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Abstract. A subspace partition Π of a finite vector space V = V (n, q) of dimension n
over GF(q) is a collection of subspaces of V such that the union of the subspaces in Π
is equal to V , and the intersection of any two subspaces is the zero vector. The multiset
TΠ of dimensions of subspaces in Π is called the type of Π, or, a Gaussian partition of V .
Previously, we showed that subspace partitions and their types are natural, combinatorial
q-analogues of the set partitions of {1, . . . , n} and integer partitions of n respectively. In
this paper, we connect all four types of partitions through the concept of “canonical” set,
subspace, and Gaussian partitions, which are in one-to-one correspondence with the integer
partitions of n. In particular, we use the most natural construction (due to Beutelspacher) of
subspace partitions to derive a set G of Gaussian partitions of V starting from the canonical
Gaussian partitions. We then show that the cardinality of G is a rational polynomial R(q)
in q, with R(1) = p(n), where p is the integer partition function.

1. Introduction

Let V = V (n, q) be the n-dimensional vector space over GF(q), where n is a positive integer
and q is a prime power. A subspace partition1 of V is a collection Π of subspaces of V such
that the union of the subspaces in Π is equal to V , and the intersection of any two subspaces
is the zero vector (e.g., see the recent survey by Heden [14]). Subspace partitions are used
to construct translation planes and nets [3, 4, 8], error-correcting codes [15, 20, 21, 22],
orthogonal arrays [12], and designs [13, 25]). The origins of subspace partitions can be
traced back to the general problem of partitioning a finite group into subgroups intersecting
only at the identity element (e.g., see [19, 23] and the survey by Zappa [26]).

Let Π be a subspace partition of V = V (n, q). Suppose that Π consists of xi subspaces
of dimension di for 1 ≤ i ≤ k. The multiset TΠ = dx11 . . . dxkk of dimensions is then called
a partition type of V . Clearly, not every multiset T that contains plausible dimensions is a
partition type of V . However, if T is a partition type, then it must satisfy certain necessary
conditions. One such condition, called the packing condition, is obtained by counting the
nonzero vectors of V in two ways:

(1)
k∑
i=1

xi(q
di − 1) = (qn − 1).

akmanf@ilstu.edu; psissok@ilstu.edu.
1A subspace partition is also known as vector space partition in the literature.

1



2F. AKMANAND P. SISSOKHO 4520 MATHEMATICS DEPARTMENT ILLINOIS STATE UNIVERSITY NORMAL, ILLINOIS 61790–4520, U.S.A.

A second necessary condition comes from dimension considerations. If U and W are sub-
spaces of V (n, q), then it is well known that the subspace spanned by U ∪W has dimension
dim(U) + dim(W )− dim(U ∩W ). Therefore, if T is a partition type, then it must satisfy

(2)

{
2di ≤ n, if xi ≥ 2,

di + dj ≤ n, if i 6= j.

The necessary conditions (1) and (2) are not sufficient in general. For instance, 21011 is not
a partition type of V (5, 2). There are several other nontrivial necessary conditions (e.g.,
see [16], [17], and [18]).

In our papers [1, 2], we studied the lattice of subspace partitions of V = V (n, q) and the
poset of partition types of V (which we called the Gaussian partitions of V ). We proved
several results, revealing these two objects as natural, combinatorial q-analogues of the set
partitions of n = {1, . . . , n} and the integer partitions of n respectively. In particular, we
showed that the number of all subspace partitions of V is congruent to the number of set
partitions of n modulo q − 1. In this paper, we connect all four types of partitions through
the concept of “canonical” set, subspace, and Gaussian partitions, which are in one-to-one
correspondence with the integer partitions of n. In particular, we use the most natural
construction (due to Beutelspacher [6]) of subspace partitions to derive a set G of Gaussian
partitions of V starting from the canonical Gaussian partitions. Henceforth, the phrases
“subspace partition” and “Gaussian partition” will only refer to the subspace partitions of
V (n, q) and their types constructed in the manner we will describe, as opposed to the full
collections of subspace partitions discussed in [1, 2]. Our main result is as follows.

