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Abstract. Let n ≥ 3 be an integer, let Vn(2) denote the vector
space of dimension n over GF (2), and let c be the least residue of n
modulo 3. We prove that the maximum number of 3-dimensional
subspaces in Vn(2) with pairwise intersection {0} is 2n−2c

7 − c for
n ≥ 8 and c = 2. (The cases c = 0 and c = 1 have already
been settled.) We then use our results to construct new optimal
orthogonal arrays and (s, k, λ)-nets.

1. Introduction

Let n be a positive integer and let q be a prime power. Let Vn(q)
denote the vector space of dimension n over GF (q) and let t ≤ n
be a positive integer. We write W ∼= Vn(q) if W is a vector space
that is isomorphic to Vn(q). A partial t-spread of Vn(q) is a collection
S = {W1, . . . ,Wk} of t-dimensional subspaces of Vn(q) such that Wi ∩
Wj = {0} for 1 ≤ i < j ≤ k. We call k the size of the partial t-spread

S. Moreover, we call S maximal if
(
Vn(q) \

⋃k
i=1 Wi

)
∪ {0} does not

contain a t-dimensional subspace, and we call S maximum if it has
the largest possible size. Finally, if

⋃k
i=1 Wi = Vn(q), then S is simply

called a t-spread.
It is easy to see that a t-spread of Vn(q) exists if and only if t divides

n. On the other hand, partial t-spreads of Vn(q) exist whenever t ≤ n.
Given a partial t-spread S, one open question is to find conditions under
which S is maximal, and another is to find conditions under which S
is maximum. Partial t-spreads have applications to the construction
of byte-error-detecting and single-error-correcting codes (see [6, 17])
and to orthogonal arrays and (s, k, λ)-nets (see [8]). The problem of
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finding maximal partial t-spreads is also well-studied in finite geometry
(see [1, 9, 10, 12, 13, 15, 16, 18] and the references therein).

Let µq(n, t) denote the size of a maximum partial t-spread in Vn(q)
and let c be the least residue of n modulo t. Obviously, the maximal
partial t-spread problem is dependent on the problem of determining
µq(n, t). If c = 0, then we simply obtain a t-spread and it is well-known
that µq(n, t) = (qn − 1)/(qt − 1) in this case (see [2]). In general, very
little is known about the exact value of µq(n, t) when c 6= 0. However, a
few special cases have been settled. If c = 1, then Hong and Patel [17]
proved that µq(n, t) = (qn − q)/(qt − 1) − (q − 1) when q = 2, and
Beutelspacher [2] extended this result to any prime power q.

In this paper, we prove that µ2(n, 3) = (2n − 2c)/7− c for n ≥ 8 and
c = 2. Combining this with the above result of Hong and Patel yields
the full formula for µ2(n, 3) (see Theorem 5). Our results disprove
a conjecture by Eisfeld and Storme [9] stating that µq(n, t) ≤ (qn −
qc)/(qt− 1)− (qc− 1), and a conjecture by Hong and Patel [17] stating
that µ2(n, t) = (2n − 2c)/(2t − 1)− (2c − 1).

The rest of this paper is organized as follows. In Section 2, we provide
the main results of this paper and in Section 3, we apply these results
to construct new optimal orthogonal arrays and (s, k, λ)-nets.

2. Main results

2.1. Existence of a partial 3-spread of size 34 in V8(2).
The heart of our proof for Theorem 5 is the construction of a partial

3-spread of size 34 in V8(2). This construction uses a computer search.
To explain the idea behind this computer search, we start with the
concept of vector space partition (see [3, 4, 5, 14] and the references
therein).

A vector space partition (or simply partition) of V = Vn(q) is a
collection P of subspaces of V such that each nonzero vector of V
appears in exactly one of the subspaces in P . We say that P is a
partition of V of type da1

1 . . . dak
k if it contains ai subspaces of dimension

di for all 1 ≤ i ≤ k, and

k∑
i=1

ai(q
di − 1) = qn − 1.

