 100(1.04)+\$ 100(1.00) \\
=\$ 108.16+\$ 104.00+\$ 100.00=\$ 312.16
\end{gathered}
$$

But in an annuity case we can also treat the cash flows as a team:

$$
\begin{gathered}
\$ 100(1.04)^{2}+\$ 100(1.04)^{1}+\$ 100(1.04)^{0} \\
=\$ 100\left[(1.04)^{2}+(1.04)^{1}+(1.04)^{0}\right]=\$ 100\left(\frac{(1.04)^{3}-1}{.04}\right) \\
=\$ 100(3.1216)=\$ \underline{\underline{312.16}}
\end{gathered}
$$

- The FV of Annuity factor is just the sum of the so-called FV of $\$ 1$ factors for the same discount rate and number of cash flow periods.
- An annuity problem is just a group of "non-annuity" problems we can treat as a team when the cash flows are equal or related, because then we can make use of the distributive property.

Cash Flow Series Equal to a Big Present Amount

In a "non-annuity" sequence, we must deal with each CF separately. How much must you have in your account today if you want to withdraw $\$ 200$ at the end of year $1, \$ 700$ at the end of year 2 , and $\$ 400$ at the end of year 3 if your account balance earns a 6% annual rate of return?

$$
\begin{gathered}
\$ 200 \div(1.06)^{1}+\$ 700 \div(1.06)^{2}+\$ 400 \div(1.06)^{3} \\
=\$ 200\left(\frac{1}{1.06}\right)^{1}+\$ 700\left(\frac{1}{1.06}\right)^{2}+\$ 400\left(\frac{1}{1.06}\right)^{3} \\
=\$ 200(.9434)+\$ 700(.8900)+\$ 400(.8396) \\
=\$ 188.68+\$ 623.00+\$ 335.85=\$ \underline{\underline{1}, 147.53}
\end{gathered}
$$

What if you instead want to withdraw $\$ 200$ at the end of each of the three years and the account balance earns a 4% annual rate of return? We can compute this PV of Annuity case as we did with the "non-annuity" payment series above:

$$
\begin{gathered}
\$ 200\left(\frac{1}{1.06}\right)^{1}+\$ 200\left(\frac{1}{1.06}\right)^{2}+\$ 200\left(\frac{1}{1.06}\right)^{3} \\
=\$ 200(.9434)+\$ 200(.8900)+\$ 200(.8396) \\
=\$ 188.68+\$ 178.00+\$ 167.92=\$ 534.60
\end{gathered}
$$

But in annuity case we can also treat the cash flows as a team:

$$
\begin{gathered}
\$ 200\left(\frac{1}{1.06}\right)^{1}+\$ 200\left(\frac{1}{1.06}\right)^{2}+\$ 200\left(\frac{1}{1.06}\right)^{3} \\
=\$ 200\left[\left(\frac{1}{1.06}\right)^{1}+\left(\frac{1}{1.06}\right)^{2}+\left(\frac{1}{1.06}\right)^{3}\right]=\$ 200\left(\frac{1-\left(\frac{1}{1.06}\right)^{3}}{.06}\right) \\
=\$ 200(2.6730)=\$ \underline{\underline{534.60}}
\end{gathered}
$$

- The PV of Annuity factor is just the sum of the so-called PV of $\$ 1$ factors for the same discount rate and number of cash flow periods.
- As stated above, an annuity problem is just a group of "non-annuity" problems we can treat as a team when the cash flows are equal or related, because then we can make use of the distributive property.

