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ABSTRACT

A recently developed nonparametric test for independence in time series data asserts
that two random variables, such as current and past stock returns, are independent if
and only if their joint probability density equals the product of their marginal densities.
We introduce a variant of the test statistic that is not degenerate under the null
hypothesis and also use it to test whether random variables are identically distributed.
The nonparametric tests show that recent United States’ and Canadian stock index
returns are neither independently nor identically distributed. The random walk is
rejected for both daily and monthly data.
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I. INTRODUCTION

Robinson (1991) recently proposed an entropy-based nonparametric test for inde-
pendence in time series data based upon the Kullback-Leibler information criterion.
Two random variables, such as current and past stock returns, are independent if
and only if their joint probability density equals the product of their marginal
densities. The joint and marginal densities can be estimated by nonparametric
kernel density estimation and with this information it is also possible to test whether
two variables are identically distributed. Specifically, two random variables are
identically distributed if and only if the marginal densities are equal. Rejection of
either of the two null hypotheses of independence or identical distribution consti-
tutes a rejection of the random walk hypothesis. This entropy-based test is more
likely to detect dependence than other techniques, yet it will not reject the random
walk hypothesis in instances where the data really reject a specific parametric form
or some assumption about the returns distribution.

A growing body of literature suggests that stock returns do not follow a random
walk, except perhaps in the short-run when noise appears to mask predictable
patterns. For example, Lo and MacKinlay (1988) found positive serial correlation
in weekly stock returns and rejected the random walk using a variance ratio test.
Fama and French (1988) found negative serial correlation in stock returns over three
to five year time horizons using regression-based tests for dependence. Both of
these tests assume linearity and normality, but less restrictive models like McQueen
and Thorley’s (1991) modified runs test using a Markov chain and Durlauf’s (1991)
test for nonlinearity in the spectral distribution function also indicate stock return
predictability. Kim, Nelson, and Startz (1991) further generalize random walk tests
by randomizing the data before applying variance ratio and regression tests that do
not assume normality. They show that the previous evidence for mean reversion has
been overstated. However, they find that returns in recent years display mean
aversion or persistence, which might be interpreted as evidence against the random
walk. While randomization tests using variance ratios have considerable power and
could be used to test the random walk hypothesis, Robinson’s (1991) test appears
to be more general, computationally feasible, and a more natural test for the random
walk hypothesis. Another possibility is to test for deterministic chaos or predict-
ability in time series data using a BDS statistic developed by Brock, Dechert, and
Scheinkman. It is a test for independence based upon the correlation dimension.
Brock, Hsieh, and LeBaron (1991) note that the BDS statistic is not asymptotically
consistent, meaning that it may not detect all deviations away from an independent
identical distribution. They suggest that Robinson’s test may turn out to be prefer-
able to the BDS statistic, but point out that the two tests may complement each
other.

Robinson (1991) concludes from his entropy-based test that daily exchange rate
movements are essentially random. Other work using kernel density estimation by
Sentana and Wadhwani (1991) indicates some predictability for Japanese stock
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returns, while Diebold and Nason ( 1990) fail to reject the random walk for various
weekly spot exchange rate series. Prescott and Stengos (1990) find that nonpara-
metric density estimates of weekly gold returns have within-sample predictive
power, but no out-of-sample forecasting ability. More recently, Frennberg and
Hansson (1993) used variance ratios to show that monthly and annual Swedish
stock returns did not follow a random walk over the years 1919 to 1990. Also using
variance ratio tests, MacDonald and Power (1993) showed that the random walk
could not be rejected for weekly returns for many United Kingdom stocks during
the 1980s. The literature to date suggests that financial time series are generally
random at high frequencies, such as for daily stock returns. Lower frequency data,
such as monthly and annual stock returns, show greater predictability.

