A note on minimal zero-sum sequences over \(\mathbb{Z} \)

by

PAPA A. SISSOKHO (Normal, IL)

1. Introduction. We shall follow the notation and definitions in Gryn-
kiewicz’s new monograph [15], and refer the reader to it for the definitions
that were omitted here.

For all integers \(x \) and \(y \) with \(x \leq y \), let \([x,y] = \{i \in \mathbb{Z} : x \leq i \leq y\}\). Let \(G_0 \) be a non-empty subset of an additive abelian group \(G \). Let \(\mathcal{F}(G_0) \) denote
the free multiplicative abelian monoid with basis \(G_0 \), and whose elements are
the (unordered) sequences with terms in \(G_0 \). The identity element of \(\mathcal{F}(G_0) \),
also called the trivial sequence, is the sequence with no terms. The operation
in \(\mathcal{F}(G_0) \) is the sequence concatenation product that takes \(R,T \in \mathcal{F}(G_0) \) to
\(S = R \cdot T \in \mathcal{F}(G_0) \). In this case, we say that \(R \) (and \(T \)) is a
subsequence of \(S \).

For every \(S = s_1 \cdot \ldots \cdot s_t \in \mathcal{F}(G_0) \), let

\[
\begin{align*}
\text{the length of } S, \text{ denoted by } |S|, \text{ be } |S| = t; \\
\text{the sum of } S, \text{ denoted by } \sigma(S), \text{ be } \sigma(S) = s_1 + \cdots + s_t; \\
\text{the average of } S, \text{ denoted by } S_{\text{av}}, \text{ be } S_{\text{av}} = \sigma(S)/|S|; \\
\text{the infinite norm of } S, \text{ denoted by } \|S\|_{\infty}, \text{ be } \|S\|_{\infty} = \sup_{1 \leq i \leq t} |s_i|.
\end{align*}
\]

For any \(g \in G \) and any integer \(d \geq 0 \), we let

\[
g^{[d]} = g \underbrace{ \cdot \ldots \cdot }_{d} g,
\]

where \(g^{[d]} \) denotes the empty sequence if \(d = 0 \).

A zero-sum sequence over \(G_0 \) is a sequence \(S \in \mathcal{F}(G_0) \) such that \(\sigma(S) = 0 \).
Such a sequence is called minimal if it does not contain a proper non-trivial
zero-sum subsequence. Then the submonoid

\[
\mathcal{B}_0 = \mathcal{B}(G_0) = \{ S \in \mathcal{F}(G_0) : \sigma(S) = 0 \}
\]

2010 Mathematics Subject Classification: Primary 11B75; Secondary 11B30, 11P70.
Key words and phrases: minimal zero-sum sequence, primitive partition identity, Hilbert basis.

DOI: 10.4064/aa166-3-4 [279] © Instytut Matematyczny PAN, 2014
of \(\mathcal{F}(G_0) \) is a Krull monoid (see e.g. [15]). The set \(\mathcal{A}(\mathcal{B}_0) \) of \textit{atoms} of \(\mathcal{B}_0 \) is the set of all minimal zero-sum sequences in \(\mathcal{B}_0 \). A characterization of \(\mathcal{A}(\mathcal{B}_0) \) would shed some light on the factorization properties of \(\mathcal{B}_0 \) (see e.g. [12] [13]).

Given a minimal zero-sum sequence \(S = s_1 \cdot \ldots \cdot s_t \in \mathcal{A}(\mathcal{B}_0) \), we are interested in bounding its length depending on its terms \(s_i \) for \(i \in [1, t] \). We are also interested in finding a natural structure for \(\mathcal{A}(\mathcal{B}_0) \) when \(\mathcal{G}_0 \) (and thus \(\mathcal{B}_0 \)) is finite.

