AVOIDING ZERO-SUM SUBSEQUENCES OF PRESCRIBED LENGTH
OVER THE INTEGERS

C. AUGSPURGER, M. MINTER, K. SHOUKRY, P. SISSOKHO, AND K. VOSS

MATHEMATICS DEPARTMENT, ILLINOIS STATE UNIVERSITY
NORMAL, IL 61790–4520, U.S.A.

Abstract. Let \(t \) and \(k \) be a positive integers, and let \(I_k = \{ i \in \mathbb{Z} : -k \leq i \leq k \} \). Let \(s'_t(I_k) \) be the smallest positive integer \(\ell \) such that every zero-sum sequence \(S \) over \(I_k \) of length \(|S| \geq \ell \) contains a zero-sum subsequence of length \(t \). If no such \(\ell \) exists, then let \(s'_t(I_k) = \infty \).

In this paper, we prove that \(s'_t(I_k) \) is finite if and only if every integer in \([1, D(I_k)]\) divides \(t \), where \(D(I_k) = \max\{2, 2k - 1\} \) is the Davenport constant of \(I_k \). Moreover, we prove that if \(s'_t(I_k) \) is finite, then \(t + k(k - 1) \leq s'_t(I_k) \leq t + (2k - 2)(2k - 3) \). We also show that \(s'_t(I_k) = t + k(k - 1) \) holds for \(k \leq 3 \) and conjecture that this equality holds for any \(k \geq 1 \).

1. Introduction and Main results

We shall follow the notation in [17], by Grynkiewicz. Let \(\mathbb{N} \) be the set of positive integers. Let \(G_0 \) a subset of an abelian group \(G \). A sequence over \(G_0 \) is an unordered list of terms in \(G_0 \), where repetition is allowed. The set of all sequences over \(G_0 \) is denoted by \(F(G_0) \). A sequence with no term is called trivial or empty. If \(S \) is a sequence with terms \(s_i, 1 \leq i \leq n \), we write \(S = s_1 \cdot \ldots \cdot s_n = \prod_{i=1}^{n} s_i \). We say that \(R \) is a subsequence of \(S \) if any term in \(R \) is in \(S \). If \(R \) and \(T \) are subsequences of \(S \) such that \(S = R \cdot T \), then \(R \) is the complementary sequence of \(T \) in \(S \), and vice versa. We also write \(T = S \cdot R^{-1} \) and \(R = S \cdot T^{-1} \). For every sequence \(S = s_1 \cdot \ldots \cdot s_n \) over \(G_0 \),

- \(-S = (-s_1) \cdot \ldots \cdot (-s_n) \)
- the length of \(S \) is \(|S| = n \);
- the sum of \(S \) is \(\sigma(S) = s_1 + s_2 + \ldots + s_n \);
- the subsequence-sum of \(S \) is \(\Sigma(S) = \{ \sigma(R) : R \text{ is a subsequence of } S \} \).

For any sequence \(R \) over \(G_0 \) and any integer \(d \geq 0 \),

\[R^{[0]} \text{ is the trivial sequence, and } R^{[d]} = \underbrace{R \cdot \ldots \cdot R}_{d} \text{ for } d > 0. \]

A sequence with sum 0 is called zero-sum. The set of all zero-sum sequences over \(G_0 \) is denoted by \(B(G_0) \). A zero-sum sequence is called minimal if it does not contain

Key words and phrases. zero-sum sequence over \(\mathbb{Z} \); no zero-sum subsequence of a given length.
Corresponding author: psissok@ilstu.edu.
a proper zero-sum subsequence. The Davenport constant of G_0, denoted by $D(G_0)$ is the maximum length of a minimal zero-sum sequence over G_0. The research on zero-sum theory is quite extensive when G is a finite abelian groups (e.g., see [4, 7, 9, 10] and the references therein). However, there is less activity when G is infinite (e.g., see [1, 5] and the references therein). The study of the particular case $G = \mathbb{Z}^r$ was explicitly suggested by Baeth and Geroldinger [2] due to their relevance to direct-sum decompositions of modules. In a recent paper, Baeth et al. [3] studied the Davenport explicitly suggested by Baeth and Geroldinger [2] due to their relevance to direct-sum decompositions of modules. In a recent paper, Baeth et al. [3] studied the Davenport constant of $G_0 \subseteq \mathbb{Z}^r$. The Davenport constant of an interval in \mathbb{Z} was first derived (see Theorem 1) by Lambert [15] (also see [6, 19, 20] for related work.) In a recent paper, Plagne and Tringali [16], studied the Davenport constant of the cartesian product of intervals of \mathbb{Z}.

For any integers x and y with $x \leq y$, let $[x, y] = \{i \in \mathbb{Z} : x \leq i \leq y\}$. For $k \in \mathbb{N}$, let $I_k = [-k, k]$.

Theorem 1 (Lambert [15]). $D(I_k) = \max\{2, 2k - 1\}$ for any $k \in \mathbb{N}$.

For G finite and $G_0 \subseteq G$, let $s_t(G_0)$ be the smallest integer ℓ such that any sequence $S \in \mathcal{F}(G_0)$ of length $|S| \geq \ell$ contains a zero-sum subsequence of length t. If $t = \exp(G)$, then $s_t(G_0)$ is called the Erdős–Ginzburg–Ziv constant and is denoted by $s(G)$. In 1961, Erdős–Ginzburg–Ziv [7] proved that $s(\mathbb{Z}_n) = 2n - 1$. Reider [18] proved that $s(\mathbb{Z}_p \oplus \mathbb{Z}_p) = 4p - 3$ for any prime p. In general, if G has rank two, say $G = \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2}$ with $1 \leq n_1 \mid n_2$, then $s(G) = 2n_1 + 2n_2 - 3$ (see Theorem 5.8.3 in Geroldinger–Halter–Koch [11]). For groups of higher rank, we refer the reader to Fan–Gao–Zhong [8]. More recently, Gao et al [13] proved that for any integer $k \geq 2$ and any finite G with exponent $n = \exp(G)$, if the difference $n - |G|/n$ is large enough, then $s_{kn}(G) = kn + D(G) - 1$.

