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Abstract

An (s, t)-spread in a finite vector space V = V (n, q) is a collection
F of t-dimensional subspaces of V with the property that every s-
dimensional subspace of V is contained in exactly one member of F .
It is remarkable that no (s, t)-spreads has been found yet, except in
the case s = 1.

In this note, the concept α-point to a (2, 3)-spread F in V =
V (7, 2) is introduced. A classical result of Thomas, applied to the
vector space V , states that all points of V cannot be α-points to a
given (2, 3)-spread F in V . In this note, we strengthened this result
by proving that every 6-dimensional subspace of V must contain at
least one point that is not an α-point to a given (2, 3)-spread of V .

1 Introduction

An (s, t)-spread in the finite vector space V = V (n, q) over GF(q) is a
collection F of t-dimensional subspaces of V with the property that every
s-dimensional subspace of V is contained in exactly one member of F . So
far no (s, t)-spread, with s > 1, has been found, and it was conjectured by
Metsch that none exists, see [1] for a survey.

If there exists an (s, t)-spread F in V then for any point P in V , the
members of F that contain P induce an (s − 1, t − 1)-spread FP in the
quotient space V/P . A (1, t)-spread, or for short spread, S of V is called
geometric if for any three members S1, S2 and S3 of S such that S3 ∩〈S1 ∪
S2〉 6= {0}, we have S3 ⊆ 〈S1 ∪ S2〉.

Thomas [2] proved the following theorem.

Theorem 1 Given a (2, t)-spread F of V = V (n, q), there exists a point
P in V such that the derived (1, t− 1)-spread FP is not geometric.
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It must be remarked that geometric spreads are the spreads that are
most natural and “easiest” to construct, although most of the spreads are
not geometric.

The existence of (2, 3)-spreads in V (7, 2) is the “first” open case for this
conjecture. In this note, we give a property of (2, 3)-spreads in V (7, 2),
which, in this particular case, yields the result of Thomas as a corollary.

Assume that F is a (2, 3)-spread in V = V (7, 2). As every spread in a
6-dimensional subspace U of V is of size 21, we get that every 1-dimensional
subspace P , or point, of V is contained in 21 members of F . As each of
these 21 members of F contains 7 points, of which three belongs to U , it
follows that U contains 45 members of F . Similarly, we may derive that
every point P in U is contained in exactly 5 of these 45 members of F and
that every 5-dimensional subspace T of U contains exactly five members of
F .

We will say that a point P is an α-point to F if every 5-dimensional
subspace T of V that contains two of the members of F that meet at P ,
has the property that all its five members from F will meet at the point
P . From the definition of a geometric spread, it follows that in the case
of (2, 3)-spreads in V = V (7, 2), Theorem 1 of Thomas states that at least
one point of V is not an α-point to F .

We will show the following Theorem.

Theorem 2 Assume that F is a (2, 3)-spread in V = V (7, 2). Every 6-
dimensional subspace of V contains at least one point which is not an α-
point to F .

2 Proof of Theorem 2

Assume that F is a (2, 3)-spread in V = V (7, 2). Let U be any 6-dimensional
subspace of V . Assume that all points in U are α-points to F . Then every
5-dimensional subspace T of U will contain a point P where all its five
members of F meet. This point P will be called the α-point of T . More-
over, each point P of U is contained in exactly five of the members of F
that belong to U , and hence these five members of F that meet the point
P will all belong to the same 5-dimensional subspace T of U .

We claim that there is a 4-dimensional subspace W of U that does not
contain any member of F . To see this, just observe that every 3-dimensional
subspace of a 5-dimensional subspace T of U is contained in exactly three
4-dimensional subspaces of T , and as T contains exactly five members of
F , there will be at least 16 subspaces W of dimension 4 of T that do not
contain any member of F . Such a 4-dimensional subspace W of U will be
called a poor space.
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There are three 5-dimensional subspaces T1, T2 and T3 of U such that

W = T1 ∩ T2 = T1 ∩ T3 = T2 ∩ T3 , and U = T1 ∪ T2 ∪ T3 . (1)

For 1 ≤ i ≤ 3, let Pi be the α-point in the space Ti.
We first note that none of the points P1, P2, or P3 belongs to W .
To prove this fact, assume for instance that P1 belongs to W . Since W

is a poor 4-dimensional space, each of the five members of F that belongs
to U and contains the point P1 meet W in two points, besides the point P1.
This leads to a contradiction since W contains 15 points and every point
Q 6= P1 in T1 (and thus in W ) belongs to exactly one of the five members
of F in U that meet the point P1.

Since F is a (2, 3)-spread and since the points Pi, 1 ≤ i ≤ 3, do not
belong to W and they are the α-points of the respective spaces Ti, we can
conclude that the members of F that are subspaces of Ti will intersect W
in a spread Si. Furthermore, since F is a (2, 3)-spread, these three spreads
are mutually disjoint.

Now, let Q be any point of W . Let TQ denote the unique 5-dimensional
subspace of U , that contains the two members of F that meet the point
Q and belong to T1 and T2, respectively. We note from Equation (1) that
P1 6∈ T2 ∪ T3 and P2 6∈ T1 ∪ T3. Hence, TQ cannot be one of the spaces Ti,
1 ≤ i ≤ 3. As these are the only 5-dimensional subspaces of U that contain
W , it follows that

dim(TQ ∩W ) ≤ 3 .

Moreover, since all 5-dimensional subspaces of U have a unique point
where all its members of F meet, and as there are two members of F in
TQ meeting Q, we conclude that Q is the α-point of the space TQ. This
implies that the member of F that is a subspace of T3 and meets the point
Q must also belong to TQ. This space will be denoted by ZQ,3; and we
define ZQ,1 and ZQ,2 similarly. For 1 ≤ i ≤ 3, the intersection of ZQ,i with
W is a 2-dimensional subspace which we denote by LQ,i.

Now, the space ZQ,3 is completely contained in TQ and intersects W in
the 2-dimensional space LQ,3, which thus also must be a subspace of TQ,
so,

LQ,3 ⊆ TQ ∩W = 〈LQ,1, LQ,2〉 . (2)

The last step in our proof is to show that there is at least one point Q in
W , for which the above relation does not hold.

Let us assume for a moment that

S1 = { L1, L2, . . . , L5 } and S2 = { L′1, L
′
2, . . . , L

′
5 } .

Every member, or line, of S2 intersects three members of S1. Without loss
of generality, we may assume that the line L′5 does not intersect the lines
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L1 and L2. These two lines together contain 6 points. Each of these 6
points is contained in exactly one of the lines of S2. As a line contains 3
points we get that there must be two lines, say L′1 and L′2, of S2 that meet
both L1 and L2.

Let Q = L1 ∩ L′1, Q′ = L2 ∩ L′2, R1 = L1 ∩ L′2 and R2 = L2 ∩ L′1, i.e.,
with the original notation

LQ,1 ∩ LQ′,2 = R1 and LQ,2 ∩ LQ′,1 = R2 . (3)

Then the line L, that meets the points R1 and R2, satisfies the following
relation

L = 〈R1, R2〉 = (TQ ∩W ) ∩ (TQ′ ∩W ) .

If the relation (2) holds for all points Q of W , then L will meet both the
spaces LQ,3 and LQ′,3. Note that L contains just three points, the above
defined two points R1 and R2, and a third point R3. So from Equation (3),
we can infer that both the spaces LQ,3 and LQ′,3 must meet L at the point
R3. This contradicts the fact that S3 is a spread and the proof is complete.
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