
Approximation Schemes for Minimum 2-Edge-Connected and

Biconnected Subgraphs in Planar Graphs

Artur Czumaj∗ Michelangelo Grigni† Papa Sissokho‡ Hairong Zhao∗

Abstract

Given an undirected graph, finding either a minimum
2-edge-connected spanning subgraph or a minimum 2-
vertex-connected (biconnected) spanning subgraph is
MaxSNP-hard. We show that for planar graphs, both
problems have a polynomial time approximation scheme
(PTAS) with running time nO(1/ε), where n is the graph
size and ε is the relative error allowed.

When the planar graph has edge costs, we approxi-
mately solve the analogous min-cost subgraph problems
in time nO(γ/ε), where γ is the ratio of the total edge
cost to the optimum solution cost.

1 Introduction

Given an undirected graph G, the minimum 2-edge-
connectivity problem is to find a spanning subgraph
with a minimum number of edges which is 2-edge
connected (remaining connected after removing any one
edge). The minimum biconnectivity problem is similar,
except that the subgraph must be 2-vertex-connected
(biconnected, remaining connected after removing any
one vertex). When G has edge costs, we define the
minimum-cost 2-edge-connectivity and biconnectivity
problems similarly, where now we minimize the total
edge cost of the subgraph.

All these problems are NP-hard, even in the un-
weighted planar case. Furthermore they are MaxSNP-
hard for general graphs [6, 10] and for bounded-degree
graphs [7]. Much effort has been put into achiev-
ing polynomial-time constant approximation ratio algo-
rithms, see e.g., [4, 5, 6, 11, 16]. In arbitrary unweighted
graphs, the best currently known approximation ratios
are 5

4 for 2-edge-connectivity [11] and 4
3 for biconnectiv-

ity [16].

∗Department of Computer Science, New Jersey Institute of
Technology, Newark NJ 07102, USA. Email: czumaj@cis.njit.edu,
hairong@cis.njit.edu.

†This work was supported by NSF Grants CCR-9820931
and CCR-0208929. Department of Mathematics and Computer
Science, Emory University, Atlanta GA 30322, USA. Email:
mic@mathcs.emory.edu.

‡Department of Mathematics, Illinois State University, Normal
IL 61790, USA. Email: psissok@ilstu.edu.

We would prefer a polynomial time approximation
scheme (PTAS): an algorithm taking an instance G and
a positive ε, returning a solution with cost at most (1+ε)
times optimum, and running in time that is polynomial
for each fixed ε. The MaxSNP-hardness results imply
that there is no hope of a PTAS in general (unless
P=NP), but a PTAS could still exist for special cases.
Indeed, based on the framework of Arora [2], a PTAS
was found [7, 8] for the problem of finding a minimum-
cost k-vertex (or k-edge) connected spanning subgraph
in complete Euclidean graphs in bounded dimension.

In this paper we consider the case that the input
graph G is planar. We show a PTAS for the mini-
mum 2-edge-connectivity problem and a PTAS for the
minimum biconnectivity problem, both running in time
nO(1/ε). More generally, when the planar graph has
edge weights our algorithms approximately solve the
minimum-cost problems in time nO(γ/ε), where γ is the
ratio of the total edge cost to the optimum solution
cost. This is a PTAS when γ is bounded; note that γ is
bounded (by 3) when the edge weights are uniform.

Our general approach resembles the approximation
schemes for metric-TSP in planar graphs [3, 12, 13]. We
use a separator theorem, hierarchical decomposition,
and dynamic programming. Our separator finds low-
cost cycles in a planar graph so that after contracting
those cycles (and committing their edges to our approx-
imate solution), the remaining graph has a logarithmic
size vertex separator. Using this, we recursively divide
the input graph G into pieces, forming a decomposition
tree T of logarithmic depth. Each piece has a loga-
rithmic number of “portal” vertices connecting it to the
rest of G. For each piece, we enumerate all the different
ways that some subgraph of G (outside this piece) may
influence the connectivity constraints within this piece.
We call these the external types of the piece, and we
show that the number of such types is a simple expo-
nential in the number of portals. For each piece in T
and for each external type, we must find a near mini-
mum cost subgraph H of the piece, so that H together
with the external type can meet the global connectivity
constraints. We solve these problems by dynamic pro-
gramming, working up T from the leaves to the root G.

In the following, 2-EC denotes “2-edge-connected”,
2-VC denotes “2-vertex-connected” (or biconnected), 2-
ECSS denotes “2-edge-connected spanning subgraph”,
2-VCSS denotes “2-vertex-connected spanning sub-
graph”, and c(H) denotes the total edge cost of a sub-
graph H . Our main results are summarized in the fol-
lowing two theorems.

Theorem 1.1. Let ε > 0, let G be a 2-EC planar graph
with edge costs, and let OPT be the minimum cost of a
2-ECSS in G. There is an algorithm taking inputs G
and ε, running in time nO(c(G)/(OPT·ε)), and producing
a 2-ECSS H in G such that c(H) ≤ (1 + ε) · OPT.