The study of zero-sum sequences in \(\mathcal{B}(\mathcal{G}) \) when \(\mathcal{G} \) is a finite cyclic group is a very active area of research (see e.g. [2] [5] [6] [9] [18] [19] [22]), with applications to factorization theory (see e.g. [3] [10] [11] [12]). Similar, but less extensive, investigations have been carried out when \(\mathcal{G} \) is an infinite cyclic group (see e.g. [4] [7] [13] [14]).

For all \(S \in \mathcal{B}(\mathbb{Z}) \) with \(|S| \) finite and \(|S| > 1\), there exist positive integers \(a_1, \ldots, a_n \) and \(b_1, \ldots, b_m \) with \(a_1 \leq \cdots \leq a_n \) and \(b_1 \leq \cdots \leq b_m \) such that

\[
S^+ = \prod_{i=1}^{n} a_i^{x_i}, \quad S^- = \prod_{j=1}^{m} (-b_j)^{y_j}, \quad S = S^+ \cdot S^-,
\]

where \(x_i \) and \(y_j \) are positive integers for all \(i \in [1, n] \) and \(j \in [1, m] \).

In his work on Diophantine linear equations, Lambert [17] proved the following theorem.

\textbf{Theorem 1.1 (Lambert [17]).} Let \(S \) be a minimal zero-sum sequence over \(\mathbb{Z} \) with \(|S| \) finite and \(|S| > 1\). If \(S \) is as in (1.2), then

\[
|S^+| \leq \|S^-\|_\infty = b_m \quad \text{and} \quad |S^-| \leq \|S^+\|_\infty = a_n.
\]

This was reformulated and reproved in the language of sequences by Bagninski et al. [4]. Perhaps due to inconsistent notation across various areas, Theorem 1.1 has been independently rediscovered by Diaconis et al. [8] and Sahs et al. [21]. Currently, the best bounds for \(|S^+|\) and \(|S^-|\) are due to Henk–Weismantel [16]. They proved the following theorem of which Theorem 1.1 is a special case upon setting \(\ell = m \) and \(k = n \).

\textbf{Theorem 1.2 (Henk–Weismantel [16]).} Let \(S \) be a minimal zero-sum sequence over \(\mathbb{Z} \) with \(|S| \) finite and \(|S| > 1\). If \(S \) is as in (1.2), then

\[
(J_\ell) \quad |S^+| \leq b_\ell - \sum_{j=1}^{\ell-1} \left[\frac{b_\ell - b_j}{a_n} \right] y_j + \sum_{j=\ell+1}^{m} \left[\frac{b_j - b_\ell}{a_1} \right] y_j \quad \text{for all } \ell \in [1, m],
\]

\[
(I_k) \quad |S^-| \leq a_k - \sum_{i=1}^{k-1} \left[\frac{a_k - a_i}{b_m} \right] x_i + \sum_{i=k+1}^{n} \left[\frac{a_i - a_k}{b_1} \right] x_i \quad \text{for all } k \in [1, n].
\]

In this paper, we improve on Theorem 1.2 by proving the following theorem.
Theorem 1.3. Let S be a minimal zero-sum sequence over \mathbb{Z} with $|S|$ finite and $|S| > 1$. If S is as in (1.2), then

$$|S^+| \leq |S_{av}^-| = \left[\frac{\sum_{j=1}^{m} b_j y_j}{\sum_{j=1}^{m} y_j} \right] \quad \text{and} \quad |S^-| \leq |S_{av}^+| = \left[\frac{\sum_{i=1}^{n} a_i x_i}{\sum_{i=1}^{n} x_i} \right].$$

The bounds in Theorems 1.1, 1.3 are all tight for the minimal zero-sum sequences

$$S = a\left[\frac{b}{\gcd(a,b)}\right], \quad (-b)\left[\frac{a}{\gcd(a,b)}\right],$$

for all positive integers a and b. On the other hand, if we consider the minimal zero-sum sequence $S = 3^{[1]} \cdot 4^{[2]} \cdot (-1)^{[2]} \cdot (-9)^{[1]}$, then Theorem 1.1 yields $|S^+| \leq 9$ and $|S^-| \leq 4$, Theorem 1.2 yields $|S^+| \leq 4$ and $|S^-| \leq 4$, while Theorem 1.3 yields the tight bounds $|S^+| \leq 3$ and $|S^-| \leq 3$.