Theorem 1. Let q be a prime power and n be a positive integer. The number of Gaussian
partitions of V (n, q) is a rational polynomial R(q) in q. Moreover, we have R(1) = p(n),
where p is the integer partition function.

2. Set, Integer, and Subspace Partitions

2.1. Set Partitions.

Definition 1 (Split of subset). A split of a subset D of n = {1, . . . , n} with d = |D| ≥ 2 is
an operation denoted by (a, b), where a+ b = d and a ≥ b ≥ 1, that results in partitioning D
into two disjoint subsets A and B of cardinalities a and b respectively.

The partition {A,B} of D is not unique as defined. However, we can make it unique as
follows:

Definition 2 (Ordering split of subset). An ordering split of a subset D of n is a split (a, b)
as in the above definition such that any element of A is strictly less than any element of B.

Lemma 3. Any set partition of n can be obtained by applying a sequence of splits to n
(after the first split, we understand that each subsequent split is applied to a smaller subset
generated previously). The empty sequence corresponds to the partition {n} with one part.

Definition 4 (Canonical set partition). A set partition of n = {1, . . . , n} with k parts
will be called canonical if its parts can be labeled D1, . . . , Dk, with cardinalities d1, . . . , dk
respectively, in such a way that

(i) d1 ≥ · · · ≥ dk ≥ 1, and
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(ii) For all i with 1 ≤ i ≤ k, the collection D1, . . . , Di is a set partition of d = {1, · · · , d},
where d = d1 + · · ·+ di.

For the next two lemmas, let us adopt the notation of Definition 4.

Lemma 5. The set of canonical set partitions of n is in one-to-one correspondence with the
integer partitions of n, via

{D1, . . . , Dk} ↔ d1 . . . dk.

Lemma 6. Any canonical set partition of n with parts described as in Definition 4 can be
obtained by applying the sequence

(d1 + · · ·+ dk−1, dk), (d1 + · · ·+ dk−2, dk−1), . . . , (d1, d2)

of ordering splits to n. By definition, the empty sequence corresponds to {n}.

2.2. Subspace Partitions.

2.2.1. Splits of subspaces. The study of all possible subspace partitions and their types con-
sidered in [1, 2] is hampered by the fact that even in small dimensions, the maximal subspace
partitions of V (n, q) have not been enumerated for all q, and even their types remain a mys-
tery. Examples are the number of 2-spreads of V (4, q) and the types of the exceptional
partitions of V (6, q) that we mentioned in [1]. As a matter of fact, when we put aside the
dozens of special cases of partition constructions of novel types (e.g., see [7, 17, 24] and the
references therein), there have been only two basic existence theorems in the literature that
are used consistently:

(A) If d divides n, then André [3] proved that V (n, q) has a refinement of type d
qn−1

qd−1 , which
is better known as a d-spread of V (n, q).
(B) If 1 ≤ d < n/2, then it was proved by Beutelspacher [6], and independently by Bu [7],

that V (n, q) has a refinement of type (n− d)1 d q
n−d

.
The case d = n/2 is covered by (A). If d divides n but is not equal to n/2, then finitely

many applications of move (B) will give us a spread as in (A). Thus, these two refinements
can be combined into a single one:

(C) If 1 ≤ d ≤ n/2, then V (n, q) has a refinement of type (n− d)1 d q
n−d

.

Definition 7 (Split of subspace). A split is a refinement of the form (C) on any one subspace
in a subspace partition.We will let (a, b) (for a ≥ b ≥ 1) denote a subspace split that produces
the refinement (a+ b)1 → a1b q

a
of the type (a+ b)1.

