THE MINIMUM SIZE OF A FINITE SUBSPACE PARTITION

ESMERALDA L. NĂSTASE† AND PAPA A. SISSOKHO‡

Abstract. A subspace partition of $\mathcal{P} = \text{PG}(n, q)$ is a collection of subspaces of \mathcal{P} whose pairwise intersection is empty. Let $\sigma_q(n, t)$ denote the minimum size (i.e., minimum number of subspaces) in a subspace partition of \mathcal{P} in which the largest subspace has dimension t. In this paper, we determine the value of $\sigma_q(n, t)$ for $n \leq 2t + 2$. Moreover, we use the value of $\sigma_q(2t + 2, t)$ to find the minimum size of a maximal partial t-spread in $\text{PG}(3t + 2, q)$.

1. Introduction

A subspace partition (or partition) of $\mathcal{P} = \text{PG}(n, q)$ is a collection of subspaces of \mathcal{P} whose pairwise intersection is empty. Alternatively, we can think of \mathcal{P} as the vector space of dimension $n + 1$ over $\text{GF}(q)$, denoted by $V = V(n + 1, q)$. Then, a subspace partition of \mathcal{P} is equivalent to a partition of V into a collection \mathcal{S} of subspaces in such a way that each nonzero vector of V occurs in exactly one subspace in \mathcal{S}. The collection \mathcal{S} is said to be a vector space partition (or simply a partition) of V. There is a rich literature about partitions of V (e.g., see [1, 3, 5, 14, 22] and the references therein).

Let $\sigma_q(n, t)$ denote the minimum size (i.e., minimum number of subspaces) in a subspace partition of \mathcal{P} in which the largest subspace has dimension t. Since $\sigma_q(n, n) = 1$ and $\sigma_q(n, 0) = (q^{n+1} - 1)/(q - 1)$, we will focus on the case $0 < t < n$. Also note that if $t + 1$ divides $n + 1$, then $\sigma_q(n, t)$ is just the size of a t-spread of \mathcal{P}, i.e., a subspace partition of \mathcal{P} in which all the subspaces have dimension t. For $0 < t < n$, A. Beutelspacher [2] established the following general lower bound:

$$\sigma_q(n, t) \geq q^{\lceil \frac{n+1}{t} \rceil} + 1.$$

In a recent manuscript, O. Heden and J. Lehmann [16] established new necessary conditions for the existence of certain subspace partitions. In particular they proved conditions for $\text{PG}(2t - 1, q)$ to admit partitions with subspaces of dimensions t and $d < t$ (see Theorem 11 in [16]). In the process, they also prove that for any partition Π of $\text{PG}(n, q)$ such that t is the highest dimension that occurs in Π and $d < n - t$ is another dimension that occurs in Π,

$$|\Pi| \geq q^{t+1} + q^{d+1} + 1.$$

Their result is an improvement on a result of G. Spera [22] who proved that if Π is a partition of $\text{PG}(n, q)$ such that s is the smallest dimension that occurs in Π, then $|\Pi| \geq q^{s+1} + 1$. In another related paper, A. Khare [20] established a sharp bound for the minimum number of subspaces needed to cover (not necessary partition) a given vector space V (finite or infinite) into subspaces with fixed co-dimension.

2000 Mathematics Subject Classification. 51E14, 51E23, 51E10.

Key words and phrases. Subspace partition; Vector space partitions; Partial t-spreads.
2 ESMERALDA L. NĂSTASE† AND PAPA A. SISSOKHO‡

$k < \infty$. As observed above, if $V \cong \text{PG}(n, q)$ and $k + 1$ divides $n + 1$, then a k-spread provides a minimum covering of V.