Observe that if G is torsion-free and $G_0 \subseteq G$, then for any nonzero $g \in G_0$ and for any $d \in \mathbb{N}$, the sequence $g^{[d]} \in \mathcal{F}(G_0)$ does not contain a zero-sum subsequence. Thus, we will work with the following analogue of $s_t(G_0)$.

Definition 2. 1 For any subset $G_0 \subseteq G$, let $\mathcal{S}_t(G_0)$ be the smallest positive integer ℓ such that any sequence $S \in \mathcal{B}(G_0)$ of length $|S| \geq \ell$ contains a zero-sum subsequence of length t. If no such ℓ exists, then let $\mathcal{S}_t(G_0) = \infty$.

If $t = \exp(G)$ is finite, then we denote $s_t(G_0)$ by $s(G)$. Let $r \in \mathbb{N}$ and assume that $G \cong \mathbb{Z}_n^r$. Then G has Property D if any sequence $S \in \mathcal{F}(G)$ of length $s(G) - 1$ that does not admit a zero-sum subsequence has the form $S = T^{[n-1]}$ for some $T \in \mathcal{F}(G)$. Zhong found the following interesting connections between $s(G)$ and $\mathcal{S}(G)$ (see the Appendix for their proofs).

Lemma 3 (Zhong [21]). Let G be a finite abelian group.

(i) If $\gcd(s(G) - 1, \exp(G)) = 1$, then $\mathcal{S}(G) = s(G)$.

(ii) If $G \cong \mathbb{Z}_n^r$, with $n \geq 3$ and $r \geq 2$. Suppose that $s(G) = c(n - 1) + 1$ and G has Property D. If $\gcd(s(G) - 1, n) = c$, then $\mathcal{S}(G) < s(G)$.

1This formulation was suggested to us by Geroldinger and Zhong [14].
Remark 4 (Zhong [21]).

(i) If \(G \cong \mathbb{Z}_n^2\) with \(n\) odd, then \(s'(G) = s(G)\).
(ii) If \(G \cong \mathbb{Z}_n^2\) with \(h \geq 2\), then \(s'(G) = s(G) - 1\).

In this paper, we prove the following results about \(s'_t(I_k)\), where \(I_k = [-k, k]\).

Theorem 5. Let \(k\) and \(t\) be positive integers.

(i) \(s'_t(I_k)\) is finite, then every integer in \([1, D(I_k)]\) divides \(t\).
(ii) If every integer in \([1, D(I_k)]\) divides \(t\), then

\[
t + k(k - 1) \leq s'_t(I_k) \leq t + (2k - 2)(2k - 3).
\]

Corollary 1. Let \(t \in \mathbb{N}\) and \(k \in [1, 3]\). Then \(s'_t(I_k) = t + k(k - 1)\) if and only if every integer in \([1, D(I_k)]\) divides \(t\).

Conjecture 6. Corollary 1 holds for any \(k \in \mathbb{N}\).

2. **Proofs of the main results**

For any integers \(a\) and \(b\), we denote \(\gcd(a, b)\) by \((a, b)\). We use the abbreviations z.s.s and z.s.s.b for zero-sum sequence(s) and zero-sum subsequence(s), respectively. The letters \(k\) and \(t\) will denote positive integers throughout the paper.

The following lemma gives a lower bound for \(s'_t(I_k)\).

Lemma 7. Consider the z.s.s \(U = k \cdot (-1)^{|k|}\) and \(V = (k - 1) \cdot (-1)^{|k-1|}\). Then, \(S = U^{\lfloor \frac{k}{2} \rfloor - 1} \cdot V^{|k|}\) and \(R = U^{k-1} \cdot V^{\lfloor \frac{k}{2} \rfloor - 1}\) are z.s.s that do not contain a z.s.s.b of length \(t\). Thus, \(s'_t(I_k) \geq t + k(k - 1)\).

Proof. We prove the lemma for \(S\) only since the proof for \(R\) is similar. By contradiction, assume that \(S\) contains a z.s.s.b of length \(t\). Since \(\sigma(S) = 0\), it follows that \(S\) also contains a z.s.s.b \(S'\) of length \(|S| - t = k(k - 1) - 1\). Moreover, \(S'\) can be written as \(S' = k[a] \cdot (k - 1)[b] \cdot (-1)[c]\) for some nonnegative integers \(a\), \(b\), and \(c\). Hence \(\sigma(S') = ak + b(k - 1) - c = 0\) and \(a + b + c = |S'| = k^2 - k - 1\). Thus

\[
(a + 1)(k + 1) = k(k - b).
\]

Since \(a, b, k \geq 0\), we have \(0 < k - b \leq k\). Since \((k, k + 1) = 1\), we obtain that \(k + 1\) divides \(k - b\), which is a contradiction. Thus \(s'_t(I_k) \geq |S| + 1 = t + k(k - 1)\). \(\square\)

Example 8. For \(k = 3\), \(S = (3 \cdot -1 \cdot -1 \cdot -1)^{[14]} \cdot (2 \cdot -1 \cdot -1)^{[3]}\) is a z.s.s of length 65 over \([-3, 3]\) which does not contain a z.s.s.b of length \(t = 60\).

