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Abstract

The space of Henstock integrable functions on the unit cube in the m-
dimensional FEuclidean space is normed, barrelled, and not complete. We de-
scribe its completion in the space of Schwartz distributions.

We also show how the distribution functions for finite signed Borel measures
are multipliers for the Henstock integrable functions, and how they generate
continuous linear functionals on the space of Henstock integrable functions. Fi-
nally, we discuss various integration by parts formulas for the two-dimensional
Henstock integral.
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1.1. Definition. Let I, C IR™ be the unit cube in the m-dimensional
Euclidean space. A function f : Iy — IR will be termed Henstock integrable,
with

//./;u f(z1, &2y ...y Ty )dzide, ... dTy, (1)

written for the value of the integral, if for every € > 0 there exists a positive
function § : Iy — IR (usually called a gauge) such that whenever

m={((z}, zhy ..., 2), L) :i=1,2,..., n} (2)

is a partition of Io, consisting of pairs of points in Iy and nonoverlapping
subintervals of Iy whose union is the whole Iy, and such that for every 1 =
1,2, ...,n, (zi, 2}, ..., ) € I; and I; is contained in the ball centered at
(=3, =5, ..., &) of radius §(z%, 2%, ..., =i ), we have
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I'z:;f(m'l, zh, ..., 2 M) —///;n f(z1, 22, ..., Tm)dzidz, ... dzw| < €
3)

here A stands for the m-dimensional volume of an interval I C IR™. Quite often
we will simply write

[ fax )

for the Henstock integral of f over I.

A partition 7 as in (2), satisfying conditions listed between (2) and (3) will
be called §-fine.

We will denote by f the indefinite Henstock integral of a function f, i.e.,

~ Ty T3 Lo
f(:cl, T2y -« y :c,,.):f / / f(tl,tz,...,tm)dt1dt2...dtm=
0 [ 1}

// PN ./[ f(tl, tz, ey tm)X[o, zllxio',’]x[o, zm]dtldtg e dtm, (

where xg denotes the characteristic function of set E C IR.
If H is an interval function and we replace A by H in (3) then we get the
concept of the Henstock integral of f with respect to H, written as

///;0 FdH or just /I fdH. (6)

If g: Iy — IR then it generates an interval function H as follows. Let

(W14
-

I= [0,1, b1] X [az, bz] X...X [(Lm, bm], (7)

define
HD= ¥ () Vg(e, e ..., ), (8)

JC{1,2, 3, m}

where

{Cl, C2y ooy Cm} = {a,-l, Qjgy + oo Qjpy b,',, b,',, ey b,‘,}, (9)
and

{jhjZ) -~-ajk}:Jw {il’ B2y <0 ey il}'_‘{l’ 2, m}\Jv {10)

and cardJ is the cardinality of J. The integral

//.../;ode (11)
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is called the Henstock integral of f with respect to g and written as

«///Io fdg or simply /Iu fdg. (12)

Please consult [2], [4], [5], and [7] for these definitions.

1.2. The class of Henstock integrable functions on I will be denoted by H.
It is a linear topological space. In [8] and [9] it is shown that the space equipped
with the Alexiewicz norm is barrelled, but it is not a Banach space. [6] and [§]
discuss the dual of the space. The work in [8] is done in the two-dimensional
case, but easily extends to the multidimensional one. [6] considers the dual of
H for functions of one variable.

Our intention is to describe the completion of the space and to further
discuss its dual.

Let us note that every Henstock integrable function f : I, — IR is a
Schwartz distribution (see [4], section 2.12).

1.3. Definition. Denote by F the space of all distributions of order m with
support in Iy, i.e., f € F if there exists a continuous function F : R™ — IR
such that

F(zy, ©2y ..., 2m) = 0 if min{zy, 25, ...,2m} <0, (13)

Fley, @3y ..y @iy ooy Zm) = Fzy, 23, ..., 1, .. zm) if 2 > 1 (14)
fori=1,2..., m,

_ " F
~ 82,0z, ...0z,,
where the derivatives are understood in the distributional sense.