It is clear from the above definition that a partial t-spread of Vn(q)
of size k is equivalent to a partition of Vn(q) of type tk1x, where x =
(qn − 1)/(q − 1)− k(qt − 1)/(q − 1).

Bu [5] described the following simple method for constructing vector
space partitions. Let V = Vn+1(q) have a partition into the subspaces
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W1, . . . ,Wk. Let V ′ be an n-dimensional subspace of V and set W ′
i =

Wi∩V ′ for 1 ≤ i ≤ k. Then the subspaces W ′
1, . . . ,W

′
k form a partition

P ′ of V ′ ∼= Vn(q). A partition of V ′ with the same type as P ′ is called
a seed partition of P (or simply a seed partition if P is clear from the
context). So, instead of trying to find P directly, we start with a seed
partition Q and use a computer search to extend it to a partition of
the same type as P . However, this process is not necessarily successful
for every seed partition Q (see Remark 1). To apply this idea to our
problem, assume that there exists a partition P of V = V8(2) of type
334117 (i.e., a partial 3-spread of size 34). Then using basic counting
arguments, it can be shown that the partition P induces in V ′ ∼= V7(2)
a potential partition Q of type 3622811, 3522915, 3423019, 33231113, or
32232117. Partitions of V7(2) of types 3522915, 3423019, 33231113, and
32232117 exist (see [11]); there is no partition of V7(2) of type 3622811

(see Theorem 4 in [14]).
We now explain the setup for our computer search using a seed parti-

tion of type 3522915. In the following, we denote the vector [α7, . . . , α0]
of V8(2) by the integer

∑7
i=0 αi2

i and say that it has even (odd) weight
if there is an even (odd) number of nonzero coordinates. Thus, V8(2)
can be partitioned into two sets E and O, consisting of the even and
odd weight vectors respectively. Observe that E ∼= V7(2).
Step 1: Start with a partition of E into 5 subspaces of dimension 3
(denoted by A1, . . . , A5), 29 subspaces of dimension 2 (B1, . . . , B29),
and 5 subspaces of dimension 1 (C1, . . . , C5).
Step 2: Let G be the graph with vertex set

V (G) =
{

S ∪Bi : S ⊆ O, S ∪Bi
∼= V3(2), and 1 ≤ i ≤ 29

}
,

and edge set

E(G) =
{
{X, Y } : X, Y ∈ V (G) and X ∩ Y = {0}

}
.

Step 3: Search for a complete subgraph H of size 29 in G. If we denote
the elements of V (H) by Ai, 6 ≤ i ≤ 34, then {A1, . . . , A34} is a partial
3-spread of size 34 in V8(2).

Since V8(2) can be partitioned into E and O and since each Bi is
a 2-dimensional subspace of E , it follows that Bi determines a unique
partition of the set O into 32 subsets of size 4. Thus, there are 29 ·32 =
928 vertices in G. The size of the search space resulting from the above
method is (

|V (G)|
29

)
=

(
928

29

)
,
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which is large. However, it is considerably smaller than the size of the
search space resulting from a direct approach, which is(

Number of 3-dimensional subspaces in V8(2)

34

)
=

(
97155

34

)
.

Thus the use of a seed partition gives us a more efficient means of
searching for a partition of V8(2) of type 334117.

Remark 1. In general, we cannot expect each seed partition Q to be
extendable to a partition P of the desired type. We still need to under-
stand the key properties of a “good” seed partition.

Here is an example1 of a partial 3-spread of size 34 in V8(2), i.e.,
a partition P of V8(2) of type 334117. This example also provides a
partition of V8(2) of type 33421114 by combining the three 1-dimensional
subspaces {122}, {133}, and {255}.
Example 2.