Lemma 9. Let \(a, b, x \in \mathbb{N}\). If \(S = a^{\lfloor \frac{k}{x} \rfloor} \cdot (-b)^{\lfloor \frac{k}{x} \rfloor}\) is a z.s.s, then the length of any z.s.s.b of \(S^{[x]}\) is a multiple of \(|S|\).
Proof. Let S' be a z.s.s of $S^{[x]}$. Since the terms of S are a and $-b$, there exist nonnegative integers h and r such that $S' = a^h \cdot (-b)^r$ and

\[
\sigma(S') = ha - rb = 0 \Rightarrow h \frac{a}{(a,b)} = r \frac{b}{(a,b)}.
\]

Since $\left(\frac{b}{(a,b)}, \frac{b}{(a,b)} \right) = 1$, we obtain $\frac{b}{(a,b)}$ divides h and $\frac{a}{(a,b)}$ divides r. Thus, $h = p \frac{b}{(a,b)}$ and $r = q \frac{b}{(a,b)}$ for some integers p and q. Substituting h and r back into (1) yields $p = q$. Thus,

\[
|S'| = h + r = p \frac{b}{(a,b)} + q \frac{a}{(a,b)} = p|S|.
\]

\[\square\]

Lemma 10. If $s'_t(I_k)$ is finite, then every odd integer in $[1, D(I_k)]$ divides t.

Proof. Since the lemma is trivial for $k = 1$, we assume that $k \geq 2$. Then $D(I_k) = 2k - 1$ by Theorem 1. Let $\ell = 2c - 1$ be an odd integer in $[3, D(I_k)]$, and consider the minimal z.s.s $S = c^{[c-1]} \cdot (-c + 1)^{[c]}$. Then, for any $x \in \mathbb{N}$, it follows from Lemma 9 that for any z.s.s R of $S^{[x]}$, $|R|$ divides $|S| = 2c - 1 = \ell$. Since ℓ does not divide t, there is no z.s.s of $S^{[x]}$ whose length is equal to t. Since x is arbitrary, it follows that $s'_t(I_k)$ can be arbitrarily large. This proves the lemma. \[\square\]

To prove the upper bound in Theorem 5(ii), we will use the following lemma which is a directly application a well-known fact: “Any sequence of n integers contains a nonempty subsequence whose sum is divisible by n”.

Lemma 11. Let $\beta \in \mathbb{N}$ and $X \in \mathcal{F}(\mathbb{Z})$. If $|X| \geq \beta$, then there exists a factorization $X = X_0 \cdot X_1 \cdot \ldots \cdot X_r$ such that

(i) $|X_0| \leq \beta - 1$ and no subsequence of X_0 has a sum that is divisible by β.

(ii) $|X_j| \leq \beta$ and $\sigma(X_j)$ is divisible by β for any $j \in [1, r]$.

We will also use the following lemmas.

Lemma 12. Assume that $k \geq 2$ and that every integer in $[1, D(I_k)]$ divides t. Let S be a z.s.s over $I_k = [-k, k]$ that does not contain a z.s.s of length t. Let $S = S_1 \cdot \ldots \cdot S_h$ be a factorization of S into minimal z.s.s S_i, $1 \leq i \leq h$. If $|S| \geq t + k(k - 1)$, then there exists some length β such that $n_\beta = |\{S_i : |S_i| = \beta, 1 \leq i \leq h\}|$ satisfies:

\[
n_\beta > (2k - 2)(2k - 3).
\]

Proof. Recall that (a, b) denotes $\gcd(a, b)$. It is easy to see that

\[
(2k - 3, 2k - 2) = (2k - 2, 2k - 1) = (2k - 3, 2k - 1) = 1.
\]

Since $k > 1$ and every integer in $[1, D(I_k)] = [1, 2k - 1]$ is a factor of t, it follows from (2) that $t = p(2k - 1)(2k - 2)(2k - 3)$, for some $p \in \mathbb{N}$. By definition, we have
max$_{1 \leq i \leq h} |S_i| \leq D(I_k) = 2k - 1$. Thus, it follows from the pigeonhole principle that there exists some length β such that

$$n_\beta \geq \frac{t + k(k - 1)}{\max_{1 \leq i \leq h} |S_i|} \geq \frac{t + k(k - 1)}{2k - 1} > p(2k - 2)(2k - 3).$$

\[\square\]

Lemma 13. Assume that $k \geq 2$ and that every integer in $[1, D(I_k)]$ divides t. Let S be a z.s.s over $I_k = [-k, k]$ of length $|S| \geq t + k(k - 1)$ such that S does not contain a z.s.s of length t. Let $S = S_1 \cdot \ldots \cdot S_h$ be a factorization of S into minimal z.s.s S_i, $1 \leq i \leq h$. Let $L = \{|S_i| : 1 \leq i \leq h\}$, $\alpha = \max_{\ell \in L} \ell$, and let $n_\ell = |\{S_i : |S_i| = \ell, 1 \leq i \leq h\}|$.

If there exists $\beta \in L$ such that $n_\beta \geq \alpha - 1$, then

$$|S| \leq t - \beta + (\beta - 1) \max_{\ell \in L \setminus \{\beta\}} \ell.$$

Remark 14. By Lemma 12, there exists $\beta \in L$ such that $n_\beta > (2k - 2)(2k - 3)$. Moreover, $\alpha = \max_{\ell \in L} \ell \leq D(I_k) \leq (2k - 2)(2k - 3) + 1$ for $k \geq 2$. Thus, $n_\beta \geq \alpha$, i.e., the hypothesis of Lemma 13 always holds.

Proof. By hypothesis, there exists $\beta \in L$ such that $n_\beta \geq \alpha - 1$. Given a factorization $S = S_1 \cdot \ldots \cdot S_h$ into minimal z.s.s S_i, $1 \leq i \leq h$, consider the sequence of lengths in $L \setminus \{\beta\}$:

$$X = \prod_{i=1, |S_i| \neq \beta}^h |S_i| = \prod_{\ell \in L \setminus \{\beta\}} \ell^{[n_\ell]}.$$

It follows from Lemma 11 that there exists a factorization $X = X_0 \cdot X_1 \ldots X_r$ such that

1. $|X_0| \leq \beta - 1$, and no subsequence X_0 has a sum that is divisible by β.