In Section 2, we prove Theorem 1.3 by refining the method of Sahs et al. [21]. In Section 3, we define a natural partial order on the set $\mathcal{A}(\mathcal{B}_0)$ of minimal zero-sum sequences and discuss its relevance. In Section 4, we show that the bounds in Theorem 1.3 are always sharper than or equivalent to the bounds in Theorem 1.2.

2. Proof of Theorem 1.3. Let G be an additive abelian group, and let $S = s_1 \ldots s_t \in \mathcal{F}(G)$. For all $i, j \in [1, t]$ such that $i \neq j$, let S' be the sequence obtained by removing the terms s_i and s_j from S and inserting (anywhere) the term $s_i + s_j$. We call this process an (s_i, s_j)-derivation and say that S' is (s_i, s_j)-derived from S. We also say that S' is derived from S without specifying the pair (s_i, s_j). For instance, if $S = 2^{[3]} \cdot (-3)^{[2]}$, then $S' = 2^{[2]} \cdot (-3) \cdot (-1)$ is $(2, -3)$-derived from S, and $S' = 4^{[1]} \cdot 2^{[1]} \cdot (-3)^{[2]}$ is $(2, 2)$-derived from S.

We will use the following lemma, which is a special case of Lemma 2 in Sahs et al. [21]. For completeness, we include a very short proof.

Lemma 2.1. Let G be an additive abelian group. Let $S = s_1 \ldots s_t$ be a minimal zero-sum sequence over G, and let $i, j \in [1, t]$ be such that $i \neq j$. If S' is (s_i, s_j)-derived from S, then S' is also a minimal zero-sum sequence over G.

Proof. By definition S' is a zero-sum sequence over G since $s_i + s_j \in G$ and

$$\sigma(S') = \sigma(s) - s_i - s_j + (s_i + s_j) = \sigma(S) = 0.$$

Suppose that S' is not minimal. Then there exist non-trivial zero-sum sub-sequences R and T such that $S' = R \cdot T$, and the specific term $s_i + s_j$ (there may be other copies of $s_i + s_j$ in S' and S) is a subsequence of either R or T, and not both. Thus, either R or T is a proper zero-sum subsequence of S.

This would contradict the minimality of \(S \). Thus, \(S' \) is minimal zero-sum sequence. \(\blacksquare \)

We now prove our main theorem.

Proof of Theorem 1.3. Let \(S \) be a minimal zero-sum sequence over \(\mathbb{Z} \) with \(|S| \) finite and \(|S| > 1 \). Then there exist positive integers \(a_1, \ldots, a_n \) and \(b_1, \ldots, b_m \) with \(a_1 \leq \cdots \leq a_n \) and \(b_1 \leq \cdots \leq b_m \) such that

\[
S^+ = \prod_{i=1}^{n} a_i^{x_i}, \quad S^- = \prod_{j=1}^{m} (-b_j)^{y_j}, \quad S = S^+ \cdot S^-,
\]

where \(x_i \) and \(y_j \) are positive integers for all \(i \in [1, n] \) and \(j \in [1, m] \).

We shall prove by induction on \(|S| \geq 2 \) that

\[
(2.1) \quad |S^+| \leq -S^-_{\text{av}} \quad \text{and} \quad |S^-| \leq S^+_{\text{av}}.
\]

If \(|S| = 2 \), then we must have \(m = n = 1 \), \(S = a_1 \cdot (-b_1) \), and \(a_1 - b_1 = 0 \). Since \(a_1, b_1 > 0 \), the statement \((2.1) \) clearly holds. Assume that \(|S| \geq 2 \) and \((2.1) \) holds for all minimal zero-sum sequences \(R \) such that \(2 \leq |R| < |S| \).