Theorem 1.2. Let ε > 0, let G be a 2-VC planar graph
with edge costs, and let OPT be the minimum cost of a
2-VCSS in G. There is an algorithm taking inputs G
and ε, running in time nO(c(G)/(OPT·ε)), and producing
a 2-VCSS H in G such that c(H) ≤ (1 + ε) · OPT.

As remarked above, each claimed algorithm is a
PTAS when the ratio γ = c(G)/OPT is bounded. In
particular, Theorems 1.1 and 1.2 imply a PTAS for
the unweighted minimum 2-edge-connectivity and the
minimum biconnectivity problems.

Corollary 1.1. Let ε > 0, let G be a 2-EC planar
graph, and let OPT be the minimum number of edges of
a 2-ECSS in G. There is an algorithm taking inputs G
and ε, running in time nO(1/ε), and producing a 2-ECSS
H in G that has at most (1 + ε) · OPT edges.

Corollary 1.2. Let ε > 0, let G be a 2-VC planar
graph, and let OPT be the minimum number of edges of
a 2-VCSS in G. There is an algorithm taking inputs G
and ε, running in time nO(1/ε), and producing a 2-VCSS
H in G that has at most (1 + ε) · OPT edges.

Our main technical contributions are the modified
separator theorem, the notion of types (both 2-EC
and 2-VC, each represented by small graphs), and the
simple exponential bounds on the number of external
types possible within a portal face. In this abstract we
concentrate on Theorem 1.1, with only a sketch of the
new ideas required for Theorem 1.2.

2 Cuts and k-EC Types

In this paper, graphs are undirected, without self-loops
but possibly with parallel edges. Each edge e has a
nonnegative cost ce; a subgraph or minor H inherits
edge costs from its parent graph, and c(H) denotes
the total edge cost of H . Suppose G = (V, E) is a
graph and S1, S2 are disjoint subsets of its vertex set
V = V (G). S1 and S2 are separated if there is no path

in G from a vertex of S1 to a vertex of S2. An edge
set F ⊆ E separates S1 and S2 if they are separated
in G − F ; we also say that F is an edge cut for S1

and S2. Similarly, a vertex cut for S1 and S2 is some
U ⊆ V − (S1 ∪ S2) such that S1 and S2 are separated
in G − U . We let Cute

G(S1, S2) denote a minimum size
edge cut, and Ce

G(S1, S2) = |Cute
G(S1, S2)| is the edge

capacity between S1 and S2. We define Cutv
G(S1, S2)

and Cv
G(S1, S2) similarly. We may efficiently compute

such min cuts using max-flow. For P ⊆ V , we say that
a (vertex or edge) cut crosses P if it separates some S1

and S2 such that S1 ∪ S2 = P .
A cycle has no repeated vertex, but it may consist

of two vertices joined by two parallel edges. For e ∈ E,
G/e denotes the graph obtained by contracting e (that
is, identifying its endpoints). If C is a cycle of G, G/C
is the graph obtained by contracting the edges of C.
After contraction we discard self-loops, but we retain
parallel edges. A minor of graph G is a graph obtained
from G through a series of such edge contractions and
edge/vertex deletions.

Definition 2.1. A bipartition of a set P is a pair of
nonempty subsets {S1, S2} such that S1 ∪ S2 = P and
S1 ∩ S2 = ∅.

Suppose G is a graph, P ⊆ V (G), and k is a positive
integer. The (k−EC, P)-type of G is a table t indexed
by bipartitions {S1, S2} of P , and holding the values
t(S1, S2) = min (k, Ce

G(S1, S2)).
Suppose t1 and t2 are (k−EC, P)-types of two

graphs sharing the vertex subset P ; they are compat-
ible iff t1(S1, S2) + t2(S1, S2) ≥ k for all {S1, S2}.

Intuitively, the (k−EC, P)-type describes how P is
crossed by edge cuts using less than k edges. We
are usually only interested in the type when G is
(k−EC, P)-safe, meaning that all edge cuts of G not
crossing P use at least k edges. The relevance of such
types to the k-ECSS problem follows from this simple
claim:

Claim 2.1. Suppose H1 and H2 are graphs with dis-
joint edge sets, and V (H1)∩V (H2) = P . Then H1∪H2

is k-EC iff:

1. H1 is (k−EC, P)-safe,

2. H2 is (k−EC, P)-safe, and

3. the (k−EC, P)-types of H1 and H2 are compatible.

We may abbreviate the third condition above by saying
that H1 and H2 (or H1 and the type of H2, or vice
versa) are compatible.

Suppose G1 and G2 are edge disjoint graphs with
V (G1) ∩ V (G2) = P . To solve the k-ECSS problem in
G1 ∪ G2, it suffices to do the following:

1. For each possible type t1 of a subgraph of G1, find
a min-cost (k−EC, P)-safe spanning subgraph H2

of G2 compatible with t1.

2. For each possible type t2 of a subgraph of G2, find
a min-cost (k−EC, P)-safe spanning subgraph H1

of G1 compatible with t2.