The purpose of this paper is to develop a general entropy-based nonparametric
test for the random walk hypothesis. Robinson’s ( 1991) proposed test for inde-
pendence is improved by introducing a variant of the test statistic that is not
degenerate under the null hypothesis. Also, nonparametric density estimators are
used to test for an identical distribution—the second and often neglected part of the
random walk hypothesis. The test is illustrated for United States and Canadian stock
returns using both high frequency daily data and low frequency monthly data.

Il. NONPARAMETRIC DENSITY ESTIMATION

Letx,, x,, x;, . .. be the sequence of annual, monthly, or daily returns for the index
considered. Returns are calculated by logarithmic differencing the levels of the
indexes (/) from one period to the next, that is X, =In(l) - In(l,_,). Assume that the
returns series forms a discrete, stationary, strong mixing, time Markov process and
that each x, is a continuous random variable with common marginal density f,(x).
Denote f(x,y) =f (x, x,,,) as the common bivariate density for (x, x,,1). For fore-
casting purposes, the transitional function is

T _f&y) (1)
hHh®)

We want to find a robust estimate for P(x,y), which is a conditional density function
representing the best forecast of tomorrow’s return given the information available
today. Due to the well-known phenomena of serial correlation and time varying
volatilities, we do not expect the data to be independent over time. Hence, we use
nonparametric density estimation, as described in Silverman (1986) and extended
to an arbitrary strong mixing process by Ahmad (1982), to estimate £ and fix, y).
For any arbitrary density function h(x), its kernel density estimate is

A 1 i X=X, 2
h(x)=n_a:2K( . ;], @

=1
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where X, ..., X, is a sample of n data points from the strong mixing process
considered, and x is the point at which the kernel density function is evaluated. Also,
a, is a constant (or a sequence of constants in the more general case) representing
bandwidth and satisfying the property a,— 0asn— oo It is also called window
width, or the smoothing parameter since it controls the smoothness of the kernel
density by setting the size of the neighborhood about x over which local averaging
of observations occurs. The kernel function K(x) is a probability density function
with finite mean and variance satisfying the condition 72 K(x)dx = 1. Several
functions satisfy these criteria and they represent alternative weighting schemes for
local averaging within the bandwidth about the point x. The choice of kernel
functions is somewhat arbitrary, but we prefer the optimal or Epanechnikov kernel.
Samiaddin and El-Sayyad (1990) show that it is the only admissible kernel,
meaning that no other kernel estimator is more efficient. Also, since calculation of
the optimal kernel does not require exponentiation, there is a considerable savings
in computational time relative to using the more popular Gaussian kernel.
The bivariate density, h(x, y), is estimated by

n
A 1 x-X. y-Y,
hx,y)=—5 > K|—24,—1|, 3)
nan . an an

where K(x, y) is a known bivariate kernel density function.

1. TESTING FOR INDEPENDENT IDENTICAL
DISTRIBUTIONS

Parametric tests for dependence such as the chi-square goodness of fit test and tests
for correlation involving the F statistic are sensitive to deviations away from
normality. Since financial time series data are generally characterized by nonnor-
mality and nonlinearity, we wish to devise a test for dependence that holds for any
returns distribution without reference to an equilibrium pricing model. This is
accomplished using Robinson’s (1991) test for independence. It states that two
random variables x and y are independent if and only if their joint bivariate
probability density function f{x, y) equals the product of the marginal densities
8,(x) and g,(y) for all x and y. The nonparametric hypothesis test is

Hy f(x,y) = 8,(x)g,09), )
Versus
Hy: f(x,y) # g,(0)g,). &)

Note that there is an implicit assumption of stationarity that must be met for this
test to be valid. If the data are not stationary it is not possible to estimate either the
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joint or marginal densities. Also, the test does not provide information about the
form of dependence. If the null hypothesis is rejected we know that the data follow
a Markov chain rather than a random walk. Further testing is necessary to discover
the order of the Markov chain.