Let n and t be fixed integers such that $0 < t < n$. In this paper, we prove that (see Corollary 7)

$$\sigma_q(n, t) = q^{t+1} + 1 \quad \text{for } n < 2t + 2,$$

and

$$\sigma_q(n, t) = q^{t+2} + q^\lceil t/2 \rceil + 1 \quad \text{for } n = 2t + 2.$$

We combine this result with a construction of P. Govaerts [13] to show (see Theorem 11) that the minimum size of a maximal partial t-spread in $\text{PG}(3t + 2, q)$ is given by $\sigma_q(2t + 2, t)$.

2. Main results

In our proofs, we use several results of Heden and Lehmann [16]. We start with some preliminary definitions introduced in [16].

Let $n \geq 2$ be an integer and let Π be a subspace partition of $\mathbb{P} = \text{PG}(n, q)$ with m_i subspaces of dimension i, $0 \leq i \leq n - 1$. Let H be any $(n - 1)$-subspace of \mathbb{P} and let $b_i \leq m_i$ be the number of subspaces of Π that are contained in H. We say that (m_{n-1}, \ldots, m_0) is the type of Π and $b = (b_{n-1}, \ldots, b_0)$ is the type of the hyperplane H (with respect to Π). Let s_b denote the number of hyperplanes in \mathbb{P} with type b and define the set

$$B = \{ b : s_b > 0 \}.$$

For $0 \leq i \leq n$, let

$$\theta_i = \frac{q^{i+1} - 1}{q - 1}$$

denote the number of points in an i-space of Π, and let

$$h_q(n, i) = \max \left\{ 0, \frac{q^{n-i} - 1}{q - 1} \right\}$$

be the number of $(n - 1)$-spaces (or hyperplanes) in \mathbb{P} that contain a fixed i-space of \mathbb{P}. Finally, for $n = 2t + 2$, we define

$$\mu_q(n, t) = q^{t+2} + 1.$$

By using a construction of A. Beutelspacher [1] (which was rediscovered by T. Bu [5]), it is easy to see that there is a partial t-spread in $\text{PG}(n, q)$ of size $\mu_q(n, t)$.

Lemma 1 (Heden and Lehmann [16]). Let Π be a subspace partition of $\text{PG}(n, q)$ and let (b_{n-1}, \ldots, b_0) be the type of the hyperplane H with respect to Π. Then the number of subspaces in Π is

$$|\Pi| = 1 + \sum_{i=0}^{n-1} b_i q^{i+1}.$$

Lemma 2 (Heden and Lehmann [16]). Let Π be a subspace partition of $\text{PG}(n, q)$ of type (m_{n-1}, \ldots, m_0) and let $b = (b_{n-1}, \ldots, b_0)$ be the type of the hyperplane H with respect to Π. Let s_b denote the number of hyperplanes in $\text{PG}(n, q)$ with type b and suppose that $0 \leq d, \ell \leq n - 2$. Then

$$(i) \sum_{b \in B} s_b = \frac{2^{n+1} - 1}{q - 1}.$$
\[(ii) \sum_{b \in B} b_{q} s_b = m_{d} h_{q}(n, d) ,\]
\[(iii) \sum_{b \in B} (\frac{b_{q}}{2}) s_b = \left(\frac{m_{d}}{2}\right) h_{q}(n, 2d + 1) ,\]
\[(iv) \sum_{b \in B} b_{q} b_{q} s_b = m_{t} m_{d} h_{q}(n, d + \ell + 1) .\]

We will also use the next lemma of Beutelspacher [1] (also see Bu [5]).

Lemma 3 (Beutelspacher [1]). Let \(n, d\) be integers such that \(0 \leq d \leq (n - 1)/2\). Then \(\text{PG}(n, q)\) admits a partition with one subspace of dimension \(n - d - 1\) and \(q^{n-d}\) subspaces of dimension \(d\).

We can now prove the following easy observation for the value of \(\sigma_{q}(n, t)\) when \(n < 2t + 2\).