3. Consider all pairs of H1 from Step 1 and H2 from
Step 2. Return the min-cost compatible pair.

We will use a similar approach in our algorithm; in
particular we need a polynomial bound on the number of
distinct subgraph types considered. We may succinctly
represent the (k−EC, P)-type of G by a smaller graph
t(G) which contains P and has the same type. In
particular a minor of G contains P as long as we
have neither deleted a vertex of P , nor contracted two
vertices of P together.

In the special case of k = 2, we shall construct such
a t(G) from G by applying the following rules, until none
apply:

1. If a cycle C has a chord (an edge e 6∈ E(C)
connecting two vertices of C), delete the chord.

2. If a cycle C has at most one vertex in P , contract
C to a point.

3. If a vertex v 6∈ P has degree 2, contract it with a
neighbor.

The correctness of the above follows from the observa-
tion that all 0-edge cuts and 1-edge cuts of P are invari-
ant under the above rules. In our application we need
to consider the situation where G is embedded in a disk
with the vertices of P on the boundary. In the next two
lemmas we bound the size of t(G), and we also bound
the total number of possible (2−EC, P)-types induced
by subgraphs of G.

Lemma 2.1. Suppose G is a (2−EC, P)-safe planar
graph embedded in the disk, with the vertices of P on the
disk boundary. Then t(G) is a planar graph embedded
in the same way, with O(|P |) vertices.

Proof. By considering the three rules used to form t(G),
we see that it is also a planar (2−EC, P)-safe graph
embedded in the disk with P on the boundary. Every
internal face f of t(G) has at least two portals. If f has
exactly two portals, we draw an arc ef inside f between
those two portals. If f has d ≥ 3 portals, we draw a
cycle of d arcs within f connecting the portals. These
arcs form an outerplanar graph A on the portals.

We claim A has no parallel edges. Suppose instead
that two portals p, q ∈ P are connected by two parallel
arcs a1 and a2, from faces f1 and f2. Since all faces
must involve at least two portals, we can choose a1 and

a2 consecutive at p, so that f1 and f2 share at least one
edge. Now consider the part of t(G) drawn between a1

and a2: it has no cycles (by rule 2) and is connected,
so it is a tree. Because t(G) is (2−EC, P)-safe, it is a
path from p to q. By rule 3 it must be an edge directly
between p and q. But then it is a chord between f1 and
f2, so it should have been deleted by rule 1.

Therefore A is a simple outerplanar graph on vertex
set P , so it has less than 2|P | arcs. Further if we add
arcs from the outer faces of t(G) (those faces bounded
by a segment of the boundary), we still have at most
three parallel arcs per pair of portals, therefore at most
6|P | arcs. For each p ∈ P , its degree in t(G) is at most
the number of adjacent arcs; therefore the sum of the
degree of p in t(G), over all p ∈ P , is at most ` = 12|P |.

Now if we erase each portal and an infinitesimal
neighborhood around it, the graph t(G) is transformed
into a forest (by rule 2) with ` leaves, and all internal
vertices of degree at least 3 (by rule 3). Then t(G) has
less than ` vertices not in P , or in other words t(G) has
less than 13|P | vertices overall.

Lemma 2.2. With G and P embedded as in the previous
lemma, the number of distinct (2−EC, P)-types defined
by subgraphs of G is 2O(|P |).

Proof. Let H be a subgraph of G containing P . By
trimming H , we can make it (2−EC, P)-safe without
changing its (2−EC, P)-type. In the previous proof we
saw that t(H) can be described by a planar forest T
with at most 12|P | leaves, internal vertices of degree
at least three, and each leaf labeled by some p ∈ P ,
where the labels for a given p are on consecutive leaves.
By standard tree counting techniques, there are 2O(|P |)

such graphs, and therefore at most that many distinct
(2−EC, P)-types.

3 Planar Separators

We want to approximately solve the 2-ECSS problem
in a planar graph G embedded on a sphere. If we can
find a low-cost simple cycle C in G, then we may divide
our problem into subproblems by contracting C. This
follows from two observations:

Fact 3.1. For any subgraph H of G containing C, H
is a 2-ECSS in G iff H/C is a 2-ECSS in G/C. (This
does not use planarity.)

Fact 3.2. When we contract C, the sphere pinches
into two spheres kissing at the new contracted vertex
(a cut-point). Therefore the 2-ECSS problem in G/C
is equivalent to two disjoint 2-ECSS problems, one on
each sphere.

Therefore to approximately solve the 2-ECSS problem
in G, we contract C and approximately solve the two

independent 2-ECSS subproblems. Then we lift the
edges of those two solutions back to G and add the
edges of C, to get a 2-ECSS in G. The additive error
of this solution (the difference between its cost and the
optimal cost) is at most the sum of the errors of the two
subproblems plus c(C).

We will not always be lucky enough to find a light
cycle which does a good enough job of separating G,
therefore we consider a more general kind of separator
combining cycles with a Jordan cut : a Jordan cut of G
is a closed Jordan curve in the embedding of G that does
not cross (intersect the interior of) any edge. Given a
Jordan cut J , every edge is either in the interior or the
exterior of J , but those vertices and faces intersected by
J are not counted in either the interior or the exterior
of J .