If \(a_i = b_j \) for some \(i \in [1, n] \) and \(j \in [1, m] \), then \(S = a_i \cdot (-b_j) \), as otherwise \(S' = a_i \cdot (-b_j) \) would be a proper zero-sum subsequence of \(S \), which would contradict the minimality of \(S \). Thus, we may assume that

\[
\{a_1, \ldots, a_n\} \cap \{b_1, \ldots, b_m\} = \emptyset.
\]

Without loss of generality, we also assume that \(a_n = \|S^+\|_\infty > \|S^-\|_\infty = b_m \).

To prove the inductive step, we first show that \(|S^+| \leq -S^-_{\text{av}} \). Since \(x_n > 0 \), \(y_m > 0 \), and \(a_n - b_m > 0 \), we can use Lemma 2.1 to perform an \((a_n, -b_m)\)-derivation from \(S \), and obtain the minimal zero-sum sequence

\[
R = (a_n - b_m)^{[1]} \cdot a_n^{[x_n-1]} \cdot \prod_{i=1}^{n-1} a_i^{x_i} \cdot (-b_m)^{y_m-1} \prod_{j=1}^{m} (-b_j)^{y_j},
\]

where we omit the term \(a_n \) if \(x_n = 1 \) and the term \((-b_m)\) if \(y_m = 1 \).

Since \(|R| = |S| - 1 \), it follows from the induction hypothesis that

\[
(2.2) \quad |R^+| = 1 + (x_n - 1) + \sum_{i=1}^{n-1} x_i = \sum_{i=1}^{n} x_i \leq -R^-_{\text{av}} = \frac{(y_m - 1)b_m + \sum_{j=1}^{m-1} y_j b_j}{(y_m - 1) + \sum_{j=1}^{m-1} y_j}.
\]

Since \(b_m = \|S^-\|_\infty \geq \|R^-\|_\infty \), it follows from \((2.2) \) that

\[
|R^+| = \sum_{i=1}^{n} x_i \leq \frac{b_m + (y_m - 1)b_m + \sum_{j=1}^{m-1} y_j b_j}{1 + (y_m - 1) + \sum_{j=1}^{m-1} y_j} = \frac{-\sigma(S^-)}{|S^-|} = -S^-_{\text{av}}.
\]
Thus,
\[
S^+ = \sum_{i=1}^{n} x_i = |R^+| \leq -S_{av}^-.
\]

Next, we show that \(|S^-| \leq S_{av}^+\). Since \(\sigma(S) = 0\), we have \(\sigma(S^+) = -\sigma(S^-)\). This observation and (2.3) yield
\[
|S^+| \leq -S_{av}^- = -\frac{\sigma(S^-)}{|S^-|} = -\frac{\sigma(S^+)}{|S^+|} = S_{av}^+.
\]
Since \(|S^+|\) and \(|S^-|\) are integers, the theorem follows from (2.3) and (2.4) by taking the floors of \(S_{av}^+\) and \(-S_{av}^-\).

Remark 2.2. Let \(S\) be as in (1.2) and suppose that there exists \(t \in [1, m]\) such that
\[
a_n > b_t > -S_{av}^- = \frac{\sum_{j=1}^{m} b_j y_j}{\sum_{j=1}^{m} y_j}.
\]
Then the \((a_n, -b_t)\)-derivation on \(S\) yields the minimal zero-sum sequence
\[
R = (a_n - b_t)^{[1]} \cdot a_n^{[x_n-1]} \cdot \prod_{i=1}^{n-1} a_i^{[x_i]} \cdot (-b_t)^{[y_t-1]} \cdot \prod_{j=1, j \neq t}^{m} (-b_j)^{[y_j]}.
\]
Thus, by applying Theorem 1.3 to \(R\), we obtain
\[
|S^+| = \sum_{i=1}^{n} x_i = |R^+| \leq |S_{av}^-|.
\]
Since \(-R_{av}^- < -S_{av}^-\) (by the definition of \(R\) and (2.5)), the bound for \(|S^+|\) in (2.6) is sometimes better than \(|S^-| \leq [-S_{av}^-]\) given by Theorem 1.3. By symmetry, we may sometimes obtain a better bound for \(|S^-|\) in a similar manner.