2. $|X_j| \leq \beta$ and β divides $\sigma(X_j)$ for all $j \in [1, r]$.

Thus,

$$\sigma(X_j) = \sum_{x \in X_j} x \leq |X_j| \cdot \max_{x \in X_j} x \leq \beta \alpha$$

for all $j \in [1, r]$.

Note that (4), (5), and the hypothesis on β imply that:

β divides t; $n_\beta \geq \alpha - 1$; $\sigma(X_j) \leq \alpha \beta$; and β divides $\sigma(X_j)$ for all $j \in [1, r]$.

Thus, if

$$\beta n_\beta + \sum_{j=1}^r \sigma(X_j) \geq t,$$

then there exists a nonnegative integer $n'_\beta \leq n_\beta$ and a subset $Q \subseteq [1, r]$ such that

$$\beta n'_\beta + \sum_{q \in Q} \sigma(X_q) = t.$$
Then S would contain a z.s.s of length t obtained by concatenating $n_β'$ minimal z.s.s of S of length $β$ and all the z.s.s of S whose lengths are in X_q for all $q ∈ Q$. This contradicts the hypothesis of the theorem. Thus, $βn_β + \sum_{j=1}^{r} σ(X_j) < t$ must hold. Since $β$ divides both t and $\sum_{j=1}^{r} σ(X_j)$, we obtain

$$βn_β + \sum_{j=1}^{r} σ(X_j) ≤ t - β.$$

Thus, it follows from the definition of X and X_j, $0 ≤ j ≤ r$, that

$$|S| = \sum_{ℓ ∈ L} ℓn_ℓ = βn_β + σ(X)$$

$$= βn_β + \sum_{j=1}^{r} σ(X_j) + σ(X_0)$$

$$≤ t - β + σ(X_0).$$

(6)

Next, it follows from (3) and (6) that

$$|S| ≤ t - β + σ(X_0) ≤ t - β + |X_0| \max_{ℓ ∈ L \backslash \{β\}} ℓ ≤ t - β + (β - 1) \max_{ℓ ∈ L \backslash \{β\}} ℓ.$$

□

Proof of Theorem 5. We first prove part (i). Suppose that $s'_t(I_k)$ is finite. Then it follows from Lemma 10 that every odd integer in $[1, D(I_k)]$ divides t. Thus, it remains to show that if a is an even integer in $[1, D(I_k)]$, then a divides t.

Case 1: $a = 2^e$ for some integer $e ≥ 1$.

Lemma 9 implies that for any $p ∈ N$, the sequence $S = (1 \cdot -1)^[p]$ is a z.s.s whose z.s.s have lengths that are multiples of 2. Therefore, if 2 does not divide t, then $s'_t(I_k) ≥ |S| = 2p$, where p can be chosen to be arbitrarily large. Thus, 2 divides t if $s'_t(I_k)$ is finite.

Now assume that $e > 1$. Since the gcd of two numbers divides their difference, $(a/2 - 1, a/2 + 1) ≤ 2$. But 2 does not divide $a/2 - 1$ or $a/2 + 1$; and so $(a/2 - 1, a/2 + 1) = 1$.Lemma 10 implies that for any $p ∈ N$, the sequence $S^{[p]}$ with $S = (a/2 - 1)^{(a/2+1)} \cdot (-a/2 - 1)^{(a/2-1)}$ is a z.s.s whose z.s.s have lengths that are multiples of $|S| = (a/2 + 1) + (a/2 - 1) = a$. Thus, if a does not divide t, we can obtain arbitrarily long z.s.s over $I_k = [-k, k]$ that do not contain z.s.s of length t, because p can be chosen to be arbitrarily large. Thus, a divides t if $s'_t(I_k)$ is finite.

Case 2: a is not a power of 2.

Then $a = 2^e j$, where e and j are nonnegative integers such that j is odd. By Lemma 10, j divides t, and if follows from Case 1 that 2^e divides t. Since j is odd, $(2^e, j) = 1$. Since 2^e and j are factors of t, it follows that $2^e j$ divides t.

Thus, it follows from Case 1, Case 2, and Lemma 10 that every integer in $[1, D(I_k)]$ divides t.

}\end{proof}
Since the lower bound of $s'_t(I_k)$ in Theorem 5(ii) follows from Lemma 7, it remains to prove its upper bound. Let $k, t \in \mathbb{N}$ be such that every integer in $[1, D(I_k)]$ divides t. In particular, t is even. Let S be an arbitrary z.s.s over $I_k = [-k, k]$ that does not contain a z.s.s of length t.

If $k = 1$, then it follows from Theorem 1 that $D(I_k) = 2$. Thus, 2 divides t and $|S| = x_1 + 2x_2$ for some nonnegative integers x_1 and x_2. If $|S| \geq t$, then $x_1 \geq 2$ or $x_2 \geq t/2$ (because t is even). This implies that there exist nonnegative integers $x'_1 \leq x_1$ and $x'_2 \leq x_2$ such that $x'_1 + 2x'_2 = t$. Thus $S' = (1 \cdot -1)^{|x'_2|} \cdot 0^{|x'_1|}$ is a z.s.s of S of length t, which contradicts the fact that S does not contain a z.s.s of length t. Hence $|S| \leq t - 1$, and $s'_t(I_k) \leq |S| + 1 = t$.