The following theorem is a modification of Miller’s
planar separator theorem, as already used for the planar
TSP [3, 12, 15]. Our main technical change is to use up
to three “caps” of Miller’s cycle tree (the root cap and
at most two leaf caps) as contractible cycles. Due to
space limitations, we omit the details here.

Theorem 3.1. Let G be a plane graph with n vertices,
with non-negative weights on its vertices and faces, and
non-negative costs on its edges. Let W be the total
weight and let M be the total cost. Given parameter
k ≥ 1, in O(n log n) time we may find a subgraph F of
G and a Jordan cut J (as described below) so that:

1. F is the union of at most three vertex-disjoint
simple cycles (maybe none). Their total edge cost
c(F) is O(M/k). The cycles are non-nesting,
meaning we may choose an embedding of G so that
their interiors are disjoint.

2. The interior of each Ci has weight at most (2/3)W .

3. Let G′ be the embedded graph that results after we
“pinch off” the interiors of the cycles (G′ is G/F
minus the interior parts from each cycle). Each
new contracted vertex has weight 0.

4. J is a Jordan cut of G′ passing through the new
contracted vertices, and the interior and exterior
of J each have weight at most (2/3)W .

5. Q, the set of vertices of G′ on J , has size at most
k.

See Figure 1. When we apply the above theorem, we
say Q is the set of new1 portal vertices introduced by
the separator. The original graph G has been divided
into at most five parts of weight at most (2/3)W : the

1We are reserving “P” to denote all portals in a graph, new or
old.

G
1

G
2

cycles F in G

Jordan cut J in G’

Figure 1: The separator theorem. The Jordan cut
vertices become portals in G1 and G2.

(up to three) pinched cycle interiors, the interior of J ,
and the exterior of J . We let G1 denote Q together
with the subgraph of G′ interior to J , and we let G2

denote Q together with the subgraph of G′ exterior to
J . In this way G1 ∪ G2 = G′, E(G1) ∩ E(G2) = ∅, and
V (G1) ∩ V (G2) = Q. In the inherited embedding of
G1 (or G2) all vertices of Q appear on a single new face
which we call a portal face; the old faces that intersected
J are gone. When solving 2-ECSS in G, we will see that
the “pinched off” cycle interiors become independent 2-
ECSS problems, but the subproblems in G1 and G2 are
dependent because they share Q.

4 The 2-ECSS Algorithm

We are given as input an embedded planar 2-EC graph
G0 with n vertices, non-negative edge costs, and a
parameter ε > 0. We assign weight 1 to each vertex
and weight 0 to each face. By existing approximation
algorithms we estimate OPT(G0), the minimum cost of
a 2-ECSS, within a constant factor. We fix an integer
k = Θ((γ/ε) logn), where γ = c(G0)/OPT(G0).

We build a rooted decomposition tree T from G0

as follows. Each node of T stores an embedded planar
graph G, which has edge costs, vertex/face weights, and
some distinguished subset P of “portal” vertices. The
root of T stores G0 itself, with no portals. Each node
of T has at most five children, defined inductively as
follows.

Let G be the graph stored at a node of T , and let W

be its total vertex/face weight. If W is O(k2), then this
node is a leaf of T . Otherwise, apply Theorem 3.1 to
partition G into at most five pieces (up to three pinched
cycle interiors and G1, G2), each of total weight at most
(2/3)W . Uncontracted portal vertices from G remain as
portals in each piece where they appear; the graphs G1

and G2 each get at most k new portals, the set Q. In
G1 and G2, we assign a weight of W/(12k) to each new
portal, and weight W/12 to the new portal face. With
these new weights, G1 and G2 still have total weight at
most (5/6)W . By the separator properties, we see that
each G in T is (2−EC, P)-safe, and that the tree T has
depth O(log n) and size O(n log n).

By our construction P is the set of portals in G,
which have been introduced by some Jordan cut but not
yet cut off by a cycle contraction or another Jordan cut.
It follows from our portal/hole weighting scheme [3, 12]
that |P | is O(k), and G has O(1) portal faces. Each
portal face contains a hole made by a Jordan cut at
some ancestor of G in T . Note that a Jordan cut might
cut (simply) across an existing portal face, in which case
some old portals may appear on the new portal face,
but this still counts as a single portal face. Or in terms
of an embedding on a sphere with holes, all old holes
crossed by the Jordan cut disappear, with segments
of their boundaries incorporated into the one new hole
boundary.

G is connected via P to the rest of G0 (really a
pinched and contracted version of G0) which can be
embedded as disjoint pieces, one in each portal face of
G. Therefore the (2−EC, P)-type imposed on P by
the rest of G0 decomposes into independent types, one
in each portal face of G. By applying Lemma 2.2 to
each portal face, we may bound and enumerate the
2O(|P |) = nO(γ/ε) different (2−EC, P)-types that may
be imposed on P by the rest of G0. Call this list
the list of external types for G. It is more efficient,
although not essential for our purposes, if we represent
each external type t of G as a planar graph of size O(|P |)
(see Lemma 2.1) embedded in the portal faces of G.
In particular at the root of T the input graph G0 has
no portals, and therefore it has the “empty” external
type t0.