Note that a split only shows the type of the move and not the subspace it is applied to.
It is possible to obtain many different refined subspace partitions (of the same type) by
applying a split to a specific subspace partition, just as in the case of set partitions.

2.2.2. The Mechanism. We will use the construction of Beutelspacher [6] (and Bu [7]) that
yields the partitions in the statement (B) discussed earlier. This construction starts from a
given direct sum decomposition W ⊕U of V (n, q) and a partition of U to give us a partition
of V (n, q) that includes U and W . Moreover, the new subspaces in the partition reproduce
the dimension of U .
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Theorem 2 (Beutelpacher [6]). Let V = V (n, q), U and W be subspaces of V such that
V = W ⊕ U , and s = dim(W ) ≥ dim(U) = t. Let {w1, . . . , ws} be a basis of W , and
{u1, . . . , ut} be a basis of U . Moreover, we identify W with the field GF(qs). For every
element γ ∈ W \ {0}, define a subspace Uγ of V by

Uγ = span({u1 + γw1, . . . , ut + γwt}).
Then dim(Uγ) = t, Uγ ∩ Uγ′ = {0} for γ 6= γ′, and the collection

{U,W} ∪ {Uγ : γ ∈ W \ {0}}
of subspaces forms a partition of V .

Theorem 2 can be used to accomplish refinements described in (C):

Corollary 8. Choosing dim(W ) = n − d and dim(U) = d (where d ≤ n/2) in Theorem 2,

we obtain a subspace partition of V (n, q) of type (n− d)1d q
n−d

.

We will informally designate the new subspaces Uγ created in the above corollary as
“copies” of U .

2.2.3. Canonical subspace partitions. Let us fix a basis S = {e1, . . . , en} of V (n, q), and
identify it with n via the subscripts.

Definition 9 (Ordering split of special subspace). Let D be a nonempty subset of S. An
ordering split of type (a, b) of 〈D〉, the subspace of V (n, q) generated by D, is one that is
obtained by applying the ordering split (a, b) to the set D to obtain a partition {A,B} of
D, then applying the construction in Corollary 8 to 〈D〉 = 〈A〉 ⊕ 〈B〉, with W = 〈A〉 and
U = 〈B〉.

Definition 10 (Canonical Gaussian partition). We call a subspace partition Π of V (n, q)
canonical if it can be obtained by applying a sequence of ordering splits to V = 〈S〉 that would
have resulted in the corresponding canonical set partition of S.

Proposition 11. Let Π be a canonical subspace partition as described above, and let D1, . . . , Dk

be the corresponding canonical set partition of the basis S of V (n, q). Then Π contains the
subspaces 〈D1〉, . . . , 〈Dk〉 of V (n, q).

2.2.4. The construction of subspace partitions. From this point on, we will only consider
subspace partitions of V (n, q) that are either canonical or are obtained from a canonical one
by finitely many splits via the mechanism described in Corollary 8 and the three basic rules
that we will outline below. This convention is akin to leaving out the exceptional groups in
the classification of finite simple groups, whose existence and structures require the use of
more customized techniques.
1. The unique ancestor rule: During the construction of a specific subspace partition
Γ starting from a canonical partition Π as given in Definition 10 and Proposition 11, the
subspaces 〈Di〉 will be left intact, reflecting the corresponding partitioning of the basis S as
a set. This way, we can trace every subspace partition back to a unique canonical partition.
2. The dimension rule: Let f1 · · · fs be the Gaussian partition describing the nonincreas-
ing dimensions of the subspaces that exist at any stage of the construction, before we apply
a split (a, b) to a subspace of dimension fi = a + b. This rule dictates that the parts a and
b of the split cannot be strictly smaller than the dimensions to the right of fi, if any: we
require that fi > a ≥ b ≥ fi+1. The same split (a, b) may be applied to several subspaces of
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dimension fi in a cluster. When applying any split to the last dimension fs, the dimension
rule is automatically satisfied.
3. The left-right rule: We will mark the subspace of dimension a that results from a split
of type (a, b) as “left” and the q a subspaces of dimension b that are produced in the same
split as “right”, since b will appear to the right of a in the new Gaussian partition. This rule
dictates that we are allowed to split only copies of 〈Di〉 (see Rule 1) and subsequently, only
left subspaces. This rule will hold even in the case a = b; there is exactly one left subspace
produced by a split, regardless of dimension.