For f € F as in (13), (14}, and (15) define

(15)

@y pa3 Tom
/ofo/o Fltiy tay ..y t)dtydty .. i = F(zy, 74, ..., 2m)  (16)

for (1, 3, ..., m} € Io. Note that, for every f € F there exists exactly one
function F' satisfying (13), (14), and (15). Thus the integral (16) is uniquely
defined. Moreover

”f”= sup |F(11, T2 -”amm)l (17)
21, 22, o ) €Dy
is a norm on F. We will call it the Aleziewicz norm, as it is the same as the
Alexiewicz norm introduced in [8] on the space of Henstock integrable functions.
1.4. Proposition. F is complete.
Proof. Let {f.} be a Cauchy sequence in F. Let
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T T3 Tm
F,.(z,,z,,...,zm)=/o /o fo Falts, tay ooy tm)dtydty .. dtn.  (18)

Then {F,} is a Cauchy sequence (with respect to the sup norm) of contin-
uous functions satisfying (13), (14), and (15), therefore it is convergent to a
continuous function F satisfying the same conditions. Define

f= o"F
- 3331622 o 3:8,,.'
Then f € F and lim,_o ||fa — fI| = 0.
1.5. Observation. H C F.
Proof. This immediately follows from the following statement proved in

{4], sections 2.3, and 2.12: if f € H then f is continuous and if ¢ : Iy — IR is
m times continuously differentiable and

3"':;5(:61, Tyy ooy 9:,,,)
321333 e Bx,,.

(19)

Y(z1, 225 .oy Tm) = (20)

then

///I f(z1, 22y ...y Tm)P(21, T2y .., Tm)dzrday .. d2,y =
0

(—1)"‘//.../; f(:cl, Zay oy T)P(R1, T2y ..,y Tm)dTydey .. de,,.  (21)

1.6.Theorem. F is the completion of H.

Proof. Denote by H* the completion of H with respect to the Alexiewicz
norm. Then H* C F and both spaces are complete with respect to the same
norm. Therefore, by the open mapping theorem, they are equal.

1.7. Remark. In the one-dimensional case it is known that every Henstock
integrable function is almost everywhere a derivative of its indefinite integral.
This implies that in that case, H is of the first category in F. An easy example
of an element of F which is not in H is in that case a distributional derivative
of a nowhere differentiable continuous function.

2.1. We will turn now to our discussion of the dual of the space H. We
have the following, as presented in [6] and [8]:

In the one-dimensional case T is a continuous linear functional on M if
and only if either of the following holds (all integrals used below are Henstock
integrals):

(a) There ezists a finite signed Borel measure ur on (0, 1] such that

1. .
T(f) = [ f(tydur(t), (22)

where, as usual
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i@ = [ . (23)

(b) There ezists a function gr : [0, 1] — IR of essentially bounded variation
such that

T(H) = [ for(. (2)

Being of essentially bounded variation is equivalent to having a signed finite
Borel measure as a distributional derivative. If p, stands for that distributional
derivative then integration by parts yields

[ Fydurtt) = [ Ftrdng() + Lm0, 1), (25)

Notice that the expression f( 1)p4((0, 1)) is itself a continuous linear functional
of f.

As observed in [8] the description (a) easily extends to the multidimensional
case. However, (b) uses the class of multipliers for the Henstock integrable
functions (i.e., functions which multiplied by a Henstock integrable function
produce a Henstock integrable function), which is not known in the multidi-
mensional case.

For simplicity, let us restrict ourselves to the two-dimensional case, with
Io = [0, 1] x [0, 1]. This does not affect generality of the results.

2.2. Definition A function g : Iy — IR is of strongly bounded variation
(see[d]) if for every z € [0, 1], g(=, -) is of bounded variation, for every y €
[0, 1], g(-, y) is of bounded variation, and

sup Y _ lg(a, ¢i) — g(ai, &) — g(bs, <) + g(bi, di)] < +oo, (26)
i=1
where the least upper bound is taken over all partitions of I, into a finite
collection of nonoverlapping nondegenerate closed intervals {a;, b;] x [¢;, di], ¢ =
1,2,3,...,n.

Let us note that [4] contains the definition of a function of strongly bounded
variation in the general multidimensional case.

2.3. Theorem. Every function of strongly bounded variation is a multiplier
for Henstock integrable functions.

Proof. See[4].

2.4. It is not known whether the above is a complete characterization of
multipliers. Our intention is to point out a specific subclass of the class of
functions of strongly bounded variation.

2.5. Definition. Let D stand for the class of two-dimensional distribution
functions of finite signed Borel measures on (0 ,1] x (0, 1]. For example, if p
is a positive measure then g, € D corresponding to it is
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9,;(15, y) = ©((0, x] x (0, y])' (27)

The value of g,(z, y) for z = 0 or y = 0 is inessential to us. We will assume it
to be zero.