Having computed T and these external type lists,
we may now define a set of subproblems that we want
to approximately solve:

Definition 4.1. For G in T (with portal set P) and
an external type t for G, the subproblem (G, t) is this:
find a min-cost (2−EC, P)-safe spanning subgraph H of
G which is compatible with t, or else declare that (G, t)
is infeasible (no such H).

Checking feasibility is simple: just check whether t

is compatible with G itself. The total number of
subproblems (over all choices of G and t) is nO(γ/ε), and
the subproblem (G0, t0) is our original 2-ECSS problem.
We will approximately solve each subproblem starting
at the leaves of T and finishing at the root. We use
dynamic programming, storing our solutions to avoid
recomputation.

In the base case, G is a leaf of T and has size N =
O(k2). Then we apply an enumerative method based
on Lipton-Tarjan separators [14] to exactly solve such

subproblems in 2O(
√

N) = nO(γ/ε) time (this may be
regarded as a continuation of our method, using Jordan
cuts without cycle contractions). We omit details.

Otherwise G is not a leaf, and has up to five children
in T as found by Theorem 3.1. We have a specific
external type t, which decomposes into an independent
external type in each portal face of G.

For each child GC of G which was pinched off in
the interior of some cycle C, let tC be the subtype
of t induced by the portal faces inside C, and lookup
our solution HC to the subproblem (GC , tC). We lift
the edges of HC and the edges of C to be part of our
approximate solution H for the (G, t) subproblem.

Now we must consider the two remaining children
G1 and G2. As in Theorem 3.1, let G′ be what is left of
G after we contract the (up to three) cycles and pinch
off their interiors; so G1 ∪ G2 = G′. Let t′ denote the
external type induced by t in the portal faces of G′. Not
knowing the optimal choice of external types t1 and t2
for G1 and G2, we try them all. That is, for every pair
(t1, t2) where subproblems (G1, t1) and (G2, t2) were
found feasible, we lookup their solutions H1 and H2

and check whether H ′ = H1 ∪ H2 is compatible with
t′. We take the cheapest compatible H ′ found, and lift
its edges back to G. These edges of H ′, together with
the C and HC edges mentioned earlier, comprise our
approximate solution H for the (G, t)-subproblem.

Although G′ is not actually associated with a node
of T , note that we can still speak sensibly of the
(G′, t′) subproblem as defined above. In fact it would
be a simple matter to reformulate T as a binary tree
including G′: at each internal node of T we would either
pinch one cycle, or apply a Jordan cut.

4.1 Analysis Our algorithm solves nO(γ/ε) subprob-
lems, each in nO(γ/ε) time, so the total running time is
nO(γ/ε).

Consider a feasible subproblem (G, t). By planarity,
t decomposes into independent types in each portal face,
and these faces cannot cross a cycle; therefore each
cycle-pinched subproblem (GC , tC) and the remaining
subproblem (G′, t′) are all feasible. Taking the external
type on G1 induced by G2∪ t′ as t1, we see that (G1, t1)

is feasible. Supposing (by induction) that our algorithm
found some solution H1 for (G1, t1), then H1∪t′ induces
an external type t2 on G2 such that (G2, t2) is also
feasible. Therefore by induction up T , our algorithm
finds some solution for each feasible (G, t)-subproblem.

Now suppose H is the solution our algorithm finds
for a feasible subproblem (G, t). Define the error on
(G, t) as the difference between the found cost c(H) and
the minimum possible cost. For each pinched cycle C
(up to three), by Facts 3.1 and 3.2 subproblem (G, t) will
inherit the error of (GC , tC) plus an additional additive
error of at most c(C).

After pinching cycles, the remaining error of (G, t)
is that from (G′, t′). Recall G′ = G1 ∪ G2; let H∗ be
the unknown optimal solution for (G′, t′). Let t∗1 denote
the external type of G1 induced by (H∗ ∩ G2) ∪ t′, and
similarly let t∗2 denote the external type of G2 induced
by (H∗∩G1)∪t′. Then (Gi, t

∗
i) has the optimal solution

H∗ ∩ Gi (for i = 1, 2), and (t∗1, t
∗
2) is a compatible type

pair considered by our algorithm; if we solved these
two subproblems optimally, our solution cost would be
c(H∗). Therefore our error on (G′, t′) is at most the
sum of our errors on (G1, t

∗
1) and (G2, t

∗
2), even though

we might not actually find our best solution H ′ using
this pair. Therefore error terms simply add at a Jordan
cut.

Therefore the total error of our root problem
(G0, t0) is at most the sum of c(C) over all cycles con-
tracted in T . We see that for any level of T , the total
edge cost of that level is at most c(G0), therefore the
total edge cost of all cycles contracted on that level is
O(c(G0)/k). Summing over all O(log n) levels of T , the
total error from all levels of T is O((c(G0)/k) log n). By
an appropriate choice of the leading constant defining k,
this is at most ε ·OPT(G0). Therefore our final solution
has cost at most (1+ε)OPT(G0), proving Theorem 1.1.