3. The structure of the minimal zero-sum sequences. Let \(G_0\) be a finite subset of \(\mathbb{Z}\). We are interested in finding a natural structure on the set \(\mathcal{A}(\mathcal{B}_0)\) of minimal zero-sum sequences in \(\mathcal{B}_0 = \mathcal{B}(G_0)\). As mentioned in the introduction, \(\mathcal{A}(\mathcal{B}_0)\) is also the set of atoms of the Krull monoid \(\mathcal{B}_0\). There are other interesting interpretations of \(\mathcal{A}(\mathcal{B}_0)\). In the context of Diophantine linear equations (see e.g. [16, 17, 20]), \(\mathcal{A}(\mathcal{B}_0)\) corresponds to the union of all Hilbert bases, which are minimal generating sets of all the solutions. In the context of integer partitions, each sequence \(S = a_1 \cdot \ldots \cdot a_p \cdot (-b_1) \cdot \ldots \cdot (-b_q) \in \mathcal{A}(\mathcal{B}_0)\) such that \(p + q \geq 3\), \(a_i > 0\) for \(i \in [1, p]\), and \(b_j > 0\) for \(j \in [1, q]\), corresponds to the primitive partition identity

\(^{(1)}\) This union is also known as the Graver basis of the corresponding toric ideal (see e.g. [24]).
Primitive partition identities were studied by Diaconis et al. [8] who were motivated by applications in Gröbner bases, computational statistics, and integer programming (see e.g. [23, 24]). In the process of characterizing $\mathcal{A}(\mathcal{B}_0)$, we assume that $S = s_1 \cdot \ldots \cdot s_t \in \mathcal{A}(\mathcal{B}_0)$ is equivalent to $-S = (-s_1) \cdot \ldots \cdot (-s_t) \in \mathcal{A}(\mathcal{B}_0)$ and we only include one of them in $\mathcal{A}(\mathcal{B}_0)$. For any positive integer n, define the n-derived set, $\mathcal{D}_n(S)$, of $S = s_1 \cdot \ldots \cdot s_t \in \mathcal{B}(\mathbb{Z})$ by

$$\mathcal{D}_n(S) = \{ S' : i, j \in [1, t], i \neq j, S' \text{ is } (s_i, s_j)-\text{derived, and } \|S'\|_\infty \leq n \}.$$

Given $R, S \in \mathcal{B}(\mathbb{Z})$, we write $R \prec_n S$ if and only if $R = S$ or $R \in \mathcal{D}_n(S)$.

The following proposition is a direct consequence of Lemma 2.1.

Proposition 3.1. Let n be a positive integer, $G_0 = [-n, n]$, and $\mathcal{B}_0 = \mathcal{B}(G_0)$.

(i) If $S \in \mathcal{A}(\mathcal{B}_0)$, then $\mathcal{D}_n(S) \subseteq \mathcal{A}(\mathcal{B}_0)$.

(ii) $\mathcal{P}_n = (\mathcal{A}(\mathcal{B}_0), \prec_n)$ is a poset.

For instance, if $S = 2^3 \cdot (-3)^2$, then Figure 1 shows the poset \mathcal{P}_3. Note that $S' = 2^3 \cdot (-6)$ is $(-3, -3)$-derived from S, but $S' \not\in \mathcal{D}_3(S)$ since $\|S'\|_\infty = 6 > 3$.

