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INTRODUCTION
In the evaluation of risk it is essential to assign to
hazardous situations their risk scores, thus allowing our
objective evaluation of uncertainty of loss imposed by a
particular loss. Our objective is to study risk viewed as a
fuzzy concept.
Traditionally, the calculation of a quantitative value
of risk in industrial safety analysis, denoted by S, is
based on an assignment of numerical values to its factors,
considered to be likelihood of occurrence of the hazardous
event (L), exposure (E), and possible consequences (C).
; The numerical product of these factors is the risk score,
.ie., the value of S. As stated by Biller and Feagans [2],
-isk is better described as a fuzzy concept, as there does
,not exist a unique risk that a hazardous event will occur in
a given period of time. Furthermore, Zimmer [11]
wobserved that humans are unsuccessful and apprehensive in
.Quantitative predictions (such as evaluations of likelihood,
exposure, and consequences), but they may be
significantly more efficient in qualitative forecasting.
Karwowski and Mital [5] proposed then that the
likelihood L, exposure E, and consequences C are
treated as linguistic variables [10]. The primary terms for
the variable likelihood ‘likely', 'possible' and 'unlikely’,
along with the possible use of hedges, propositional
connectives and logical negation, are treated as modifiers
of the operands in a context-dependent situation. The
- primary terms for C were 'high', 'low’ and ‘medium’, and
for E were 'rare’, 'frequent’, 'medium’. Derivation of risk
scores S, treated as linguistic variables, was done through
.the process of approximate reasoning. As stated by
‘Zadeh, approximate reasoning refers to the process by
which an imprecise conclusion is deduced from a
collection of imprecise premises, the reasoning being
qualitative rather than quantitative in nature. The
interpretation which we follow is Zadeh's maximin rule
(seg[lOl).

FUZZY RISK SCORE

The main problem of interest here is the following
question: given exposure E, consequences C, and
likelihood L, what is the value of risk S? Karwowski
and Mital [5] define first the fuzzy relation R between E
-and L asaproduct Ry in a matrix form. Taking the
risk S tobe S=(CoRpL) N(EoRc ) N(Lo
Rpxc) we obtain the fuzzy risk score.

We will discuss the difficulties that appear in

interpretation of the results of approximate reasoning
results, as defined above, and offer some solutions to these
problems.

Example. If:

E = medium ={0/0, 1/0.2, 2/0.7, 3/1.0, 4/0.7, 5/0.2, 6/0}
C = very high = {0/0, 1/0, 2/0, 3/0.1, 4/0.5, 5/0.8, 6/1}
L = unlikely = {0/1, 1/1,2/0.9, 3/0.8, 4/0.5, 5/0, 6/0}
and the value of risk is:

S = {0/0, 1/0, 2/0.1, 3/0.3, 4/0.5, 5/0.5, 6/0.5}

The interpretation of this result is somewhat a puzzle,
as it is not given in standard interpretation of linguistic
values. Schmucker in [8] derives an altemative expression
of risk as a weighted average of its factors, and encounters
a similar problem, handling it through the standard
normalization process. We want to present another
possible way of interpreting values of linguistic variables
as the one for S above. Let us note, for example, that,
to a certain degree, and if the scaling is appropriate, if the
number 6 belongs to a fuzzy set describing high risk with
degree of membership 0.5, we can approximate this by
having 3 in the set with membership value 1.0. This is
a form of switching from fuzzy to crisp environments,
relaxed to apply to fuzzy sets.

Based on this, we propose the following alternative
for standard normalization, which we will call the fuzzy
normalization operator.

FUZZY NORMALIZATION OPERATOR

Let A =(x/fc(x)] be a fuzzy set such that for some
a € (01), a< 1, its o-cut A, is empty. This is
precisely the situation which appears to cause difficulties
in interpretation. Let then a new membership function be
introduced, we will denote it by g, in the following
manner:

g (%)= fkx) / (k)
where k is the largest value of x at which f attains its
maximum. Obviously, the support of g. is then
contained in [0, M/k 1, where M is the upper bound of
the support of f; , but we can simply put g.(x) =0 for
x> M/k.

This process provides a more intuitively acceptable
interpretation of results of approximate reasoning in
certain cases.