The effects of this construction on the shape of the Gaussian partitions will be discussed
further while enumerating these partitions.

3. Gaussian Partitions Extending Integer Partitions

3.1. Gaussian Partitions. The definition and notation of splits can be applied to the main
object in this paper, namely, the Gaussian partitions associated with V (n, q). We will denote
a Gaussian partition that is the type of some subspace partition Γ by TΓ. If c is a dimension
appearing in TΓ, then a split (a, b) with a + b = c that does not violate the dimension rule
will result in the insertion of the symbols a1b q

a
between c and the adjacent dimension on

the right, while reducing the exponent of c by 1. Similarly, j repeated applications of (a, b)
will reduce the exponent of c by j and result in the insertion of ajb jq

a
.

3.2. Canonical Gaussian Partitions.

Definition 12 (Canonical Gaussian partition). A Gaussian partition of V (n, q) is called
canonical if it is the type of a canonical subspace partition of V (n, q).

Proposition 13. The canonical subspace partitions of V (n, q), the canonical Gaussian par-
titions of V (n, q), and the canonical set partitions of n are in one-to-one correspondence with
the integer partitions of n.

Example 14. The integer partition 523114 of n = 17 is represented by the canonical Gaussian
partition

5 15 q
5

3 q
10

1 q
13

1 q
14

1 q
15

1 q
16

= 5 1+q53 q
10

1 q
13+q14+q15+q16

of V (17, q). Note that the exponent of 5 q
5

tells us that the sum of the dimensions that come
before (equivalently, the parts of the corresponding integer partition) is 5, the exponent of

3 q
10

tells us that the previous sum is 10, and the exponent of 1 q
13

tells us that the previous
dimensions add up to 13, etc.

Let us state our observations about the shape of a canonical Gaussian partition formally.

Proposition 15. The canonical Gaussian partition for V (n, q) that corresponds to the in-
teger partition d1 · · · dk of n, with d1 ≥ · · · ≥ dk, is given by

T = d1
1d

q d1

2 d q
d1+d2

3 · · · d q
d1+···+dk−1

k .

Conversely, a partition of type T , where d1 ≥ · · · ≥ dk and d1 + · · ·+ dk = n, is canonical.

Addition Property 16. For a Gaussian partition written as in Proposition 15, the exponent
qt of any dimension di reflects the sum t = d1 + · · ·+ di−1 of the parts of the corresponding
integer partition that come before di (the empty sum is zero).
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Remark 17. If we require the parts di in Proposition 15 to be distinct, then the canonical
Gaussian partition corresponding to the integer partition dn1

1 · · · d
nk
k of n, with d1 > · · · > dk,

is given by

T = d1+q d1+···+q(n1−1)d1

1 d q
n1d1+qn1d1+d2+···+qn1d1+(n2−1)d2

2 · · ·

d q
(n1d1+···+nk−1dk−1)+···+q(n1d1+···+(nk−1)dk)

k .

Moreover, the uniqueness of the exponents in T as a polynomial in q with integer coefficients
0 or 1 follows from the uniqueness of digits in the base-q representation of positive integers.

The two depictions of T in Proposition 15 and Remark 17 correspond to the left- and
right-hand sides of the equation in Example 14 respectively.