In general, for a signed finite Borel measure g on (0, 1] x (0, 1] we will
denote its distribution function by g,,.

Also, we will denote by M the class of finite signed Borel measures on
(0, 1] x (0, 1]. M* will denote the class of positive measures in M.

2.8. Proposition. The elements of D are of strongly bounded variation.

Proof. It suffices to show that for a p € M*, g, is of strongly bounded
variation. One can easily see that both g,(z, -) and 9u(+, y) are monotone for
every ¢ € [0, 1] and every y € [0, 1], so that they are of bounded variation.
Let {I;: ¢ =1, 2, ..., n} be a finite class of nonoverlapping nondegenerate
subintervals of Iy, and I; = [a;, b;] x [¢;, d;] for i = 1, 2, ..., n. Consider the
sum

> l9ulbi, di) — gulas, ) — gulbiy di) + gulas, b)) =
=1

2 In(as, b x (e, di))] < |l (28)

This implies that g, is of strongly bounded variation.

2.7. Corollary. A distribution function of a finite signed Borel measure
ts a multiplier for Henstock integrable functions.

2.8. Corollary. If g : Iy — IR is equivalent to a distribution function
of a finite signed Borel measure then g is a multiplier for Henstock integrable
functions.

2.9. Definition. Let Cy denote the class of all continuous F : Iy - R
such that F is continuous and F(z, y) = 0 whenever z = 0 or y=0.

2.10. Observation. If F € Cp) and y € M then the Lebesgue-Stieltjes

integral
c / / Fdu (29)
I
ezists and is well-defined.

2.11. Proposition. The Riemann-Stieltjes integral of F € Co with respect
to a p € M, denoted by

’Rf/lo Fdy, (30)

ts naturally defined as the limit of the Riemann sums

n

> Flziy vipl(ai, b x (e, di]), (31)
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where the elements of {(a;, b;] x (¢;, di] : i =1, 2, ..., n} are disjoint, their
union is (0, 1] x (0, 1], and (z:, v:) € (ai, b] % (ciy i) fori=1,2,...,n. The
limit is taken with respect to the norm of the partition, which is the diameter
of the largest of the intervals in the partition, tending to zero.

Ezistence of

®) [ [ Fiu (32)

implies ezistence of the Henstock integral of F with respect to g, and their
equality.

Proof. It suffices to consider £ € M*. Let £ > 0 be arbitrary. Choose a
§ > 0 such that whenever the norm of the partition

{(ai’ b;]X(c.-, d,,] i=1, 2$~~'1} (33)

is less than 6, and (z;, y;) belongs to (a;, b;] X (¢;, d;] for every 1 =1, 2, ..., m,
we have

|32 Plas, wonl(an, 8] x (e d) = (R) [ [ Fdpl<e (30

i=1

Now let p: Iy — IR be a gauge function defined as follows:

p(z, y) = 6/2if (=, y) € (0, 1] x (0, 1], (35)
and =2 if (z, y) & (0, 1] x (0, 1].
If

7 = {((zi, %), (@, bi] X (i, di]): i=1,2,...,n} (36)
is a p-fine partition, then its norm is less than § and

Y F(2i, %:)(gul@is €) — gulai, di) — gulbs, i) + gua(b;, dy)) =

i=1

> F(zi, yi)ul{ai, b x (e, di]). (37)

=1

Consequently, the Henstock integral of F with respect to g, exists and equals

(®) [ /, Fdu (38)
2.12. Proposition. If F € Cp and p € M then
®R) [ [ Fy (39)
0

ezists.
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Proof. Let ¢ > 0 be arbitrary. Choose a number 5 such that

€
7= 2u((0, % (0, 1))’ (40)

There exists a § > 0 such that if (z1, y1),(2, ¥2) € Ip and the distance from
(%1, 1) to (z2, y) is less than § then |F(zy, y1) — F(z3, y2)| < 7. Let

{((:B,', yi)? Il) 1i=1,2, ..., n}’ {((351 ti)a JJ) : .7 =1,2,..., 7‘} (41)

be two partitions of I, both with norm less than é. Consider the intervals

P;=ILNJ;i=1,2,...,n,3=1,2,..., 7 (42)

In each nonempty P;; choose a point (u;;,v;;). Then the distances between
(ui j,vi,;) and (=i, y:), and between (u;;, v;;) and (s;, ;) are both less than 4.
Thus