Proposition 4. Let \(n\) and \(t\) be fixed integers such that \(0 < t < n \leq 2t + 1\). Then

\[\sigma_{q}(n, t) = q^{t+1} + 1.\]

Proof. Since \(0 < t < n \leq 2t + 1\), we have \(n = t + a + 1\) with \(0 \leq a \leq t\). Let \(\Pi\) be an arbitrary subspace partition of \(\mathbb{P} = \text{PG}(n, q)\) whose largest subspace \(U\) has dimension \(t\). Since \(n > t\), we have \(|\Pi| > 1\). So let \(U' \in (\Pi \setminus \{U\})\) be a subspace of largest possible dimension. Then \(\dim(U') \leq a\) since \(n = t + a + 1\). Since \(\Pi\) is arbitrarily chosen, counting the number of subspaces in \(\Pi\) yields

\[(2) \quad \sigma_{q}(n, t) \geq |\Pi| \geq 1 + \frac{\theta_{n} - \theta_{t}}{\theta_{a}} = 1 + q^{t+1}.\]

Now the proposition follows from (2) and the existence (see Lemma 3) of a partition \(\Pi_{0}\) of \(\text{PG}(n, q)\) with one subspace of dimension \(t\) and \(q^{t+1}\) subspaces of dimension \(a\).

To prove our main result, Theorem 6, we first prove the following lemma which may be of independent interest.

Lemma 5. Let \(n\) and \(t \geq 1\) be fixed integers such that \(n = 2t + 2\). Let \(\Pi\) be a subspace partition of \(\text{PG}(n, q)\) with no subspace of dimension higher than \(t\). Assume furthermore that \(\Pi\) contains two subspaces of dimensions \(t\) and \(d\) with \(0 \leq d < t\). Then

\[|\Pi| \geq q^{t+2} + q^{d+1} + 1.\]

Proof. Let \(\Pi\) be a subspace partition of \(\text{PG}(n, q)\) containing subspaces of dimension \(t\) and \(d\) with \(0 \leq d < t\). Define

\[(3) \quad L = \frac{\theta_{n} - \theta_{t-1} (\mu_{q}(n, t) + q^{d+1})}{\theta_{t} - \theta_{t-1}}.\]

We first show that the lemma holds if \(m_{t} \leq L\). Note that \(\Pi\) is the disjoint union of \(A = \{W \in \Pi : \dim(W) = t\}\) and \(B = \{W \in \Pi : \dim(W) \leq t - 1\}\). Since \(|A| = m_{t}\), we have

\[|\Pi| = |A| + |B| \geq m_{t} + \frac{\theta_{n} - m_{t} \cdot \theta_{t}}{\theta_{t-1}} = \frac{\theta_{n} - m_{t} (\theta_{t} - \theta_{t-1})}{\theta_{t-1}} \geq \frac{\theta_{n} - L (\theta_{t} - \theta_{t-1})}{\theta_{t-1}}\]
\[\text{This shows that the lemma holds for } m_t \leq L. \]

Now suppose that \(m_t > L \). Since there exists a subspace of dimensions \(t \) and \(d \) in \(\Pi \), we have \(m_t > 0 \) and \(m_d > 0 \). It follows from Lemma 2(iv) that

\[\sum_{b \in B} b_t b_d s_b = m_t m_d h_q(n, t + d + 1) \neq 0. \]

Moreover,

\[\sum_{b \in B} b_t b_d s_b = \sum_{b \in B, 0 \leq b_t \leq q - 1} b_t b_d s_b + \sum_{b \in B, b_t \geq q} b_t b_d s_b. \]