Consider the risk score S:

S = {0/0, 1/0, 2/0.1, 3/0.3, 4/0.5, 5/0.5, 6/0.5}.
Applying the fuzzy normalization operator we obtain

S' = {0/0,0.5/0,1/0.2,1.5/0.6,2/1,2.5/1,3/1,4/0, 5/0, 6/0}.
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The noninteger values of x appearing in the result can be
handled in the following manner. For any integer n, we
can take gc(n) to be the arithmetic average of all values
of g.(x), where n-1<x<n+1. This modification changes
S'to §' = {0/0, 1/0.267, 2/0.867, 3/1, 4/.0, 5/0, 6/0}.
However, this modification may produce fractional values
for the membership function, so we might also consider
an alternative g."(n)=v { g(x):n-1<x<n+1 }
which will produce
$" = {00, 1/0, 2/0.6, 3/1, 4/0, 5/0, 6/0, 7/0).
Also, one may apply the standard normalization operator
(see [8] p. 13) to S, if necessary (this is not the case
here). Another alternative is:

g M=ar{g.x)in-1<x<n+1}

with

S =(o0p 10,21, 3/0, 4/0, 5/0, 6/0 }.
This approach switches the result to the crisp
environment, which is a rather surprising result. Of the
three proposed approaches, we believe the simple
arithmetic average to be the most appropriate.

The interesting conclusion is that risk scores

S, S and S obtained here can easily be interpreted
as medium, which is a more reasonable result than the
interpretation based on standard normalization procedure,
as more-or -less high. Clearly, medium exposure with
very high consequences but low likelihood should produce
medium risk. We may give here an example of an
amateur parachute jumper who performs the jumps under
the supervision of a qualified instructor. Such condition
results in being qualified as substandard risk by life
insurance companies, and issuing rated policies, but not in
denying insurance (which would imply that insurance
companies consider the situation high risk). Let us notice
that if the domain of the membership function is
continuous then fuzzy normalization procedure does not
require taking the arithmetic average at the end.

In relation to the fuzzy normalization operator
presented here, we would like to discuss a possibility of
applying it in an alternative definition of the concentration
and dilation operators, used to define the hedges very or
more or less.

Consider the value high of a linguistic variable given:
high ={0/0, 2/0.1, 3/0.3, 4/0.7, 5/0.9, 6/1.0}.

Then the cbncentration operator CON, as defined in
[8] p.11,

cona) = [ (0}, where A={x/f,(x)}
produces very high = CON (high)

very high = { 0/0, 2/0.1, 3/0.09, 4/0.49, 5/0.81, 6/1.03 },
or after rounding off

very high = { 0/0, 2/0, 3/0.1, 4/0.5, 5/0.8, 6/1.0 }.
However, as Schmucker points out in [7) pp. 40-41, in
his interesting discussion of the problem, the traditional
operator CON may not always be an appropriate model
for the hedge very. Hersh and Caramazza in [4] and

Macvicar-Whelen in [6] exhibited experimental data
demonstrating that the CON operator may need o be
replaced, at least in certain cases, by a shift by a certain
constant Kk, i.e.,if A= { x/f;(x) ) then very A = { x/f,
(x-K)).

There are, however, certain difficulties with
applications of such an operator. Undoubtedly, a person
who is 50 years old has a positive degree of membership
in the set of old people, one would doubt however any
positive degree of membership in the set of very old
people. Thus a shift may be appropriate. On the other
hand, the shified membership function may assign
positive degree of membership to elements outside of the
support of a given fuzzy set. Also, it seems inappropriate
to model very average or similar expression with the
hedge very defined by a shift operator.

Finally, the size of the shift is not clearly defined.
This, however, may be advantageous when dealing with
qualitative statements describing risk and its factors, or
other fuzzy variables.

Let us propose another approach, which seems to be a
compromise between the two. Notice the relationship
between high and very high: the o-cuts of very high
contain the a-cuts of high, and if compatibility functions
of high and very high are graphed, the slope of the one
corresponding to very high is steeper. Thus it would
seem appropriate to do the following: If a value of a
linguistic variable:

V= {xf.(x)} isgiven,and 1 the maximum value of
fc (height of f) is at the right-hand endpoint M of its
domain, let

very { x/fe(x) } = { x/(gc (2x))?}

where g.(x) = f(M-x),0 < x <M.