IS Fluij, vig)(Poj) — 3 F(mi, wi)u( )| =
ij=1 i=1
IS (3 F(usj, vi)u(Pij) — F(zi, y)u(Pij)) < (43)
=1 j=1
n r 1
3 IF(uigy vig) = F(=i, %) |(Pijy < mu(lo) < 3¢
=1 j=1
Similarly
n,r r 1
| 3 Fluij, vij)w(Pij) — Y F(sj, t)u(J;)| < 3¢ (44)
t,j=1 i=1
Therefore
IS F(ai, y)ul L) — 3 F(sj, t)u(J;)] > ¢, (45)
=1 i=1

which implies that

(R)//:o Fdy (46)

exists.
2.13. Proposition. If F € Cy and p € M then

(L) ] /I Fdp = (R) j /I Fdu. (47)

Proof. Let {m }rew be a sequence of partitions of I,
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meo={((ef, ) I): i=1,2, ..., n} (48)
such that the norm of the partition m, goes to zero as k — co. Foreach k € IN
define

Ui(z, y) = sup F(s, t)for (z,y) eI, i=1,2,..., ng

(s,t)elk
Li(z, y)= inf F(s,t)for (z,y) €I, i=1,2,..., n. (49)
(s,it)er®
Then for every K € IN
ny
k ke (3
koh k) < .
() [ [, buds s L FGh, bt < () [ [ Ondu - (50)
As k — oo,
n
Y. F(ek, yhutl) > (R) [ [ Fap. (51)
i=1 I

On the other hand, as k — oo

U,— F, L » F (52)

uniformly. This implies that

Jim (£) / fI Ludp = Jim (£) / /I Usdp = / /I Fdp. (53)

(47) follows now easily from (50), (52), and (53).
2.4. Proposition. Let f € H and p € M. Then

/./Ilo f(z, ¥)gu(z, y)dedy =

. 1 1, , .
£, Dgu(1, 1) = [ £t Ddgutt, 1 = [ 7L, 0dgult, 0+ [ [ Fd. (54)
Proof. Since g, is of strongly bounded variation

fj; f(z, ¥)gu(z, y)dzdy (55)
exists. Also, f € Cy so that

[ [ fda =) [ [ Fau (56)

exists. The formula (54) follows now from the following integration by parts
formula proved by Kurzweil in [4]:
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//[o f(=, y)gu(m, y)dzdy =

[ [, ftes v¥daut, vy = [ it Dt
+ [t 0)dautt, 0~ [ 71, 01, 0+ [ F0, 040,01 (37)

+£(1, Dg,(1, 1) — £(1, 0)gu(1, 0) — £(0, 1)gu(0, 1) — £(0, 0)g,(0, 0).

Obviously, (57) combined with 2.11 yields 2.14.
2.15. Remark. For 4 € M the expression

[ [ #z, v)gu(z, y)dady (58)

is a continuous linear functional on H. We do not know, however, if (58) gives
the general form of a continuous linear functional on H. As we stated in 2.1,
8] shows that the general form of a continuous linear functional on M is

f/; fdu (59)

where p € M. Proposition 2.14 suggests the hypothesis that (58) is in fact
another general form of a continuous linear functional on . We were not able
to either prove or disprove it.

Also the following two problems are very natural.

2.168. Problem. Given a function g : Iy — IR of strongly bounded varia-
tion, is there a p € M such that g is equivalent to g,?

2.17. Problem. Given a multiplier g for Henstock integrable functions, is
there a u € M such that g is equivalent to g,7

3.1. The Henstock integral may be defined in an abstract setting, as pre-
sented in [3] and [7] (chapter 1). The problem of characterizing the multipliers
for Henstock integrable functions remains unanswered then. However, [1] con-
tains an interesting theorem on that subject. We will show that the theorem
generalizes to spaces equipped with derivation bases, in which one can define
the abstract Henstock integral.
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3.2. Definition. Let X be a nonempty set, and ¥ be a nonvoid class of
its subsets. A nonempty class A contained in the powerset of X x ¥ will he
termed a derivation base on X. One can take X to be R, IR?, IR™, or a locally
compact Hausdorff space (these are the only settings considered until now).
We will follow the notation in [7].

A partition = is a finite class consisting of elements of X x ¥ such that
D={I€¥: (z, I) € r} has exactly as many elements as 7 and its elements
are nonoverlapping (in the sense specified for X, the definition for R™ is the
obvious one). If the union of all elements of D equals Iy € ¥ then we say that
7 is a partition of Io.