If \(\sum_{b \in B, b_t \geq q} b_t b_d s_b \neq 0 \), then there exists \(b \in B \) such that \(b_t \geq q, b_d \geq 1, \) and \(s_b \geq 1 \). In this case, Lemma 1 yields

\[|\Pi| = \sum_{i=0}^{n-1} b_t q^{t+1} + 1 \geq b_t q^{t+1} + b_d q^{d+1} + 1 \geq q^{t+2} + q^{d+1} + 1, \]

and the lemma follows. So we may assume that \(\sum_{b \in B, b_t \geq q} b_t b_d s_b = 0 \). We will show that this contradicts the assumption \(m_t > L \). From (6) and Lemma 2(ii), we obtain

\[(q - 1)m_d h_q(n, d) = \sum_{b \in B} (q - 1) \cdot b_d s_b \]
\[= \sum_{b \in B, 0 \leq b_t \leq q - 1} (q - 1) \cdot b_d s_b + \sum_{b \in B, b_t \geq q} (q - 1) \cdot b_d s_b \]
\[\geq \sum_{b \in B, 0 \leq b_t \leq q - 1} b_t \cdot b_d s_b + \sum_{b \in B, b_t \geq q} b_t \cdot b_d s_b \]
\[= \sum_{b \in B} b_t b_d s_b \]
\[= m_t m_d h_q(n, t + d + 1) \]

Since \(m_d > 0 \), dividing both sides of (8) by \(m_d \) yields

\[m_t \leq \frac{(q - 1) h_q(n, d)}{h_q(n, t + d + 1)} = \frac{(q - 1)(q^{2t+2-d} - 1)}{q^{t+1-d} - 1}. \]

Since \(0 \leq d \leq t - 1 \), the right side (9) is maximized when \(d = t - 1 \). Hence

\[m_t \leq \frac{(q - 1)(q^{2t+2-(t-1)} - 1)}{q^{t+1-(t-1)} - 1} = \frac{(q - 1)(q^{t+3} - 1)}{q^2 - 1} = q^{t+3} - 1. \]

Also, since \(\mu_q(n, t) = q^{t+2} + 1 \) (see (1)) and \(L \) (defined in (3)) is minimized when \(d = t - 1 \), the assumption \(m_t > L \) yields

\[m_t > L \geq \frac{\theta_{2t+2} - \theta_{t-1} \cdot (\mu_q(n, t) + q^t)}{\theta_t - \theta_{t-1}} \]
\[= \frac{(q^{2t+3} - 1) - (q^t - 1)(q^{t+2} + q^t + 1)}{(q^{t+1} - q^t)}. \]
Theorem 6. Let n and $t \geq 1$ be fixed integers such that $n = 2t + 2$. Then

$$\sigma_q(n, t) = q^{t+2} + q^{[t/2] + 1} + 1.$$

Proof. Let Π be a subspace partition of $\text{PG}(n, q)$ in which the largest subspace has dimension t. Let $\beta = [t/2]$ and define the set

$$G = \{\dim(W) : W \in \Pi \text{ and } \beta \leq \dim(W) \leq t - 1\}.$$

First, suppose that $G \neq \emptyset$. Then for any $d \in G$, Lemma 5 yields

$$|\Pi| \geq q^{t+2} + q^{s+1} + 1 \geq q^{t+2} + q^t + 1 \geq q^{t+2} + q^{s+1} + 1.$$

So, we may assume that $G = \emptyset$. Hence, all other subspaces in Π have dimensions at most $\beta - 1$. Recall from (1) that $\mu_q(n, t) = q^{t+2} + 1$. We consider the following two cases based on whether $m_t = \mu_q(n, t)$ or not.

Case 1: $m_t = \mu_q(n, t)$.

If $b_i \geq q + 1$ for some $b \in B$, then

$$|\Pi| = \sum_{i=0}^{n-1} b_i q^{t+1} + 1 \geq b_t \cdot q^{t+1} + 1 \geq q^{t+2} + q^{t+1} + 1 \geq q^{t+2} + q^{s+1} + 1.$$

If $b_t \leq q$ for all $b \in B$, then

$$q \sum_{b \in B} s_b = \sum_{b \in B} q \cdot s_b \geq \sum_{b \in B} b_t s_b = m_t h_q(n, t).$$

Using Lemma 2(i) and (ii), we infer that (12) holds if and only if

$$q \left(\frac{q^{n+1} - 1}{q - 1}\right) = q \sum_{b \in B} s_b \geq m_t h_q(n, t) = (q^{t+2} + 1) \cdot \frac{q^{n-t} - 1}{q - 1}$$

$$\Leftrightarrow q^{n+2} - q \geq q^{n+2} - q^{t+2} + q^{n-t} - 1$$

$$\Leftrightarrow q^{n-t} + q = q^{t+2} + q \leq q^{t+2} + 1,$$

which is a contradiction since $q > 1$.