Let \mathcal{M}_n be the set of maximal elements of the poset \mathcal{P}_n of Proposition 3.1 i.e., \mathcal{M}_n contains all minimal sequences $R \in \mathcal{A}(\mathcal{B}_0)$ that cannot be derived from any $S \in \mathcal{A}(\mathcal{B}_0)$. Then the following proposition is immediate.

Proposition 3.2. Let n be a positive integer, $G_0 = [-n, n]$, and $\mathcal{B}_0 = \mathcal{B}(G_0)$. If \mathcal{Q} is a set such that $\mathcal{M}_n \subseteq \mathcal{Q} \subseteq \mathcal{A}(\mathcal{B}_0)$, then

$$\mathcal{A}(\mathcal{B}_0) = \mathcal{Q} \cup \bigcup_{S \in \mathcal{Q}} \mathcal{D}_n(S),$$

where we assume that $S \in \mathcal{A}(\mathcal{B}_0)$ is equivalent to $-S \in \mathcal{A}(\mathcal{B}_0)$.

![Fig. 1. The poset \mathcal{P}_3](image-url)
For instance, Figure 1 shows that
\[M_3 = \{2^3 \cdot (-3)^2, 1^3 \cdot (-3)^1\}. \]

We also verified that
\[(3.1) \quad M_n \subseteq \{a^{\frac{b}{\gcd(a,b)}} \cdot (-b)^{\frac{a}{\gcd(a,b)}} : a, b \in [1, n]\}\]
for \(n \in [1, 5]\).

However, by using the 4ti2-software package [1], we found that (3.1) does not hold for \(n = 6\). In particular,
\[M_6 - \{a^{\frac{b}{\gcd(a,b)}} \cdot (-b)^{\frac{a}{\gcd(a,b)}} : a, b \in [1, 6]\}\]
\[= \{2^2 \cdot 3^1 \cdot 5^1 \cdot (-6)^2, 1^1 \cdot 3^1 \cdot 4^2 \cdot (-6)^2\}. \]

Determining \(M_n\) (or a small enough superset of \(M_n\)), for all \(n > 0\), would directly yield an algorithm for generating \(P_n\), and an approach for computing the cardinality of \(A(B_0)\) (e.g., by studying the Möbius function of \(P_n\)).

4. Comparison of the bounds in Theorems 1.2 & 1.3. In this section, we show that the bounds in Theorem 1.3 are in general sharper than or equivalent to the bounds in Theorem 1.2. To do this, we will show that it is enough to compare those two theorems for sequences \(S\) (where \(S\) is as in (1.2)) such that
\[(4.1) \quad a_1 \leq |S^-| = \sum_{j=1}^{m} y_j \leq a_n \quad \text{and} \quad b_1 \leq |S^+| = \sum_{i=1}^{n} x_i \leq b_m. \]

First, note that it follows from Theorem 1.1 that
\[(4.2) \quad \sum_{j=1}^{m} y_j = |S^-| \leq a_n \quad \text{and} \quad \sum_{i=1}^{n} x_i = |S^+| \leq b_m. \]

Let \(\ell \in [1, m]\), \(k \in [1, n]\), and consider the upper bounds
\[(4.3) \quad U_J_\ell = b_\ell - \sum_{j=1}^{\ell-1} \left\lfloor \frac{b_\ell - b_j}{a_n} \right\rfloor y_j + \sum_{j=\ell+1}^{m} \left\lfloor \frac{b_\ell - b_j}{a_1} \right\rfloor y_j, \]
\[(4.4) \quad U_I_k = a_k - \sum_{i=1}^{k-1} \left\lfloor \frac{a_k - a_i}{b_m} \right\rfloor x_i + \sum_{i=k+1}^{n} \left\lceil \frac{a_i - a_k}{b_1} \right\rceil x_i, \]
in the inequalities \((J_\ell)\) and \((I_k)\) of Theorem 1.2, where \(a_1 \leq \cdots \leq a_n\) and \(b_1 \leq \cdots \leq b_m\).