3.3. The structure of Gaussian partitions. It is possible to describe the genesis of
Gaussian partitions of V = V (n, q) without any reference to the process outlined in Sec-
tion 2.2.4. Consider a canonical subspace partition Π of V given as in Definition 10 and
Proposition 11. Let TΠ be the corresponding Gaussian partition, written as in Proposi-
tion 15. The construction of a subspace partition Γ from Π results in the following properties
for the Gaussian partition TΓ starting from TΠ:

(1) Let di denote dim(〈Di〉) where Di is a subset of the basis S as before. Splits (a, b)
may be applied to the dimension di in TΠ only if i = k or di > di+1 (and i 6= 1).
Clearly, strictly smaller dimensions a and b cannot be placed in between the same
two integers di and di in TΠ by the dimension rule, and splitting a unique maximal
dimension is prohibited by the unique ancestor rule. Hence, only the largest power
qu 6= 1 of q in the exponent of any one dimension di of TΠ may be dissolved (when
like bases are combined, as in Remark 17). In fact, at most qu − 1 splits may be
applied to powers of di, as 〈Di〉 in Π must remain intact by the unique ancestor rule.

(2) Only one kind of split (a, b) may be applied to a dimension di. If a different one, say
(r, s) with a > r and b < s is attempted before or after (a, b), then the resulting order
of dimensions would be di, r, s, a, b, di+1 or di, a, b, r, s, di+1, violating the dimension
rule.

(3) Let N = qu− 1. Then a split (a, b) applied to the dimension di in TΠ several times in
a sequence would result in one of the N possible Gaussian partitions, with the powers
a1, . . . , aN of the dimensions a of the left subspaces. We will call this linearly ordered
collection of Gaussian partitions the spine corresponding to the split (a, b). At any
power ak, we are allowed to branch off into a split (r, s) applied to some copies of a
(such that the dimension rule is not violated), where we may dissolve all k powers if
we wish to, obtaining a spinelet of new possible partitions. By the same reasoning
as above, at most one kind of split of a is permitted at this stage. The various spines
and spinelets emanating from TΠ help us visualize the universe of possibilities for
Gaussian partitions TΓ constructed from TΠ.

(4) We may apply the same split (a, b) to a Gaussian partition only back-to-back and may
never revisit it while working on the same spine, lest we violate the dimension rule.

(5) None of the intermediate splittings between dimensions di and di+1 results in another
canonical Gaussian partition. However, if we were to split the last dimension di
(corresponding to the subspace 〈Di〉) using an (N + 1)st split (a, b), then we would
arrive at another canonical Gaussian partition. This is stated as Proposition 19.
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(6) The construction process of any Gaussian partition is unique up to order. That is,
it can be traced back to a unique canonical Gaussian partition, and there is only
one possible set of splits that results in that partition (splits starting out of different
places in TΠ commute). This is stated as Proposition 20.

Example 18 (The Gaussian partitions of V (6, q)).

The eleven canonical Gaussian partitions of V (6, q) are 61, 511q
5
, 411q

4+q5, 311q
3+q4+q5,

211q
2+q3+q4+q5, 11+q+q2+q3+q4+q5, 412 q

4
, 31+q3, 312 q

3
1q

5
, 21+q2+q4, and 21+q21q

4+q5. The first
five cannot be split further without running into another canonical partition, and the sixth
one is already minimal. The non-canonical Gaussian partitions obtained from the remaining
five are described in the following table:

Canonical Splits Non-canonicals Range

412 q
4

(1, 1) 412 q
4−i1i(q+1) 1 ≤ i ≤ q4 − 1

31+q3 (2, 1) 31+q3−i2i1iq
2

1 ≤ i ≤ q3 − 1

31+q3 (2, 1) and (1, 1) 31+q3−i2i−j1iq
2+j(1+q) 1 ≤ i ≤ q3 − 1; 1 ≤ j ≤ i

312 q
3
1q

5
(1, 1) 312 q

3−i1i(q+1)+q5 1 ≤ i ≤ q3 − 1

21+q2+q4 (1, 1) 21+q2+q4−i1i(q+1) 1 ≤ i ≤ q4 − 1

21+q21q
4+q5 (1, 1) 21+q2−i1i(q+1)+q4+q5 1 ≤ i ≤ q2 − 1

Consider the number of non-canonical Gaussian partitions of V (6, q): there are

s(q) =

q3−1∑
i=1

i∑
j=0

1 =

q3−1∑
i=1

(i+ 1) =
(q3 − 1)q3

2
+ (q3 − 1)