5 Sketch of the 2-VCSS Algorithm

Here we sketch the 2-VCSS algorithm claimed in The-
orem 1.2. The main idea is similar to the 2-ECSS al-
gorithm. Given the input plane graph G0, we use the
separator theorem to decompose G0 hierarchically into
small pieces. For each piece, we use types to enumer-
ate the different ways that the “rest” of the graph may
influence the connectivity constraints within this piece.
Then, we use dynamic programming to approximately
find the minimum subgraph compatible for each type of
each piece. Similarly we can prove that the number of
external types of each piece is a simple exponential in
the number of portals (Lemma 5.2), yielding the same
running time analysis. Again the only source of error is
in the weight of the separating cycle edges, yielding the
same error analysis.

However, there are some difficulties preventing us
from using the same technique to solve the 2-VCSS
problem. The principle difficulty is cycle contraction.
In the 2-ECSS algorithm, the decomposition, type
definition and dynamic programming are all performed
on the minors of G0, and we showed this is sufficient.
But it is no longer reasonable to contract the cycles in
the 2-VCSS problem, because this changes the problem
(in particular, it may introduce a false cutvertex).
Therefore for each node in T , we keep a pair of
graphs, the compressed subgraph G as defined in the
2-ECSS algorithm and its corresponding uncompressed
subgraph G, that is the subgraph of G0 induced by all
vertices which appear (after cycle contractions) as some
vertex in G. As before, the separator theorem is still
applied to G, and the decomposition of G is obtained
naturally. But the type and dynamic programming will
be defined on G.

The uncompressed graph G also contains portal
vertices and portal faces, which are the preimages of
the portals and portal faces in G. Specifically, let J be
the Jordan cut when we apply the separator theorem to
G. Let p be a vertex on J . If p is mapped to a single
vertex of G, then p is a new portal that will be contained
in the subgraphs of G. Otherwise, p is mapped to many
vertices which are on a series of cycles in G, then at most
2 of these vertices will be specified as new portals of G.
These two vertices are where the Jordan cut J would
intersect G if we uncontract the cycles represented by
p. Thus we still have O(k) portals in G. Each portal
appears on some portal face in G corresponding to the
portal faces of G, and the portal faces identify where
“the rest of G0” would appear in our embedding. The
edges of each separating cycle will appear in G as hard
edges which are committed to our solution as in the
2-ECSS algorithm.

We must also redevelop the notion of types in
the biconnected context, so that we may again use
types to characterize the possible counterparts of an
uncompressed graph; this is the point of Lemma 5.1
below. For convenience, we develop types simply as
graphs (rather than abstract cut tables represented by
graphs, as in Section 2). We begin with a definition
analogous to “(k−EC, P)-safe” graphs.

Definition 5.1. For a graph G = (VG, EG) with a
portal set P ⊆ VG, any graph H = (VH , EH) for which
VH ∩ VG ⊆ P is called a counterpart (of G). G is
called (2−V C, P)-safe if it has a counterpart H such
that G ∪ H is biconnected.

5.1 Types of (2−V C, P)-safe planar graphs The
type of a (2−V C, P)-safe graph is a graph describing
a simplified characterization of the biconnectivity infor-

mation of the portals in the graph.
Definition of the type. Our definition of type is

operational and it is oriented towards Lemmas 5.1 and
5.2 below. Let H = (VH , EH) be any (2−V C, P)-safe
graph (does not have to be planar) with a distinguished
portal set P and a distinguished set of hard edges EH,r.
We define the type t(H) of H by performing a series of
operations on H . See Figure 2 for an illustration.

1. Let Hr be the graph consisting all portals of P and
all the edges of EH,r. We construct a simplified

graph Ĥr from Hr that is a forest formed by a
collection of (possibly connected) stars2:

(a) All vertices of Hr are included in Ĥr.

(b) Every portal of P is marked as a super-portal.

(c) For each block of Hr (hard block) with at least

two vertices, create a new vertex in Ĥr as a
super-portal and connect by an edge the super-
portal to every vertex in the block.

(d) Mark all cutvertices and the end vertices of
the isolated edges in Hr as super-portals in
Ĥr.

(e) Assign distinct IDs to all super-portals.

2. Replace the subgraph Hr of H by the graph Ĥr

and remove those vertices that have no ID and
are adjacent only to a super-portal (notice that the
removed vertices are all connected only to vertices
of a hard block of Hr). Let the obtained graph be

Ĥ .

3. For each block of Ĥ that is not a bridge, if it
has exactly two cutvertices and does not contain
a super-portal, contract it into a single vertex.

4. Repeat the following two operations until none
apply.

(a) Remove all chords in any cycle of Ĥ .

(b) For each path π of Ĥ with no super-portals as
internal vertices and all internal vertices with
degree exactly 2, contract π to an edge with
the same end vertices as π.

5. Let H ′ be the graph obtained after Steps 1–4. The
type t(H) is a graph with some vertices labeled
(having IDs, these are vertices corresponding to
super-portals and will be called portal nodes) and
the other vertices not labeled that is constructed
from H ′ as follows:

2Notice a similarity of this construction to the standard
construction of cutvertex-trees, see, e.g., [9].