Case 2: $m_t \leq \mu_q(n, t) - 1$. In this case, each subspace in Π, other than the m_t subspaces, has dimension at most $\beta - 1$ (so at most $\theta_{\beta-1}$ points). Therefore, we can estimate the number of subspaces in Π as follows

$$|\Pi| \geq m_t + \frac{\theta_n - m_t \cdot \theta_t}{\theta_{\beta-1}}$$

$$= \frac{\theta_n - m_t (\theta_t - \theta_{\beta-1})}{\theta_{\beta-1}}$$

$$\geq \frac{\theta_n - (\mu_q(n, t) - 1) \cdot (\theta_t - \theta_{\beta-1})}{\theta_{\beta-1}}$$

$$= \frac{(q^{2t+3} - 1) - q^{t+2}(q^{t+1} - q^s)}{q^s - 1}$$

$$\geq q^{t+2} + q^{s+1} + q.$$

(13)
Now it follows from (10), (11), and (13) that
\[|\Pi| \geq q^{t+2} + q^{\beta+1} + 1 \]
holds in all cases. Since \(\Pi \) is an arbitrarily chosen subspace partition, we obtain
(14)
\[\sigma_q(n,t) \geq q^{t+2} + q^{\beta+1} + 1. \]
Moreover, it follows from Lemma 3 that there exists a partition \(\Pi_0 \) of \(\text{PG}(2t+2,q) \)
into one subspace \(W \) of dimension \(t+1 \) and \(q^{t+2} \) subspaces of dimension \(t \). If \(t \)
is even, then \(t + 2 = 2(\beta + 1) \) and we can partition \(W \) into a \(\beta \)-spread containing
\(q^{\beta+1} + 1 \) subspaces. If \(t \) is odd then \(t + 2 = 2\beta + 1 \) and we use Lemma 3 again
to partition \(W \) into one subspace of dimension \(\beta \) and \(q^{\beta+1} \) subspaces of dimension \(\beta - 1 \). This shows that
(15)
\[q^{t+2} + q^{\beta+1} + 1 = |\Pi_0| \geq \sigma_q(n,t). \]
Finally (14) and (15) yield
\[\sigma_q(n,t) = q^{t+2} + q^{\beta+1} + 1. \]
\[\square \]

Proposition 4 and Theorem 6 lead directly to the following corollary.

Corollary 7. Let \(n \) and \(t \) be fixed integers such that \(0 < t < n \). Then
\[\sigma_q(n,t) = q^{t+1} + 1 \quad \text{for} \quad n < 2t + 2, \]
and
\[\sigma_q(n,t) = q^{t+2} + q^{\lceil t/2 \rceil + 1} + 1 \quad \text{for} \quad n = 2t + 2. \]

Proof. This follows directly from Proposition 4 and Theorem 6. \[\square \]

We conclude this section by proposing the following conjecture.

Conjecture 8. Let \(n, k, \) and \(t \) be positive integers such that \(n = k(t+1) \). If \(k \geq 2 \) then
\[\sigma_q(n,t) = \frac{q^{(t+1)+1}(q^{(k-1)(t+1)} - 1)}{q^{t+1} - 1} + q^{\lceil t/2 \rceil + 1} + 1. \]
Note that Conjecture 8 holds for \(k = 2 \) (see Theorem 6) and \(\sigma_q(n,t) = q^{t+1} + 1 \)
for \(k = 1 \) (see Proposition 4).