There are two difficulties in testing the independence hypothesis. First, data used
to estimate the joint density function are generally the same data that are used to
estimate the marginal densities. This problem can be overcome by assuming
homogeneity or by using two different sets of data. We use different data points to
estimate the joint and marginal densities and emphasize this fact by denoting the
marginal densities by g,(x) and &,() rather than the more natural notation of
f1(x) and £,(y). The second problem is that the most natural test statistic

8= [ 1£(x. ) — g,(x),0)1dx dy ©)

is degenerate under the null hypothesis. Ahmad and Cerrito (1993) proposed an
estimator  which eliminates the problem of degeneracy. The estimator can be
defined by taking two random samples of (x,, x,,,) points. We denote m as the
number of data points used to estimate the joint density. The data are represented

by the values (x, y,), . . ., (x,, ym) The n data points used to estimate the marginal
densities are given by (ul, W1) -5 (u,, w,). The estimate f  Of the joint density is
given by

m

X, Y,
f (x’ }’) - Z [x ya ] ’ (7)

where K is the known bivariate kernel density and the marginal densities are

estimated by
u-U
5 J ®

W
B = 2 K [W J ©

n
1
§1(u)=;[;; 2 K1[
=

In this framework, K = Kf and an estimate of & can be defined by

Al e XXYY
g T [

=l j=1 m "
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where the bandwidth parameters {a,} and {b,} are real numbers satisfying the
condition that a,z,I —0 as ma;i — o0 and b: —0 as nb: — oo, Also, C,_(v) and
Dj,,,('Y) are real numbers that vary with sample size. They are included by the
researcher to prevent degeneracy under the null hypothesis and defined as

m 2 C,"m(‘Y)
il — C¥Y)>1as m — oo, and (n
P —] )
Y Cim®
i=1

n
n 2 D,',,,(Y)
n""“,—)zﬂ(yp 1asn— o,
Y. DM
=l

(12)

Ahn,l\ad and Cerrito (1993) show that 3\ is a consistent estimator, such that the value
of (0 — &) \/mﬂM is asymptotically normal with a mean of zero and a variance )
of

o?= 4{ [7-( fz)z} + 4{ [(s182° - [I(glgz)z]z

+[C%y) + DX(y)] [{ffzglgz = ffglgz)z} + U(glg2)2f
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- J‘(fglgy)zn -6 {ff2glg2 ~[Pfe8,+ [f18,- [ 12 182'[(3182)2} :
(13)

where fis compact notation for f (x, y) and g, andg, denote g, (x) and g,(y). Under
the null hypothesis, the variance reduces to
14
o2 =2 [C%) + DI [ [ £2 - ([ 7). 14
In addition to estimating 3 , an estimate of the variance (32) must be obtained. Under
H,, we can use a combined sample z,,...,2zyof (e ys - es (X, y,) and
(u, wy), . .., (u,, w,), where N=m + n. Then,

2 2
32=8“[?1N(z)] dHN(z)—[J‘?:N(z)dHN(z)} } where as)

A 1 N z_Zi
hN(z)=FC;2 C—N, (16)

=1

given that Hy (z) is the empirical distribution function calculated numerically and
Cy is the bandwidth parameter for the combined sample. Since &2 converges in
probability to 6%, the null hypothesis can be rejected for sufficiently large values
for m and n if

mn

N m+ a7
5 =—3—n' > 242

for the two-sided alternative H,: f (x, y) # g(x)g().

The random walk hypothesis asserts that the distributions of x and y, or returns
on Day 1 and Day 2, are identical. An entropy-based test for identical distribution
is based upon the equality of the marginal densities. The null hypothesis is

Hy 8,(x) = 8,00)- a8

The alternative hypothesis that the distributions are not identical is
H,: g,(x) # g,(9). 19)
The values of a,, b,, and Cy must be estimated. As discussed by Silverman

(1986), a rough estimate of bandwidth is sufficient. We use the following so called
“naive” estimators

a, =1.068,/m"> (20
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b,=1.068S,/n'"> @n

Cy=1.06 S,/N'/3, 22)

where S, , S,, and Sy, are the standard deviations of the respective samples. The
nonparametric test for independence is not robust when bandwidth is underesti-
mated, but it performs well when bandwidth is overestimated. Since the naive
estimator is easy to calculate and tends to slightly overestimate bandwidth, it is a
good choice for testing the nuil hypothesis of independence. Depending upon the
correlation factor of the distribution this test has power for hypothesis testing for
large sample sizes and generally performs well for sample sizes larger than 50 data
points. This test should be useful for high frequency data and for frequencies as low
as monthly returns.