(a) Add each cutvertex x in H ′ to t(H), and refer
to x as a cutvertex in t(H). If it is a super-
portal p in H ′, then it is a portal-node in t(H)
with the ID of p.

(b) For each block in H ′ that does not contain
any super-portals, contract it to a vertex in
t(H). We refer to this vertex in t(H) as a
block-vertex.

(c) For each block in H ′ containing exactly one
super-portal p, contract this block to a block-
vertex. If the block is not a bridge and p is
not a cutvertex in H ′, then this block-vertex
is a portal node in t(H) with the ID of p.

(d) Connect a block-vertex by an edge in t(H)
to each cutvertex adjacent to it or to the
endvertices of the bridge if the block-vertex
is obtained from the bridge in H ′.

(e) If a block has two or more super-portals, then
keep the block in t(H) as it is in H ′.

(f) Finally, for each path π of t(H) with no portal-
nodes as internal vertices and all internal
vertices with degree exactly 2, contract π to a
single edge with the same end vertices as π.

Note the concept of super-portal can be applied to
any graph H that contains portals and hard edges, and
it is completely determined by the portal set and the
hard edge set of H .

Properties of the types. We list now some basic
properties of the types. First of all, the number of labels
of t(H) is identical to the number of super-portals of H .
Secondly, let us notice that the type t(H) is uniquely
defined. This allows us to say that two (2−V C, P)-
safe graphs H1 and H2 on the same vertex set and
with the same set of portals and hard edges have the
same type if t(H1) and t(H2) are identical with respect
to their IDs. Thirdly, all vertices that are not portal-
nodes have degree at least 3. Next, we notice that if
H is biconnected and the portal set and hard edges
are empty, then t(H) contains a single vertex (block-
vertex). Finally, if we consider the subgraph of H
induced by non-portals and the corresponding subgraph
in t(H), we only removed the cutvertices of H that are
internal “vertices” on “paths” consisting only degree 2
internal vertices3. Thus, the connections among portals
in H are represented by the connections of portal nodes
in t(H). This property can be summarized in the
following lemma.

Lemma 5.1. Let G and H be two (2−V C, P)-safe
graphs that have the same set of portals P and the same

3Some vertices are in fact blocks with two cutvertices.

set of hard edges Er. Let t(H) be the type of H. Then
for any spanning subgraph G′ of G that contains all hard
edges in Er, t(G′) and t(H) have the same set of portal-
nodes with respect to IDs, and G′ ∪ H is biconnected if
and only if t(G′) ∪ t(H) is 2-edge connected and the
cutvertices of t(G′) ∪ t(H) are block-vertices of t(H) or
t(G′) or the super-portals resulting from contraction of
hard blocks as defined in the type.

Next, we consider the number of types. Specifically,
we consider the number of external types of (2−V C, P)-
safe plane graphs. Let G be a (2−V C, P)-safe plane
graph with a hard edge set Er and a portal face set
F . Let the super-portal set of G determined by P and
Er be Ps. If H be a counterpart of G that can be
embedded in F , then we say the type t(H) of H is an
external type of G with respect to F . We will focus on
the counterpart H of G that also is (2−V C, P)-safe and
shares the same set of super-portals Ps (i.e., H and G
have the same set of portals and hard edges). Then, the
type t(H) is called an external type of G with respect
to Ps and F . Our goal is to show that the number of
external types of G with respect to Ps and F is small,
that is, it is only exponential in |Ps|. Now we state the
main lemma bounding the number of types; we omit the
proof in this abstract.

Lemma 5.2. Let G = (VG, EG) be a (2−V C, P)-safe
plane graph with a hard edges set Er, a super-portal set
Ps and a portal face set F . G is embedded in a way such
that all super-portals of Ps will be on the border of the
portal faces if we replace the graph Gr consisting of P
and Er with Ĝr as in the definition of type. Then the
number of external types of G with respect to Ps and F
induced by (2−V C, P)-safe graphs is at most 2O(|Ps|).

Let (H, H) be a pair stored in a node of T where
H is the uncompressed (2−V C, P)-safe graph. Suppose
H has portal set P and hard edge set Er. Let t be
an external type of H. We say H is compatible with
t if t(H) ∪ t is 2-edge connected and the cutvertices
of t(H) ∪ t are block-vertices of t(H) or t or super-
portals representing hard blocks. As in the 2-ECSS
algorithm, we define the subproblem instance to be for
H and a compatible external type t finding a min-cost
(2−V C, P)-safe subgraph of H which is compatible with
t.

By Lemma 5.2, the number of possible external
types is determined by the number of super-portals of
H. We now show the number of super-portals in each
subgraph obtained from separator theorem is O(k). By
definition, the number of super-portals of H is at most
the number of portals in it plus the number of separating
cycles (hard cycles) and the cutvertices between these

cycles. Because the depth of the decomposition tree
is at most O(log n) and at each node we introduce at
most 3 “cycles” 4, the number of hard “cycles” is at
most O(log n). Hence the number of super-portals of H

is O(k) + O(log n) = O(k). By Lemma 5.2, H has at
most 2O(k) = nO(γ/ε) external types.