A1 = {5, 75, 78, 169, 172, 226, 231}
A2 = {6, 43, 45, 195, 197, 232, 238}
A3 = {3, 29, 30, 108, 111, 113, 114}
A4 = {20, 72, 92, 130, 150, 202, 222}
A5 = {33, 68, 101, 144, 177, 212, 245}
A6 = {2, 61, 63, 65, 67, 124, 126}
A7 = {4, 19, 23, 66, 70, 81, 85}
A8 = {1, 86, 87, 140, 141, 218, 219}
A9 = {9, 16, 25, 35, 42, 51, 58}
A10 = {7, 99, 100, 147, 148, 240, 247}
A11 = {38, 76, 106, 155, 189, 215, 241}
A12 = {24, 40, 48, 69, 93, 109, 117}
A13 = {12, 103, 107, 132, 136, 227, 239}
A14 = {56, 88, 96, 152, 160, 192, 248}
A15 = {39, 94, 121, 153, 190, 199, 224}
A16 = {11, 34, 41, 196, 207, 230, 237}
A17 = {15, 97, 110, 167, 168, 198, 201}
A18 = {32, 84, 116, 159, 191, 203, 235}
A19 = {55, 71, 112, 154, 173, 221, 234}
A20 = {50, 80, 98, 145, 163, 193, 243}
A21 = {13, 54, 59, 131, 142, 181, 184}
A22 = {53, 74, 127, 134, 179, 204, 249}
A23 = {8, 18, 26, 166, 174, 180, 188}
A24 = {31, 64, 95, 164, 187, 228, 251}

1We omit the zero vector when listing the vectors of a subspace.
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A25 = {60, 90, 102, 138, 182, 208, 236}
A26 = {27, 73, 82, 135, 156, 206, 213}
A27 = {37, 77, 104, 146, 183, 223, 250}
A28 = {17, 105, 120, 171, 186, 194, 211}
A29 = {52, 79, 123, 158, 170, 209, 229}
A30 = {47, 89, 118, 128, 175, 217, 246}
A31 = {10, 22, 28, 129, 139, 151, 157}
A32 = {46, 83, 125, 143, 161, 220, 242}
A33 = {21, 36, 49, 205, 216, 233, 252}
A34 = {44, 91, 119, 137, 165, 210, 254}

2.2. Maximum Partial 3-spreads in Vn(2).
We will use the following theorem. The lower bound is attributed to

Beutelspacher [2] and Hong–Patel [17], and the upper bound is due to
Drake–Freeman [8].

Theorem 3 ([2, 8, 17]). Let n ≥ 3 and t ≤ n be positive integers, and
let q be a prime power. Let c be the least residue of n modulo t, and let
θ be defined by

2θ =
√

1 + 4qt(qt − qc)− (2qt − 2qc + 1).

Then
qn − qc

qt − 1
− (qc − 1) ≤ µq(n, t) ≤ qn − qc

qt − 1
− bθc − 1.

We will also use the following result of Bu [5].

Lemma 4 ([5]). Let n and d be integers such that 1 ≤ d ≤ n/2, and
let q be a prime power. Then Vn(q) can be partitioned into 1 subspace
of dimension n− d and qn−d subspaces of dimension d.

We now prove our main theorem.

Theorem 5. Let n ≥ 3 be an integer and c be the least residue of n
modulo 3. Then the maximum number of 3-dimensional subspaces in
Vn(2) with pairwise intersection {0} is

µ2(n, 3) =

{
1 if 3 ≤ n < 6,
2n−2c

7
− c if n ≥ 6.

Proof. If n < 6, then the theorem is trivial. If n ≥ 6, then we have the
following cases.
Case 1: c = 0. Then 3 divides n and a 3-spread of size (2n − 1)/7
exists (see Bu [5]).
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Case 2: c = 1. Then the theorem follows from the work of Hong and
Patel [17]. However, we include the proof for completeness. By Theo-
rem 3, we have µ2(n, 3) < 2n−2

7
. So it suffices to show that Vn(2) can be

partitioned into 2n−2
7

− 1 subspaces of dimension 3 and 8 subspaces of
dimension 1. Such a partition can be obtained by recursively applying
Lemma 4 on Vn−3i(2) for 1 ≤ i ≤ (n − 7)/3 and then extracting an
additional 3-dimensional subspace from V4(2).