of them that are obtained from 31+q3, and the total is

(q4 − 1) + s(q) + (q3 − 1) + (q4 − 1) + (q2 − 1),

a rational polynomial in q with root q = 1.

Proposition 19. Let

T = d 1+qd1+···+q(n1−1)d1

1 d q
n1d1+qn1d1+d2+···+qn1d1+(n2−1)d2

2 · · ·

d q
(n1d1+···+nk−1dk−1)+···+q(n1d1+···+(nk−1)dk)

k ,

with dimensions d1 > · · · > dk, be a canonical Gaussian partition. If (a, b) is an allowed
split with a + b = di, then neither the spine obtained by applying (a, b) to T back-to-back
qn1d1+···+(ni−1)di−1 times, nor the set of Gaussian partitions obtained from the spine, contains
a canonical partition. However, with the next application of the split (a, b) to the spine, we
obtain another canonical Gaussian partition T ′.

Proof. As long as the largest power of q in the exponent of di is partially decomposed, the
Gaussian partition cannot be canonical, because the exponent of di does not correctly reflect
Addition Property 16. However, once the highest power of q in the exponent of di is dissolved,
we do get a canonical partition: this partition is

T ′ = d 1+qd1+···+q(n1−1)d1

1 · · · d q
(n1d1+···+ni−1di−1)+···+q(n1d1+···+(ni−2)di)

i

a q
(n1d1+···+(ni−1)di)b q

(n1d1+···+(ni−1)di+a)

d q
(n1d1+···+nidi)+···
i+1 · · ·
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The exponents of a and b, as well as the expression qn1d1 in the exponent of di+1, conform
to the Addition Property; note that a + b = di, and it is possible to have equalities in
a ≥ b ≥ di+1. �

Proposition 20. A Gaussian partition is uniquely defined by its canonical ancestor and the
set of splits applied to it.

Proof. This proof depends implicitly on the uniqueness of the base-q representation of posi-
tive integers. Every non-canonical Gaussian partition T ′ starts from some canonical Gauss-
ian partition T by definition. It turns out that T can be uniquely reconstructed due to the
structure of canonicals described in Proposition 15: let

T = d1
1d

q d1

2 d q
d1+d2

3 · · · d q
d1+···+dk−1

k .

The original dimensions d1 ≥ · · · ≥ dk of T are all present in T ′. In fact, if k ≥ 2, then d1 and
d2 must be the leftmost two numbers in T ′, when dimensions are written in nonincreasing
order without exponents, because of the unique ancestor rule (see Section 2.2.4). If the total
exponent of d2 is already q d1 , then we factor out this power, and the next number to the
right has to be d3 < d2. If the total exponent exceeds q d1 , then we understand that d3 = d2,

separate d q
d1

2 , and check if the total exponent of d3 is qd1+d2 , etc. As soon as we hit an
exponent of some di that falls short of Addition Property 16, the first split (a, b) applied to
di can be identified by the first integer a < di to the right of the di’s. If aα is the collection
of all a’s in T ′, then we can locate (di − a)αq

a
= bαq

a
somewhere to the right (and the next

integer, if any, must be di+1). All subsequent splits, if any, can be put together in this
fashion from inside out in nested intervals owing to the dimension rule (see Section 2.2.4).
Then we start working on di+1, and so on, until all splits are repaired backwards and T is
re-created. �

3.4. Some Preliminary Counting. We will use the following lemma, which states Faul-
haber’s formula (e.g., see [9]) for the sums of consecutive powers.