Now assume $k \geq 2$. Since S was arbitrarily chosen, it follows that if $|S| \leq t + k(k - 1) - 1$, then
\[
s'_t(I_k) \leq |S| + 1 \leq t + k(k - 1) \leq t + (2k - 2)(2k - 3),
\]
and the upper bound in Theorem 5(ii) follows. So we may assume that $|S| \geq t + k(k - 1)$. Let $S = S_1 \cdots S_h$ be a factorization of S into minimal z.s.s. Let $L = \{|S_i| : 1 \leq i \leq h\}$, $\alpha = \max_{\ell \in L} \ell$, and let $n_\ell = \{|S_i| : |S_i| = \ell, 1 \leq i \leq h\}$. Then Remark 14 implies that there exists $\beta \in L$ such that $n_\beta \geq \alpha - 1$. If $\beta = \alpha$, then Lemma 13 yields
\[
|S| \leq t - \alpha + (\alpha - 1) \max_{\ell \in L \setminus \{\alpha\}} \ell \leq t - \alpha + (\alpha - 1)^2.
\]
If $1 \leq \beta \leq \alpha - 1$, then Lemma 13 also yields
\[
|S| \leq t + \max_{1 \leq \beta \leq \alpha - 1} \left(-\beta + (\beta - 1) \max_{\ell \in L \setminus \{\beta\}} \ell \right)
\]
\[
\leq t + \max_{1 \leq \beta \leq \alpha - 1} (-\beta + (\beta - 1)\alpha)
\]
\[
= t + (-\alpha + 1 + (\alpha - 2)\alpha)
\]
\[
= t - \alpha + (\alpha - 1)^2.
\]
So in all cases, we obtain
\[
|S| \leq t - \alpha + (\alpha - 1)^2 \leq t - (2k - 1) + (2k - 2)^2,
\]
where we used the fact $\alpha \leq D(I_k) = 2k - 1$. Since S was chosen to be an arbitrary z.s.s over $I_k = [-k, k]$ which does not contain a z.s.s of length t, it follows that
\[
s'_t(I_k) \leq |S| + 1 \leq t - (2k - 1) + (2k - 2)^2 + 1 = t + (2k - 2)(2k - 3).
\]

Proof of Corollary 1. For $k \in \{1, 2\}$, the corollary holds since the upper and lower bounds of $s'_t(I_k)$ given by Theorem 5 are both equal to $t + k(k - 1)$.

For $k = 3$, it also follows from Theorem 5 that $t + 6 \leq s'_t(I_3) \leq t + 12$. Thus, it remains to show that if S is an arbitrary z.s.s over I_3 which does not contain a z.s.s of length t, then $|S| \neq t + d$ for all $d \in [6, 11]$.

\[\square\]
Consider a factorization $S = S_1 \cdots S_h$ into minimal z.s.s S_i, $i \in [1, h]$. Let $L = \{|S_i|: 1 \leq i \leq h\}$, $\alpha = \max_{\ell \in L} \ell$, and let $n_\alpha = |\{S_i: |S_i| = \ell, 1 \leq i \leq h\}|$. Thus, $\alpha \leq D(I_3) = 5$. If $\alpha \leq 4$, then Lemma 13 yields

$$|S| \leq t + \max_{\ell \in L} ((\alpha - 1)^2 - \alpha) = t + (4 - 1)^2 - 4 = t + 5.$$

Thus, we may assume that $\alpha = \max \ell = 5$ for any factorization of S.

If $\beta \in \{1, 2\}$ and $n_\beta \geq 4$, then Lemma 13 yields

$$|S| \leq t + \max_{\beta \in \{1, 2\}} ((\beta - 1)\alpha - \beta) = t + (2 - 1)5 - 2 = t + 3.$$

Next, suppose that R is a z.s.s of S with length at least 4. Then $R \cdot -R$ can be trivially factorize into $|W| \geq 4$ z.s.s of length 2. This would yields a new factorization $S = S_1' \cdots S_h'$ with $n_2 \geq 4 \geq n_5 - 1$, which would imply that $|S| < t + 5$ by the above analysis.

Also note that if $n_\ell \geq t/\ell$ holds for some length $\ell \in L$, then we obtain a z.s.s of S of length t by concatenating t/ℓ z.s.s of length ℓ in S. This would contradict the definition of S. Thus, we can assume that $n_\ell \leq t/\ell - 1$ for all $\ell \in L \subseteq [1, 5]$.

To recapitulate, we may assume that for any factorization $S = S_1 \cdots S_h$, with $S_L = \prod_{i=1}^h |S_i|$ and $n_\ell = |\{S_i: |S_i| = \ell, 1 \leq i \leq h\}|$, we have:

(i) $S_L = 5^{[n_5]} \cdot 4^{[n_4]} \cdot 3^{[n_3]} \cdot 2^{[n_2]} \cdot 1^{[n_1]}$, where $0 \leq n_\ell \leq t/\ell - 1$ for $\ell \in [1, 5]$; $n_5 \geq 1$; and $n_1, n_2 \leq 3$.

(ii) There is a one-to-one correspondence between the subsequences S_L' of S_L and the z.s.s S' of S with length $\sigma(S_L')$.

(iii) If R is z.s.s over I_3 such that $|R| \geq 4$, then R and $-R$ cannot both be subsequences of S.

(iv) If R is a minimal z.s.s of S such that $|R| = 5$, then $R = 3^2[-2]^3$.

(This follows from (iii) and the fact $A = 3^2[-2]^3$ and $-A$ are the only minimal z.s.s of length 5 over $I_3 = [-3, 3]$. Thus, if $-A$ is the z.s.s of S, then we can analyze $-S$ instead of S.)

We now prove the following claims.

Claim 1: If $5 \cdot 3^4$ is a subsequence of S_L, then $|S| \neq t + d$ for all $d \in [6, 11]$.