3. An application to maximal partial \(t \)-spreads

Let \(\mathbb{P} = \text{PG}(n,q) \) denote the projective space of dimension \(n \) over the Galois field
\(\text{GF}(q) \). A **partial \(t \)-spread** of \(\mathbb{P} \) is a collection \(\mathcal{S} = \{W_1, \ldots, W_k\} \) of \(t \)-dimensional
subspaces of \(\mathbb{P} \) such that \(W_i \cap W_j = \emptyset \) for \(i \neq j \). The number \(|\mathcal{S}| \) is called the **size**
of \(\mathcal{S} \). If \(\mathbb{P} = \bigcup_{W \in \mathcal{S}} W \), then \(\mathcal{S} \) is called a **spread**. It is well-known that a spread
exists if and only if \(t + 1 \) divides \(n + 1 \).

A **maximal** partial \(t \)-spread is one which cannot be extended to a larger one. The problem of classifying the maximal partial \(t \)-spreads of \(\mathbb{P} \) has been extensively studied (see [9, 11, 13, 15, 18, 19]). It has applications in the construction of error-correcting codes [6, 8], orthogonal arrays [7, 10], and factorial designs [21].

Let \(n \) and \(t \) be fixed integers and let \(k \) and \(r \) be the unique integers defined by
\(n - t = k(t + 1) + r - 1 \) and \(0 \leq r \leq t \). We let \(\tau_q(n,t) \) denote the minimum number
of subspaces in any maximal partial \(t \)-spread of \(\mathbb{P} \). The maximal partial \(t \)-spread
Lemma 9 (Govaerts [13]). Let \(n, k, \) and \(t \geq 0 \) be fixed integers and write \(n = k(t + 1) + t \). If \(k \geq 2 \) then there exist (see page 610 in [13] for a construction) maximal partial \(t \)-spreads of \(\text{PG}(n, q) \) of size \(\tau_q(n, t) \leq \mu_q(n - t, t) + q^{\lceil t/2 \rceil + 1} \). Consequently,

\[
\tau_q(n, t) \leq \mu_q(n - t, t) + q^{\lceil t/2 \rceil + 1}.
\]

We can apply our main result, Theorem 6, to determine the value of \(\tau_q(3t + 2, t) \).

Our strategy is due to Govaerts but we replace his set-partition based analysis with the more appropriate subspace-partition analysis. We first introduce the relevant definitions. A set of points \(B \) of \(\mathbb{P} \) is called a blocking set with respect to the \(t \)-spaces of \(\mathbb{P} \) if \(W \cap B \neq \emptyset \) for any \(t \)-spaces \(W \) in \(\mathbb{P} \). Note that any \((n - t)\)-space of \(\mathbb{P} \) is a blocking set with respect to the \(t \)-spaces of \(\mathbb{P} \). Such blocking sets are called trivial. The following lemma follows from the results of Govaerts (see case 2, page 612 in [13]).

Lemma 10 (Govaerts [13]). Let \(n, k, \) and \(t \) be positive integers such that \(n = k(t + 1) + t \). If \(k \geq 2 \) and \(S \) is a minimum size maximal partial \(t \)-spread of \(\text{PG}(n, q) \), then \(\bigcup_{W \in S} W \) contains a trivial blocking set.

We can use Lemma 10 with \(k = 2 \) to prove the following theorem.

Theorem 11. For any positive integer \(t \), we have

\[
\tau_q(3t + 2, t) \geq \sigma_q(2t + 2, t).
\]

Proof. Let \(S \) be a minimum size maximal partial \(t \)-spread in \(\text{PG}(3t + 2, q) \). Then by Lemma 10, \(A = \bigcup_{W \in S} W \) contains a trivial blocking set. In other words, there exists a \((2t + 2)\)-space \(B \subseteq A \). Let

\[
\Pi_S = \{ W \cap B : W \in S \}.
\]

