- Put $\$ 10,000$ in 8-year CD, bank agrees to pay annual compounded interest rate of 4.5%. How much will you have when the instrument matures in 8 yrs?

$$
\$ 10,000(1.045)^{8}=\$ 14,221
$$

\$10,000

- Now look after the fact: 8-year CD grew stadily from $\$ 10,000$ deposited to $\$ 14,221$ at maturity 8 years later; what compounded average annual interest rate did you earn?

$$
\begin{gathered}
\$ 10,000(1+r)^{8}=\$ 14,221 \\
(1+r)^{8}=1.4221 \text { so } \sqrt[8]{(1+r)^{8}}=\sqrt[8]{1.4221} \\
1 \quad+r=1.045 \text { so } r=.045 \text { or } 4.5 \%
\end{gathered}
$$

- Buy a Crypcoin for $\$ 10,000$, then after 8 years of erratic growth and decline its value is $\$ 14,221$. What has been the average annual rate of growth or return?

The CD's yearly return was fixed at 4.5%, so its average annual return over any interval within that 8 years was 4.5%. But Crypcoin's average return over intervals other than the full 8 years would reflect when the measure was taken. From the purchase date until the end of year 4 the average annual return would have been negative, whereas for a 6-year interval the average annual return would have far exceeded 4.5%. The average periodic return for a collectible item could mask severe increases and declines in value.