If $n_4 + n_2 + n_1 \geq 1$, then either $5 \cdot 4 \cdot 3^4$, or $5 \cdot 3^4 \cdot 2$, or $5 \cdot 3^4 \cdot 1$ is a subsequence of S_L, which implies that $\Sigma(S_L)$ contains all the integers in $[6, 11]$. Thus, $n_4 = n_2 = n_1 = 0$, which implies that $S_L = 5^{[n_5]} \cdot 3^{[n_3]}$. If $n_5 \leq 1$, then

$$|S| = \sigma(S_L) = 5n_5 + 3n_3 \leq 5 + 3(t/3 - 1) < t + 5.$$

Thus, we may assume that $S_L = 5^{[n_5]} \cdot 3^{[n_3]}$, where $n_5 \geq 2$ and $n_3 \geq 4$.

Then $\Sigma(S_L)$ contain all the integers in $[6, 11] \setminus \{7\}$; and so $|S| \neq t + d$ for $d \in [6, 11] \setminus \{7\}$. It remains to show that $|S| \neq t + 7$.

Note that the only minimal z.s.s of length 3 over $[-3, 3]$ are (up to sign) $B_1 = 2 \cdot (-1)[2]$ and $B_2 = 3 \cdot -2 \cdot -1$. Since $5 \cdot 3[4]$ is a subsequence of S_L, it follows from the assumptions (i)–(iv) (see above) that $S' = A \cdot X \cdot Y \cdot Z \cdot W$ is a subsequence of S, where $A = 3[2] \cdot (-2)[3]$ and $X, Y, Z, W \in \{-B_1, B_1, -B_2, B_2\}$. By inspecting the sequence S' for all possible choices of $X, Y, Z,$ and W; we see that S' admits a z.s.s of length 7. For instance, if $X = Y = Z = B_2$, then

$$S' = A \cdot B_2[3] \cdot W = A[2] \cdot 3 \cdot (-1)[3] \cdot W$$

contains the subsequence $3 \cdot (-1)[3] \cdot W$, which is a z.s.s of length $4 + |W| = 7$. Hence, $|S| \neq t + 7$. Thus, $|S| \neq t + d$ for all $d \in [6, 11]$.

Claim 2: If $5 \cdot 4[2] \cdot 3$ is a subsequence of S_L, then $|S| \neq t + d$ for all $d \in [6, 11]$.

If $n_3 \geq 2$, or $n_2 \geq 1$, or $n_1 \geq 1$, then either $5 \cdot 4[2] \cdot 3[2]$, or $5 \cdot 4[2] \cdot 3 \cdot 2$, or $5 \cdot 4[2] \cdot 3 \cdot 1$ is a subsequence of S_L, which implies that $\Sigma(S_L)$ contains all the integers in $[6, 11]$. In these cases, $|S| \neq t + d$ for $d \in [6, 11]$, we are done. Thus, we may assume that $n_2 = n_1 = 0$ and $n_3 = 1$, which implies that $S_L = 5[n_5] \cdot 4[n_4] \cdot 3$. If $n_5 \leq 1$, then

$$|S| = \sigma(S_L) = 5n_5 + 4n_4 + 3 \leq 5 + 4(t/4 - 1) + 3 < t + 5.$$

Thus, we may assume that

$$S_L = 5[n_5] \cdot 4[n_4] \cdot 3,$$

where $n_5 \geq 2$ and $n_4 \geq 2$.

Thus, $5[2] \cdot 4[2] \cdot 3$ is a subsequence of S_L, which implies that $\Sigma(S_L)$ contain all the integers in $[7, 11]$. Thus $|S| \neq t + d$ for $d \in [7, 11]$. It remains to show that $|S| \neq t + 6$.

Note that the only minimal z.s.s of length 4 over $[-3, 3]$ are (up to sign) $C_1 = 3 \cdot (-1)[3]$ and $C_2 = 3 \cdot 1 \cdot (-2)[2]$. Since $5 \cdot 4[2] \cdot 3$ is a subsequence of S_L, it follows from the assumptions (i)–(iv) that $S' = A \cdot X \cdot Y \cdot Z$ is a subsequence of S, where $A = 3[2] \cdot (-2)[3]$, $X, Y \in \{-C_1, C_1, -C_2, C_2\}$, and $Z \in \{-B_1, B_1, -B_2, B_2\}$. By inspecting the sequence S' for all possible choices of $X, Y,$ and Z; we see that S' admits a z.s.s of length 6. For instance, if $X = C_1$ and $Y = C_2$, then

$$S' = A \cdot C_1 \cdot C_2 \cdot Z = A \cdot (3 \cdot -1 \cdot -2)[2] \cdot (1 \cdot -1) \cdot Z$$

contains the subsequence $(3 \cdot -1 \cdot -2) \cdot Z$, which is a z.s.s of length $3 + |Z| = 6$. Hence, $|S| \neq t + 5$. Thus, $|S| \neq t + d$ for all $d \in [6, 11]$.

Claim 3: If $5 \cdot 4[3]$ is a subsequence of S_L, then $|S| \neq t + d$ for all $d \in [6, 11]$.

If $n_3 \geq 1$, then $5 \cdot 4[2] \cdot 3$ is a subsequence of S_L, and we are back in Case 2. Thus, we may assume that $n_3 = 0$. If $n_2 \geq 1$ or $n_1 \geq 2$, then either $5 \cdot 4[3] \cdot 2$ or $5 \cdot 4[3] \cdot 1[2]$ is a subsequence of S_L, which implies that $\Sigma(S_L)$ contains all the integers in $[6, 11]$. Thus, S contains z.s.s of length ℓ for all $\ell \in [6, 11]$. Hence, $|S| \neq t + d$ for $d \in [6, 11]$. Thus, we may assume that $n_2 = 0$ and $n_1 \leq 1$. Thus, $S_L = 5[n_5] \cdot 4[n_4] \cdot 1[n_1]$. Moreover, if $n_5 \leq 1$, then

$$|S| = \sigma(S_L) = 5n_5 + 4n_4 + n_1 \leq 5 + 4(t/4 - 1) + 1 < t + 5.$$

Thus, we may assume that

$$|S| = \sigma(S_L) = 5n_5 + 4n_4 + n_1 \leq 5 + 4(t/4 - 1) + 1 < t + 5.$$
\[S_L = 5^{[n_5]} \cdot 4^{[n_4]} \cdot 1^{[n_1]}, \] where \(n_5 \geq 2, n_4 \geq 3, \) and \(n_1 \leq 1. \)