If 1, the maximum of f_ is at the left-hand endpoint of

its domain, let the new compatibility function be simply
(fc (2x))2. Finally, if there is a maximum of 1ata point

in the interior of the domain of f, apply the above

operations separately to the left of that point and to the
right. Figure 1 shows graphical representation of fo(x)

and g.(x).

x

Figure 1. Representation of the operator very.
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Also, if
high = {0/0, 100, 2/0.1, 3/0.3, 4/0.7, 5/0.9, 6/1.0}
then very high defined using the definition proposed here
will be: very high = {0/0, 1/0, 2/0, 3/0, 3.5/0.05, 4/0.15,
4.5/0.49, 5.5/0.81, 6/1.0}
which we can average to be:very high = {0/0, 1/0, 2/0,
3/0.025, 4/0.23, 5/0.65, 6/0.905}, and after standard
normalization and rounding off: very high = {0/0, 1/0,
2/0, 3/0.03, 4/0.25, 5/0.72, 6/1.0}.
Alternatively, taking minima over neighboring fractions
very high = { 0/0, 1/0, 2/0, 3/0, 4/0.05, 5/0.49, 6/0.81 }
and standard normalization gives:
very high = {0/0,1/0, 2/0, 3/0, 4/0.06, 5/0.60, 6/1.0}.
Taking maxima over neighboring fractions results in:
very high = {0/0, 1/0, 2/0, 3/0.05, 4/0.49, 5/0.81, 6/1.0}.
The last result is almost identical with the result of an
application of the traditional CON operator very high =
CON(high) = { 0/0, 1/0, 2/0, 3/0.1, 4/0.5, 5/0.8, 6/1.0}.
The alternative definition of the hedge very seems to
be especially appropriate when an application of the hedge
very is an intermediate step between fuzzy and crisp
environments.
If we look at Figure 1 and decide to switch to a crisp

set with characteristic function
1 =M

X(X)={p x<M?}

then

X(x)= lim (f(nM-x)))".

FUZZY INVESTMENT ANALYSIS

One of the document theories in the asset allocation
is the Modern Portfolio Theory (MPT), created by H.
. Markowitz [7]. MPT identifies risk with the standard
deviation of returns on an investment. Then it seeks
efficient frontiers consisting of portfolios maximizing
expected return given a degree of risk. Markowitz was in
fact the first theoretician to propose the general approach
of maximizing return while minimizing risk.

On the other hand, the specific hazards that investors
are trying to avoid are not exactly due to high standard
deviation. One can, in fact, give a simple example of a
game in which standard deviation of return is high while
no risk exists: Let A flip a coin and pay B $1.00 if
tails is observed, $2.00 if heads is observed, and let B
pay $1.00 for the right to play this game; then the
expected return is 50% and standard deviation is 50% (for a
fair coin).

It is more reasonable, then to look at hazards facing
an investor. Assume that we are dealing with a stock
market investor.

When dealing with risk in industrial safety we were
able to specify certain major risk factors and then calculate
risk scores based on assessments of linguistic values of
risk factors. Let us notice that there seems to be a trend
towards analysis of risk in terms of its factors (factors C,

L, E in industrial risk analysis and risks C-1, C-2, C-3
utilized by the Society of Actuaries, see {1}, where C-1
represents what can be described as interest rate risk, C-2 -
catastrophe risk, and C-3 - investment and management
risk).

The main hazard facing an investor is a significant
decline in the purchasing power value of his assets. This
can happen as a result of one of the following three
events:

(i) inability to sell the asset at a desired price;

(ii) decline in the market value of the asset because of
relative attractiveness of alternative investments;

(iii) loss of purchasing power through inflation.

The above three may be listed as three types of risks,
which we will treat as linguistic variables
@) L - liquidity risk;

(ii) E - equity rate risk;
(iii) I - interest rate risk.

Our major interest is in creating investment analysis
expert systems. It is clear that the rules of both the
fundamental and technical investment analysis are of fuzzy
nature. That fuzzy nature has become in fact an object of
criticism. However, there seems to exist empirical
evidence of applicability of such rules, and so the study of
them is desired.