6 Concluding Remarks

A deficiency of our algorithms is their dependence on the
ratio γ = c(G)/OPT. We know of no hardness result
justifying this dependency, and indeed a very similar
dependency in the context of the TSP was eliminated
using a “spanner” construction [1, 3, 13] which safely
prunes some heavy edges out of G.

Another direction of research is to extend our meth-
ods to similar problems, such as the 3-ECSS problem in
planar graphs, or the 2-ECSS and 2-VCSS problems in
more general graph families. We remark on some of
these problems below; in all cases, progress depends on
the development of appropriate separator theorems.

Planar 3-ECSS: Here we need to generalize
Lemma 2.2; let us remark that counting planar Gomory-
Hu trees is not sufficient. Also cycle contraction no
longer works here, because the cycle vertices are not 3-
edge connected. However we can modify our separator
theorem to replace cycles with bicycles : a bicycle is two
nested cycles, with all in-between faces visible from one
of the two cycles. The connecting endpoints on the cy-
cles are 3-edge connected, and we may safely contract
them to a cut-point. The bicycle edges surviving this
contraction are committed to the solution by resetting
their costs to zero.

Forbidden minor 2-ECSS (or 2-VCSS): Here
we have two difficulties: first, the usual separator
theorems do not produce cycles (just trees). Also the
appropriate generalization of Lemma 2.2 may require
a careful application of the Robertson-Seymour theory,
which appears difficult. For the special case of bounded-
genus graphs, both of these issues look more tractable.

References

[1] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs.
Discrete Comput. Geom., 9(1):81–100, 1993. An early
version appeared in SWAT’90, LNCS V. 447.

[2] S. Arora. Polynomial time approximation schemes
for Euclidean traveling salesman and other geometric
problems. Journal of the ACM, 45(5): 753–782, 1998.

4They may not be simple cycles in H, but be glued with a set
of other cycles from previous recursive calls.

[3] S. Arora, M. Grigni, D. Karger, P. Klein, and
A. Woloszyn. A polynomial time approximation
scheme for weighted planar graph TSP. Proc. 9th An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 33–41, 1998.

[4] J. Cheriyan, A. Sebö, and Z. Szigeti. An improved ap-
proximation algorithm for minimum size 2-edge con-
nected spanning subgraphs. Proc. 6th IPCO, LNCS,
1412:126–136, 1998.

[5] J. Cheriyan, S. Vempala, and A. Vetta. Approxima-
tion algorithms for minimum-cost k-vertex connected
subgraphs. Proc. 34th ACM Symposium on Theory of
Computing, pages 306–312, 2002.

[6] B. Csaba, M. Karpinski, and P. Krysta. Approx-
imability of dense sparse instances of minimum 2-
connectivity, TSP and path problems. Proc. 13th An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 74–83, 2002.

[7] A. Czumaj and A. Lingas. On approximability of
the minimum cost spanning subgraph problem. Proc.
10th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 281–290, 1999.

[8] A. Czumaj and A. Lingas. Fast approximation schemes
for Euclidean minimum-cost multi-connectivity. Proc.
27th Annual Intl. Colloq. on Automata, Languages, and
Programming (ICALP), LNCS, 1853:856–868, 2000.

[9] R. Diestel. Graph theory. Springer-Verlag, New York,
2000.

[10] C. G. Fernandes. A better approximation ratio for
the minimum size k-edge-connected spanning subgraph
problem. Journal of Algorithms, 28:105–124, 1988.

[11] R. Jothi, B. Raghavachari, and S. Varadarajan. A
5/4-approximation algorithm for minimum 2-edge-
connectivity. Proc. 14th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 725–734, 2003.

[12] M. Grigni, E. Koutsoupias, and C. Papadimitriou. An
approximation scheme for planar graph TSP. Proc.
36th IEEE Symposium on Foundations of Computer
Science, pages 640–645, 1995.

[13] M. Grigni and P. Sissokho. Light spanners and approx-
imate TSP in weighted graphs with forbidden minors.
Proc 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 852–857, 2002.

[14] R. Lipton and R. Tarjan. Applications of a planar
separator theorem. SIAM Journal on Computing,
9(3):615–627, 1980.

[15] G. L. Miller. Finding small simple cycle separators for
2-connected planar graphs. Journal of Computer and
System Sciences, 32:265–279, 1986.

[16] S. Vempala and A. Vetta. Factor 4/3-approximations
for minimum 2-connected subgraphs. Proc. 3rd Work-
shop APPROX, LNCS, 1913:262–273, 2000.

A Figures illustrating the type of a
(2−V C, P)-safe graph

Figure 2: Type of a (2−V C, P)-safe graph used in the
2-VCSS Algorithm

Jordan cut in the uncompressed graphportal

normal edgehard edge

(a) A (2−V C, P)-safe graph H

super−portal

(b) Ĥr obtained after step 1

(c) Ĥ obtained after step 2

(d) Ĥ after step 3

(e) H ′ obtained after step 4

block vertex

portal node

cutvertex

(f) graph obtained after step 5a-5f

(g) the type t(H) of H