Since \(5^{[2]} \cdot 4^{[3]} \) is a subsequence of \(S_L, \) it follows that \(\Sigma(S_L) \) contain all the integers in \([8, 10]. \) Thus, \(S \) admits z.s.s of length \(\ell \) for all \(\ell \in [8, 10]. \) Hence, \(|S| \neq t + d \) for all \(d \in [8, 10]. \) Moreover, it follows from the assumptions (i)–(iv) that \(S' = A \cdot X \cdot Y \cdot Z \) is a subsequence of \(S, \) where \(A = 3^{[2]} \cdot (-2)^{[3]} \) and \(X, Y, Z \in \{-C_1, C_1, -C_2, C_2\}. \) By inspecting the sequence \(S' \) for all possible choices of \(X, Y, \) and \(Z; \) we see that \(S' \) admits a z.s.s of length 7. Hence, \(|S| \neq t + 7. \) Overall, we obtain \(|S| \neq t + d \) for any \(d \in [7, 10]. \)

If \(5 \cdot 4^{[4]} \) is a subsequence of \(S_L, \) it again follows from the assumptions (i)–(iv) that \(S' = A \cdot X \cdot Y \cdot Z \cdot W \) is a subsequence of \(S, \) where \(A = 3^{[2]} \cdot (-2)^{[3]} \) and \(X, Y, Z, W \in \{-C_1, C_1, -C_2, C_2\}. \) By inspecting the sequence \(S' \) for all possible choices of \(X, Y, Z, \) and \(W; \) we see that \(S' \) admits z.s.s of lengths 6 and 11. In this case, \(|S| \neq t + d \) for all \(d \in [6, 11]. \) Thus, we may assume that

\[S_L = 5^{[n_5]} \cdot 4^{[n_4]} \cdot 1^{[n_1]}, \] where \(n_5 \geq 2 \) and \(n_1 \leq 1. \)

Now, it remains to show that \(|S| \neq t + a \) for \(a \in \{6, 11\}. \) However, if \(|S| = t + a, \) then

\[5n_5 + 4(3) + n_1 = \sigma(S_L) = |S| = t + a \Rightarrow 5n_5 = t + a - 12 - n_1. \]

This is a contradiction since 5 divides \(t \) (by hypothesis) and 5 does not divide \(a - 12 - n_1 \) for \(a \in \{6, 11\} \) and \(n_1 \in \{0, 1\}. \) Thus, \(|S| \neq t + d \) for all \(d \in [6, 11]. \)

Based on Claim 1–Claim 3, we may assume the following:

(v) \(S_L = 5^{[n_5]} \cdot 4^{[n_4]} \cdot 3^{[n_3]} \cdot 2^{[n_2]} \cdot 1^{[n_1]}, \) where 0 \(\leq n_\ell \leq t/\ell - 1 \) for all \(\ell \in [1, 5]; \)

\(n_1, n_2, n_3 \leq 3; n_4 \leq 2; (n_4, n_3) \neq (2, 1); \) and \(n_5 \geq 1. \)

We will use this assumption in the following cases.

Case 1: \(|S| \neq t + 6. \)

Assume that \(|S| = t + 6. \) If \(n_1 \geq 1, \) then 5 \cdot 1 is a subsequence of \(S_L, \) which implies that \(S \) contains a z.s.s of length 5 + 1 = 6 whose complementary sequence in \(S \) is a z.s.s of length 6. Thus, \(n_1 = 0. \) By a similar reasoning, we infer that the following conditions hold: \(n_3 \leq 1; \) and \(n_4 \geq 1 \Rightarrow n_2 = 0. \) Moreover, it follows from condition (v) that \((n_4, n_3) \neq (2, 1). \) Consequently, either \(S_L = 5^{[n_5]} \cdot 4^{[n_4]} \cdot 3^{[n_3]} \cdot 2^{[n_2]} \) with \(n_3 \leq 1, n_4 \leq 2, \) and \((n_4, n_3) \neq (2, 1); \) or \(S_L = 5^{[n_5]} \cdot 3^{[n_3]} \cdot 2^{[n_2]} \) with \(n_3 \leq 1 \) and \(n_2 \leq 2. \) Thus,

\[|S| = \sigma(S_L) \leq 5n_5 + 8 \leq 5(t/5 - 1) + 8 < t + 6, \]

which is a contradiction. Thus, \(|S| \neq t + 6. \)

Case 2: \(|S| \neq t + 7. \)

Assume that \(|S| = t + 7. \) If \(n_2 \geq 1, \) then 5 \cdot 2 is a subsequence of \(S_L, \) which implies that \(S \) contains a z.s.s of length 5 + 2 = 7 whose complementary sequence in \(S \) is a z.s.s of length 7. Thus, \(n_2 = 0. \) By a similar reasoning, we infer that the following conditions hold: \(n_1 \leq 1; n_4 \geq 1 \Rightarrow n_3 = 0; n_3 \geq 1 \Rightarrow n_4 = 0; \) and \(n_3 \geq 2 \Rightarrow n_1 = 0. \)
Consequently, either $S_L = 5^{[n_5]} \cdot 4^{[n_4]} \cdot 1^{[n_1]}$ with $n_4 \leq 2$ and $n_1 \leq 1$; or $S_L = 5^{[n_5]} \cdot 3 \cdot 1$, or $S_L = 5^{[n_5]} \cdot 3^{[n_3]}$ with $n_3 \leq 3$. Thus,

$$|S| = \sigma(S_L) \leq 5n_5 + 9 \leq 5(t/5 - 1) + 9 < t + 7,$$

which is a contradiction. Thus $|S| \neq t + 7$.