Since \(B \) is a blocking set with respect to \(t \)-spaces, we have \(W \cap B \neq \emptyset \) for any \(W \in S \). Thus, \(\Pi_S \) is a subspace partition of \(B \cong \text{PG}(2t + 2, q) \) containing subspaces of dimensions at most \(t \). If \(\Pi_S \) contains a \(t \)-subspace, then it follows from Theorem 6 and the minimality of \(S \) that

\[
\tau_q(3t + 2, t) = |S| = |\Pi_S| \geq \sigma_q(2t + 2, t).
\]

If \(\Pi_S \) contains no \(t \)-subspace, then each subspace in \(\Pi_S \) has dimension at most \(t - 1 \) (and contains at most \(\theta_{t-1} \) points). So we can estimate the number of subspaces in \(\Pi_S \) to obtain

\[
\tau_q(3t + 2, t) = |S| = |\Pi_S| \geq \left\lceil \frac{\theta_{2t+2}}{\theta_{t-1}} \right\rceil.
\]
\[q^{(2t+2)+1} - 1 \]
\[q^{t+1} - 1 \]
\[q^{t+2} + q^{\left\lceil \frac{t}{2} \right\rceil +1} + 1 = \sigma_q(2t + 2, t). \]

This concludes the proof of the theorem. \(\square \)

We can now prove the following corollary which determines the number \(\tau_q(3t + 2, t) \) for all \(t \geq 1 \). The cases \(1 \leq t \leq 2 \) were already known from the work of Govaerts [13].

Corollary 12. Let \(t \geq 1 \) be a fixed integer. Then
\[\tau_q(3t + 2, t) = \sigma_q(2t + 2, t) = q^{t+2} + q^{\left\lceil \frac{t}{2} \right\rceil +1} + 1. \]

Proof. This is a direct consequence of Theorem 6, Lemma 9, and Theorem 11. \(\square \)

We believe that if Conjecture 8 is true, it can be combined with Lemma 9 to prove that
\[\tau_q(n, t) = \sigma_q(n - t, t) = q^{(t+1)+1}(q^{(k-1)(t+1)} - 1) / q^{t+1} - 1 + q^{\left\lceil \frac{t}{2} \right\rceil +1} + 1, \]
for any integers \(k \geq 2 \) and \(t \geq 1 \) such that \(n = k(t + 1) + t \).

We remark that the cases for \(k = 1 \) and \(1 \leq r \leq t \), i.e., \(2t + 1 \leq n \leq 3t \), have proved to be difficult. In particular, for \(n = 3 \) and \(t = 1 \), Glynn [12] established the following lower bound
\[\tau_q(3, 1) \geq 2q, \]
while Gács and Szönyi [11] later proved the following upper bound
\[\tau_q(3, 1) \leq \begin{cases} (2 \ln q + 1)q + 1, & \text{if } q \text{ odd} \\ (6.1 \ln q + 1)q + 1, & \text{if } q > q_0 \text{ even}, \end{cases} \]

Although the gap between these bounds is somewhat considerable, they are (as far as we know) the best bounds for \(\tau_q(3, 1) \).

Furthermore, there are (e.g., see Hirschfeld [17]) maximal partial 1-spreads of \(\text{PG}(3, q) \) of size \(q^2 - q + 2 \) for any \(q > 3 \), and of size 7 for \(q = 3 \). For a while, it was generally believed that these maximal partial 1-spreads have largest possible size among all maximal partial 1-spreads which are not 1-spreads. However, for \(q = 7 \), Heden [15] constructed a maximal partial 1-spread of size 45. All the maximal partial 1-spreads of \(\text{PG}(3, q) \) of size 45 have subsequently been classified by Blokhuis, Brouwer, and Wilbrink [4].

References

†Mathematics Department, Xavier University, 3800 Victory Parkway, Cincinnati, Ohio 45207.

‡Mathematics Department, Illinois State University, Normal, Illinois 61790.

E-mail address: nastasee@xavier.edu, psissok@ilstu.edu