Without loss of generality, assume that \(b_m \geq a_n\). Then \(\left\lfloor \frac{a_k - a_i}{b_m} \right\rfloor = 0\) for \(1 \leq i < k \leq n\), and it follows from (4.4) that
\[(4.5) \quad U_I_k \geq a_k \geq a_1 \quad \text{for all} \quad k \in [1, n]. \]
Thus, it follows from (4.2), (4.5), and the fact that $S_{av}^+ \geq a_1$ that Theorems 1.2 and 1.3 can only give meaningful upper bounds for $|S^-|$ if

\[(4.6) \quad a_1 \leq |S^-| = \sum_{j=1}^m y_j \leq a_n.\]

Next, it follows from the definition of $-S_{av}$ in (1.1) that

\[(4.7) \quad -S_{av}^- = -\sigma(S^-) = \frac{\sum_{j=1}^m b_j y_j}{|S^-|} = \frac{\sum_{j=1}^m b_j y_j - \sum_{j=\ell+1}^{\ell-1} (b_\ell - b_j)y_j + \sum_{j=\ell+1}^m (b_j - b_\ell)y_j}{\sum_{j=1}^m y_j} = b_\ell - \frac{\sum_{j=1}^{\ell-1} (b_\ell - b_j)y_j}{\sum_{j=1}^m y_j} + \frac{\sum_{j=\ell+1}^m (b_j - b_\ell)y_j}{\sum_{j=1}^m y_j}.
\]

Since $a_1 \leq \cdots \leq a_n$ and $b_1 \leq \cdots \leq b_m$, it follows from (4.6) and (4.7) that

\[(4.8) \quad -S_{av}^- \leq b_\ell - \sum_{j=1}^{\ell-1} \frac{(b_\ell - b_j)y_j}{a_n} + \sum_{j=\ell+1}^m \frac{(b_j - b_\ell)y_j}{a_1} \leq b_\ell - \sum_{j=1}^{\ell-1} \left[\frac{b_\ell - b_j}{a_n} \right] y_j + \sum_{j=\ell+1}^m \left[\frac{b_j - b_\ell}{a_1} \right] y_j = U_{J_\ell}.
\]

Thus, Theorem 1.3 and (4.8) yield

\[(4.9) \quad |S^+| \leq \lfloor -S_{av}^- \rfloor \leq -S_{av}^- \leq U_{J_\ell},\]

which implies inequality (J_ℓ) of Theorem 1.2.

Moreover, it follows from (4.9) and the definition of $-S_{av}^-$ that

\[(4.10) \quad b_1 \leq -S_{av}^- \leq U_{J_\ell}.
\]

Thus, it follows from (4.2) and (4.10) that Theorems 1.2 and 1.3 can only give meaningful upper bounds for $|S^+|$ if

\[(4.11) \quad b_1 \leq |S^+| = \sum_{i=1}^n x_i \leq b_m.
\]

Similarly to the proof of (4.9), we can now use (4.11) to show (although we omit the details here) that Theorem 1.3 implies inequality (I_k) of Theorem 1.2, i.e.

\[(4.12) \quad |S^-| \leq \lfloor S_{av}^+ \rfloor \leq S_{av}^+ \leq U_{I_k}.
\]

Finally, it follows from (4.9) and (4.12) that the bounds in Theorem 1.3 are in general sharper than or equivalent to the bounds in Theorem 1.2.
Acknowledgments. The author thanks Alfred Geroldinger for pointing to and providing background material related to zero-sum sequences and their applications to factorization theory. The author also thanks the reviewer for making valuable comments.

References

Papa A. Sissokho
Mathematics Department
Illinois State University
Normal, IL 61790-4520, U.S.A.
E-mail: psissok@ilstu.edu

Received on 10.1.2014
and in revised form on 3.7.2014