Case 3: $|S| \neq t + 8$.

Assume that $|S| = t + 8$. If $n_3 \geq 1$, then $5 \cdot 3$ is a subsequence of S_L, which implies that S contains a z.s.s of length $5 + 3 = 8$ whose complementary sequence in S is a z.s.s of length t. Thus, $n_3 = 0$. By a similar reasoning, we infer that $n_4 \leq 1$; $n_2 \leq 3$; $n_1 \leq 2$; $n_2 \geq 1 \Rightarrow n_1 = 0$; and $n_3 \geq 1 \Rightarrow n_2 = 0$. Consequently either $S_L = 5^{[n_5]} \cdot 4 \cdot 2$, or $S_L = 5^{[n_5]} \cdot 4 \cdot 1^{[n_1]}$, or $S_L = 5^{[n_5]} \cdot 2^{[n_2]}$, or $S_L = 5^{[n_5]} \cdot 1^{[n_3]}$, where $n_2 \leq 3$ and $n_1 \leq 2$. Thus,

$$|S| = \sigma(S_L) \leq 5n_5 + 6 \leq 5(t/5 - 1) + 6 < t + 8,$$

which is a contradiction. Thus, $|S| \neq t + 8$.

Case 4: $|S| \neq t + d$ for $d \in [9, 11]$.

Assume that $|S| = t + 9$. If $n_3 \geq 1$, then 3 is a subsequence of S_L which implies that S contain a z.s.s T of length 3. Thus $S' = S \cdot T^{-1}$ is a z.s.s of length $|S| - 3 = t + 6$ which does not contain a z.s.s of length 6 and, equivalently, length t. This contradicts Case 1, where we showed that no such z.s.s exists. Thus, $n_3 = 0$. Similarly, $n_2 = 0$ (by Case 2) and $n_1 = 0$ (by Case 3). Consequently, $S_L = 5^{[n_5]} \cdot 4^{[n_4]}$ with $n_4 \leq 2$. Thus,

$$|S| = \sigma(S_L) = 5n_5 + 4n_4 \leq 5(t/5 - 1) + 4(2) < t + 9,$$

which is a contradiction. Thus, $|S| \neq t + 9$.

Since $n_5 \geq 2$, S contains a z.s.s of length $\sigma(5^{[n_5]}) = 10$. Thus, $|S| \neq t + 10$.

Since $n_5 \geq 1$, S contains a z.s.s T of length 5. Thus $S' = S \cdot T^{-1}$ is a z.s.s of length $|S| - 5 = t + 6$ which does not contain a z.s.s of length 6 and, equivalently, length t. This contradicts Case 1. Thus, $|S| \neq t + 11$.

In conclusion, we have shown that if S is an arbitrary z.s.s over $I_3 = [-3, 3]$ which does not contain a z.s.s of length t, then $|S| = t + d$ for $d \in [6, 11]$. Thus, $\mathcal{s}(I_3) = t + 6$. □

3. APPENDIX

In this section, we include Zhong’s proofs of Lemma 3 and Remark 4.

Proof of Lemma 3.

(i) Since $s(G) \leq s'(G)$, it suffices to prove that $s'(G) \geq s(G)$. Let $S = \prod_{i=1}^{s(G)-1} g_i$ be a sequence in $\mathcal{F}(G)$ of length $|S| = s(G) - 1$ such that S has no zero-sum subsequence of length $\exp(G)$. Assume that $\sigma(S) = h \in G$ and let $t \in \mathbb{N}$ be such that $(s(G) - 1)t \equiv 1 \pmod{\exp(G)}$. Then $(s(G) - 1)th = h$ in G. Define $S' = \prod_{i=1}^{s(G)-1} (g_i - th)$. Since $\sigma(S') = \sigma(S) - (s(G) - 1)th = 0$ and S' does not contain a zero-sum subsequence of length $\exp(G)$, it follows that $s'(G) \geq s(G)$.

(ii) Let $S \in \mathcal{B}(G)$ be such that $|S| = s(G) - 1$. We want to prove that S contains a zero-sum subsequence of length $n = \exp(G)$. If we assume to the contrary that S does not contain a zero-sum subsequence of length n, then Property D implies that there exists $T \in \mathcal{F}(G)$ such that $S = T^{[n-1]}$. Thus, $|T| = c$ and $\sigma(T) = 0$. Therefore $T^{[n/c]}$ is a zero-sum sequence of length n, a contradiction. □

Proof of Remark 4.

(i) Let n be odd and $G \cong \mathbb{Z}_d^2$. Since $s(G) = 4n - 3$, then $\gcd(s(G) - 1, n) = 1$. Thus, $s(G) = s'(G)$ by Lemma 3(i).

(ii) Let $h \geq 2$ be an integer and $G \cong \mathbb{Z}_{2^h}$. Then $\exp(G) = 2^h$, $s(G) = 4(2^h - 1) + 1$, $\gcd(s(G) - 1, \exp(G)) = 4$, and G has Property D (by [12, Theorem 3.2]). Thus, Lemma 3(ii) yields $s'(G) < s(G)$. Since $\gcd(s(G) - 2, \exp(G)) = 1$, the proof of Lemma 3(i) yields $s'(G) > s(G) - 2$. Thus, $s'(G) = s(G) - 1$. □

Acknowledgement: We thank Alfred Geroldinger for providing references and for his valuable comments which helped clarify the definitions and terminology. We also thank Qinghai Zhong for allowing us to include Lemma 3 and Remark 4.

References