Simulations were run to test the statistics & and 8*, For example, taking a sample
of n =50 and p = .4 from a bivariate normal distribution, a sample correlation of
p =397 was obtained. The estimator 6 =2.18 with a p-value of .03 rejects H,.
Otherarbitraryvaluesofp were selected and similar results were obtained for
other simulated data sets. This suggeststhat thenonparametrictestusing 5
compares favorably with alternative parametric tests. Since more information is
used, 0 has higher power tests for independence. By running simulations, it was
discovered that 0 is robust, even for very poor estimates of bandwidth. For the
function ) A

Ci¥) = {}:z ;o) and m =50, 0 and therefore 8" was optimized at a value of
¥ = 20. This value was used for all data sets for both C; ,(v) andD; () for sample
sizes of 50 to 100. Prior to nonparametric density estimation, z-scores were used to

normalize the data.

IV. EMPIRICAL RESULTS

We examine monthly United States stock returns from the Dow-Jones Industrial
Average for 1982-1992 and dividend-inclusive monthly returns from the Center
for Research in Security Prices (CRSP) value-weighted index from 1964—1989.
Daily United States returns are from the Dow Jones Industrials for 1982—1992 and
Canadian daily returns data are from the Toronto Stock Exchange index for 1982
to 1987. Beginning with the daily returns series for the Dow-Jones Industrials, we
randomly selected 75 observations for g,(x)g,(y) and 75 observations for flx, ).
The selected observations are not sequential. Assuming thaté — 8 is asymptotically
normal, the test for equality of the two marginal distributions rejects the null
hypothesis that the returns distributions are identical (i.e., that g,(x) = g,(y)) at the
5% confidence level. Similar results were obtained using other samples of up to
400 observations and for other data sets.
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Graphing the joint density for the returns distribution calculated under the
assumption of independence and the same distribution estimated assuming depend-
ence showed that the distributions were shaped differently, which is indicative of
possible dependence in day to day returns. More formally, independence is rejected
based upon the nonparametric estimate of 8" = 1.96, which is significant at 5%
confidence level. Hence, Dow-Jones daily returns are not independent, nor is the
returns distribution identical over time.

The same tests are performed for daily Canadian returns data to see whether
results are unique to the United States. Using the same sized random samples of 75
observations, we obtain a value of 8 = 2.0, which rejects independence at the 5%
confidence level. Equality of the marginal distributions also is rejected at the 5%
confidence Jevel. Although previous tests have rejected the random walk for low
frequency monthly or annual data, the nonparametric test shows that even high
frequency noisy daily returns do not follow a random walk.

For monthly dividend-inclusive CRSP value-weighted index returns, the test
statistic is 8" = 12.89, which is significant at the 1% level. Also, equality of the
marginal distributions for Day 1 and Day 2 is rejected at the 5% confidence level.
Similar results were obtained using monthly data from the Dow Jones index. As
expected, less noisy monthly data provide even stronger rejections of independence
and the random walk.

V. CONCLUSIONS

We have modified and extended Robinson’s (1991) entropy-based test for inde-
pendence to provide a complete nonparametric test for the random walk in time
series data. Nonparametric density estimation has been used to identify both
independence and whether the distribution of stock returns is identical over time.
Using the most general test known, we have shown that daily and monthly stock
returns do not follow a random walk. Instead, the stock returns examined follow a
Markov process and further testing is necessary to determine the order of this
process. As expected, the rejections of the random walk are more decisive for low
frequency monthly returns data, but our results may be unique in that we also reject
the random walk using for noisy, high frequency, daily returns data.
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