A base A has the partitioning property if for every I € ¥ and every a € A
there exists a partition 7 C o of I.

If Iy € ¥,and F : X x¥ — IR then the Henstfock integral of F' with respect
to A over Io is a number (A) fi F such that for every ¢ there exists an @ € A
such that for every partition 7 C « of I

| ¥ FeD-) [ fl<e (60)
(. J)ex L

Usually, we consider functions F : X x ¥ — IR of the form F(z, I) =
Ff(z)MI) where f; Iy — IR and A : ¥ — IR is additive. In this case we will
write (A) [y, fdA for the Henstock integral of F'.

Two functions £ : X x ¥ — IR, F; : X x ¥ — IR are variationally
equivalent on Iy € W if for every € > 0 there exists an & € A and a superadditive
nonnegative 0 : ¥ — IR such that Q(Jy) < ¢, and for every (z, I) € a with
z€lp

It is well known (see, for example, chapter 1 of [7]) that F is Henstock
integrable if and only if there exists an additive H : ¥ — IR variationally
equivalent to F. In fact, the Henstock integral

B(I) = (A)/IF (62)

is the additive function equivalent to the integrand.

For e € A and E C X we define

a[E)={(z,[)€a: z€ E}, a(E)={(z, [)€a: I C E}. (63)
Also

AlEl ={a[E]: a € A}, A(E)={a(E): a € A}. (64)

These are called sections of the elements a of the base A, and of the base
itself.



147

A has a g-local character if for every sequence {X,}nerv of disjoint subsets
of X, and for every sequence {Bn}necav such that for every n € IV, 8, € A[X,],
there exists an « € A such that for every n € IV, a[X,,] C B,.

3.3. Theorem. Let A be a derivation base with the partitioning property
which is also of o-local character. Let F: X x ¥ — R, F(z, I) = f(z)\(I),
where f : X — IR, and A : ¥ — IR is additive, be Henstock integrable
with respect to A on In € ¥, Then for a G : X X ¥ — IR of the form
G(z, I) = f(z)g(z)MI), where g: X — IR, G is Henstock integrable on I, if
and only if K(x, I) = g(z)H(I), where

H(I) = (8) [ fax, (65)

is Henstock integrable with respect to A on I,.

Proof. Let € > 0 be arbitrary. Since F is Henstock integrable with H
being its indefinite Henstock integral, F and H are variationally equivalent.
For every n € IN there exists an e, such that for every = C a,, a partition of

IO,

€
Ff)MI) — [ fdX| < —. (66)
(m’}:‘)‘eJ ( /I I n2r
Let
E,={z€l: (n—-1)<|g(z)| < n}, (67)
for n € IN. Then
L=\ E. (68)
nelN

Since A has a o-local character, there exists an a € A such that for every
nelV

afE,] C a,. (69)

If  C a is a partition of I then

| ¥ f@eeMD) — ¥ g@)a) [ fdA <

(= )Em (=, )En

| S (F(2)g(z)MI) — g(z)(A) /I fd)| <

(e, J)E™

+oo
> lo@lfEMD) - [faN <Y ¥ lg@lf@AD - [ fd <

(= I)E™ n=1 (z,])€Ea,Nn
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+o0 o0 €
S 3 f@AND) —/Ifd,\l g’gnry = (70)

n=1 (a,])€annw

This implies that G and K are variationally equivalent, and the theorem fol-
lows.

3.4. Corollary. Let f € H on I, and 9: Io— R. Then fg € H if and
only if g is Henstock-integrable with respect to f and

[ 1, 1@ s vsay = [ [ gz, vyisia, o). (1)
Proof. Notice that if

H(I) = [ [ f(=, y)dedy (72)
then for I = [a, b] x [e, d]

H(I) = f(b, d) ~ f(a, c) - £(b, c) + f(a, c), (73)

//Io gdH =/L° 9(z, y)df(:u, v). (74)

The rest follows now from theorem 3.3.

so that

3.5. Corollary. If f € H and p € M then 9u 18 Henstock integrable with
respect to f and

J [ oudfa, v = (75)
S [ Fa= [ 7 Ddoute, 1= [ 71, 00,01, 0 + 01, 110,01, 1),

Proof. This is another form of the integration by parts formula and it follows
directly from corollary 3.4 and proposition 2.14.
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