Lemma 21 (Sums of Consecutive Powers [9]). Let N and m be any nonnegative integers.
Then the familiar sum

θm(N) =
N∑
k=1

km

of the first N consecutive m-th powers of k is a rational polynomial in N , with θm(0) = 0
(when N = 0, the empty sum is equal to zero). An explicit formula for θm(N) can be given
in terms of the Bernoulli numbers Bk:

(3) θm(N) =
1

m+ 1

m∑
k=0

(
m+ 1

k

)
(−1)kBkN

m+1−k.

Corollary 22. Let N be a positive integer, and S(x) be any rational polynomial. Then the
sum

U(N) =
N∑
k=1

S(k)

is a rational polynomial in N , with U(0) = 0.
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Proof. Let S(x) = a0 + a1x + · · · + atx
t, with ai ∈ Q. Then, in the notation of Lemma 21,

the sum

U(N) = a0

N∑
k=1

1 + a1

N∑
k=1

k + · · ·+ at

N∑
k=1

kt = a0θ0(N) + a1θ1(N) + · · ·+ atθt(N)

is a Q-linear combination of rational polynomials in N with N = 0 as a root. �

Let N be an unspecified positive integer and k be a variable that may take on the integer
values 1, 2, . . . , N . Recall that we denote the set {1, 2, . . . , k} by k. We define a sequence of
multisets A0(N), A1(N), A2(N), ... by the following recursive rule: we set A0(N) = {N},
and replace each occurrence of an integer k in the set Ai(N) by all elements of the set k in
Ai+1(N). Thus

Ai+1(N) =
N⊎
k=1

Ai(k),

where ] denotes the disjoint union, or sum, of multisets. The first few multisets in this
sequence are

A0(N) = {N}, A1(N) =
N⊎
k=1

A0(k) = N = {1, 2, . . . , N}, and

A2(N) =
N⊎
k=1

A1(k) = 1 ] 2 ] · · · ]N = {1} ] {1, 2} ] · · · {1, 2, . . . , N}.

Corollary 23. Let 1Ai(N)(k) denote the multiplicity of the integer k in the multiset Ai(N).
For i ≥ 0, let

Si(N) =
N∑
k=1

k · 1Ai(N)(k),

the sum of all elements of the multiset Ai(N) counted with multiplicities. Then
(1) For each i ≥ 0, we have

Si+1(N) =
N∑
k=1

Si(k).

(2) For each i ≥ 0, the expression Si(N) is a rational polynomial in N , with Si(0) = 0.

Proof. Part (1) follows immediately from the definition of Ai as a disjoint union of multisets
and the additive property of the multiplicity function. For part (2), we note that S0(N) =
N = θ0(N), and

S1(N) =
N∑
k=1

k =
N∑
k=1

S0(k) = θ1(N).

By Corollary 22 and part (1), it is clear that each subsequent Si(N) is a polynomial with
the desired properties. �
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3.5. Adding up.

Proposition 24. Let T be a canonical Gaussian partition of V (n, q) given by

T = d1
1d

q d1

2 d q
d1+d2

3 · · · d q
d1+···+dk−1

k ,

where d1 ≥ · · · ≥ dk and d1 + . . . + dk = n. Then the number of all Gaussian partitions
obtained from T is a rational polynomial in q. Moreover, q = 1 is a root of this polynomial.

Remark 25. The Gaussian partitions obtained from T according to the rules in Section 3.3
are necessarily non-canonical by Proposition 19.

Proof. In the special cases of a canonical Gaussian partition T for which the only splits that
adhere to the dimension rule create other canonicals, or where all di = 1, the polynomial in
question is the zero polynomial. Henceforth, we assume that it is possible to obtain non-
canonical Gaussian partitions from T . Since sequences of splits are applied to one dimension
di at a time, it suffices to show that the number of Gaussian partitions obtained from one
di is a polynomial Pi(q) of the desired type. Again, we single out the cases where it is not
possible to fit any splits to di, and declare that in these cases Pi(q) = 1. However, there will
be at least one factor Pi(q) that is a rational polynomial with 1 as a root by our assumption.
The total number for T will be the product PT (q) of all Pi(q).