Case 3: c = 2. By Theorem 3, µ2(n, 3) < 2n−22

7
− 1. So it suffices

to show that Vn(2) can be partitioned into 2n−22

7
− 2 subspaces of di-

mension 3 and 17 subspaces of dimension 1. Let n = 3m + 2 for some
positive integer m. The proof now proceeds by induction on m. Since
n ≥ 6, it follows that m ≥ 2. If m = 2, then Example 2 yields a
partition of V8(2) with 34 subspaces of dimension 3 and 17 subspaces
of dimension 1. Now assume that for all 2 ≤ k < m, V3k+2(2) can

be partitioned into 23k+2−22

7
− 2 subspaces of dimension 3 and 17 sub-

spaces of dimension 1. By Lemma 4, V3m+2(2) can be partitioned into
a subspace L of dimension 3m − 1 and 23m−1 subspaces of dimension
3. By the induction hypothesis, the subspace L ∼= V3(m−1)+2(2) can be

partitioned into 23m−1−22

7
−2 subspaces of dimension 3 and 17 subspaces

of dimension 1. Thus Vn(2) = V3m+2(2) can be partitioned into

23m−1 − 22

7
− 2 + 23m−1 =

23m+2 − 22

7
− 2 =

2n − 22

7
− 2

subspaces of dimension 3 and 17 subspaces of dimension 1.
This concludes the proof of the theorem. �

3. An Application to Orthogonal Arrays and (s, k, λ)-nets

In this section, we give an application of partial 3-spreads of Vn(2)
to orthogonal arrays, and (s, k, λ)-nets (see [8]). We start with some
general definitions from [7] (Section 6 in Chapter III).

An orthogonal array of size N with k constraints, s levels, strength
r, and index λ is a k×N array with entries from a set of s ≥ 2 symbols,
having the property that in every r×N sub-matrix, every r×1 column
vector appears λ = N/sr times. It is denoted by OAλ(N, k, s, r) or
OAλ(k, s, r), and if r = 2, we simply write OAλ(k, s). An (s, k, λ)-net
is a set X with λs2 points together with a set D of ks subsets (blocks)
of X, each of size λs, such that: (1) The set of all blocks is partitioned
into k parallel classes, each containing s disjoint blocks, and (2) every
two non-parallel blocks intersect in λ points. We note that an OAλ(k, s)
is equivalent to an (s, k, λ)-net (see Theorem 6.6 in [7]).
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The following method of Drake and Freeman [8] shows how to con-
struct an (s, k, λ)-net (and thus an OAλ(k, s)) via partial t-spreads.
Suppose that n ≥ 2t and consider a partition of Vn(q) of type tk1x,
where x = (qn − 1)/(q− 1)− k(qt − 1)/(q− 1) and W1, . . . ,Wk are the
t-dimensional subspaces. For each 1 ≤ i ≤ k, let

W ∗
i = {u ∈ Vn(q) : 〈u, v〉 = 0 for every v ∈ Wi} ,

where 〈, 〉 is the standard dot product. Then W ∗
i is an (n−t)-dimensional

subspace of Vn(q). By setting X = Vn(q) and

D = {B : B is a coset of W ∗
i , 1 ≤ i ≤ k},

it is easy to check that the resulting incidence structure is a (qt, k, qn−2t)-
net or equivalently an OAλ(k, qt) with λ = qn−2t.

In light of the above discussion, the following result is a direct corol-
lary of Theorem 5. An analogous version of this corollary holds for
(8, k, 2n−6)-nets.

Corollary 6. Let n ≥ 6 be an integer and c be the least residue of
n modulo 3. Then there exists an orthogonal array OAλ(k, 8) with
λ = 2n−6 and

k = µ2(n, 3) =

{
1 if 3 ≤ n < 6,
2n−2c

7
− c if n ≥ 6.

Moreover, these orthogonal arrays are optimal, i.e., they have the largest
possible number of constraints k for a fixed λ.

Proof. The existence follows from Theorem 5, and the optimality fol-
lows from the Bose-Bush bound on k (see [7]). �

Finally, it is interesting to note that the upper bound in Theorem 3
on which our main result (Theorem 5) relies was established by Drake
and Freeman [8] using this very same Bose-Bush bound.
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