There can be several technical and fundamental rules
concerning the liquidity risk listed. We will choose only
one, the comparison of the moving average of an
appropriately chosen stock index (as Dow Jonmes
Industrials, or Standard and Poor 500) to its current level.
The technical rule we refer to states that if a certain (e.g.,
40 weeks) moving average falls below the current price,
the prices are likely to go up (i.e., the risk is low), if it
moves above the current price, the prices are likely to go
down (i.e., the risk is high). Let us then say that:

L = high if the moving average exceeds the current price
by 5% of the current price, or less,
L = low if the current price exceeds the moving average by
5% of the current price, or less,
L = medium otherwise, and:
E = high if the discount and prime rates have been
increased at least three times in a row,
E = low if the discount and prime rates have been lowered
at least three times in a row,
E = medium otherwise, and:
I =low if the current price of gold exceeds the moving
average by 5% of the current price or less,
I = high if the moving average exceeds the current price of
gold by 5% of the current price or less,
I = medium, otherwise.
This can be, of course, treated only as an initial proposal,
subject to further study. We can, however, within that
simple framework, derive certain risk scores S given L,
E, and I and discuss the value of our model.

Consider for example with:
L = high = {0/0, 1/0, 2/0.1, 3/0.3, 4/0.7, 5/0.9, 6/1.0},
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E = medium ={0/0, 1/0.2, 2/0.7, 3/1.0, 4/0.7, 5/0.2,6/0},
L= high = {0/0, 10, 2/0.1, 3/0.3, 4/0.7, 5/0.9, 6/1.0}.
Then with S defined as:

S=LoRgx N E0RL N I0oRLE , where REy1 is
represented by the matrix:

— -
0 0 0 0 0 o0 o
0 0 01 02 02 02 02
0 0 01 03 07 07 0.7
0 0 01 03 07 09 1.0
0 0 01 03 07 07 07
0 0 01 02 02 02 02
0 0 0 0 0 o0 o J

In a similar way, we define fuzzy relations Ry, and
Rpxg, which are then used to find S, where:

LoRgq = { 0/0, 1/0, 2/0.1, 3/0.3, 4/0.7, 5/0.7, 6/0.7 }
EoRpx = { 0/0, 1/0, 2/0.1, 3/0.3, 4/0.7, 5/0.7, 6/0.7 }
ToRyxg = ( 0/, 1/02, 2/0.7, 3/1.0, 4/0.7, 5/0.2, 6/0 },
and § = { 0/0, 10, 2/0.1, 3/0.3, 4/0.7, 50.2, 6/0 }.

Fuzzy normalization applied to S gives:

S’ = (00, 2.5/0, 3/0.14, 3.50.42, 4/1, 4.50.28, 510 )
and averaging over neighboring fractions gives:

§” = {0/, 110, 210, 3/0.19, 4/0.57, 5/0.14, 6/0},

and finally standard normalization gives:

§ = {00, 10, 200, 3/0.33, 4/1, 5/0.24, 6/0 }.

This risk score can be interpreted as somewhat high
but not very high. Now consider the implication of an
increase in discount rate, or prime rate on this situation,
where:

E = high = ( 0/0, 1/0, 2/0.1, 3/0.3, 4/0.7, 5/0.9, 6/1.0 }
and Rg,y=Rp,=R,g are represented by the following
fuzzy relation:

0 0 0 0 0 o 0
0 0 0 0 o0 o 0
0 01 01 0101 01 01
0 0 01 03 03 03 03
0 01 03 07 07 07
0 01 03 07 09 09
0

Q o ©

01 13 07 09 l.ﬂ

Notice that in the above case, the following is true:

LoRgg =EoRj,r=1lo0 Rixg = { 0/0, 1/0, 2/0.1,
3/0.3, 4/0.7, 509, 6/1.0 } = high.

We believe this to be quite an interesting model of
the development in the financial markets in September
1987 and October 1987 when somewhat high but not very
high could be an appropriate description of the risk in the
summer of 1987, but the discount rate hike changed it to
high.

CONCLUSIONS

Numerous rules of fundamental and technical
investment analysis are in fact rather fuzzy in nature. A
consistent application of approximate reasoning in that
area can bring a successful extension of the theory of
expert systems to the field of investment analysis.
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