Thus, assume that the Gaussian partitions obtained from T only contain changes to di,
and that qu is the largest power of q in the exponent of di. Let N = qu − 1 and recall the
notation of Corollary 23. Now, several different splits (a, b) may be allowed for di (i.e., we
have a+ b = di and di > a ≥ b ≥ di+1), but any given Gaussian partition may contain only
one of these, possibly applied several times (see Section 3.3). Repeated applications of a
split (a, b) results in a total of N = S0(N) possible Gaussian partitions on a spine, where the
set of exponents of a is {1, 2, . . . , N} = A1(N). If there are t0 = t0(i) possible splits (a, b) of
di, then there must be t0S0(N) Gaussian partitions that have exactly one more kind of split
than T has in their construction, because spines are disjoint by Proposition 20.

For any one of the first splits (a, b) of di, let (c, d) be one of the next generation of splits
(that is, c + d = a, and a > c ≥ d ≥ b). Then each ak on the spine will generate a new set
of exponents for c on a spinelet, namely, k = {1, 2, . . . , k}. The multiset A2(N) will contain
all exponents of c thus generated, and S1(N) new Gaussian partitions that contain only
(a, b) and (c, d) in their construction sequence (starting from T ) will be created. If there are
t1 = t1(i) possible sets of back-to-back splits (a, b) and (c, d) applied to di, then the number
of Gaussian partitions that are obtained from T by splitting di with only two kinds of new
splits is t1S1(N), as once again Proposition 20 tells us that there cannot be any repetitions
of Gaussian partitions when different sequences of splits are employed. We continue in this
manner as far as possible.

If tr = tr(i) denotes the number of all distinct back-to-back split sequences of length r+ 1
applied to di, and if the maximum possible length of such sequences is m = m(i), then the
total number of Gaussian partitions that can be obtained from T by splitting only di is given
by the rational polynomial

Pi(q) = t0S0(N) + · · ·+ tm−1Sm−1(N),

which must have q = 1 as a root by Corollary 23. The product

PT (q) =
k∏
i=1

Pi(q)
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is hence the total number of Gaussian partitions obtained from T , a rational polynomial
with PT (1) = 0. Note that the numbers u, N , m, and t1, . . . , tm−1 depend on i, but we are
suppressing references to i for simplicity of notation. �

As an immediate corollary of Proposition 24, we obtain the proof of our main result.

Proof of Theorem 1. The total number of canonical Gaussian partitions is p(n), and each
canonical partition T produces PT (q) non-canonical partitions. Then the total number of
Gaussian partitions of V (n, q) is given by

R(q) = p(n) +
∑
T

PT (q),

which is a rational polynomial in q with R(1) = p(n) +
∑

T 0 = p(n). �

4. Concluding Comments

We can relax the conditions that splits may only be applied to canonical subspace par-
titions, and have to preserve the subspaces that contain basis elements, as long as they do
not violate the dimension rule and the left-right rule. Splits can certainly be applied in a
haphazard fashion to V (n, q) and produce a number of additional partitions. We call the
larger set of partitions obtained by applying sequences of unrestricted splits to V (n, q) the
extended subspace partitions. Thus, the corresponding types are called the extended Gaussian
partitions of V (n, q).

The lattice of all subspace partitions of V (n, q) regardless of construction, including those
subspace partitions that are yet to be discovered, were surprisingly shown to have a count
that is congruent to p(n) modulo q − 1 in our paper [2]. However, we do not know whether
the number of extended Gaussian partitions for V (n, q) is a rational polynomial in q that
equals p(n) when we set q = 1.
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