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An extremal problem for set families generated with
the union and symmetric difference operations
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Let G be a family of sets and let ∪nG be the family of sets obtained
by taking all unions of k sets of G with 1 ≤ k ≤ n. We define the
half-life of G with respect to the union operation, denoted by h∪(G),
to be the smallest integer n such that some x ∈ ∪A∈GA appears in
at least half of the sets in ∪nG. If no such n exists, then we define it
as∞. We also define the half-life of G with respect to the symmetric
difference operation in a similar fashion and denote it by hΔ(G). In
this paper, we establish several bounds for h∪(G) and hΔ(G). As
a byproduct, we confirm Fránkl’s union-closed conjecture for some
special cases.
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1. Introduction

The symmetric difference of two sets A and B is AΔB = (A\B) ∪ (B\A).
Let G be a family of sets and for any positive integer n ≤ |G|, define

(1) ∪nG = {Ai1 ∪ · · · ∪Aik : 1 ≤ k ≤ n and Aij ∈ G for 1 ≤ j ≤ k}

and

(2) ΔnG = {Ai1Δ · · ·ΔAik : 1 ≤ k ≤ n and Aij ∈ G for 1 ≤ j ≤ k}.

Definition 1. A family of sets F is union-closed (or Δ-closed) if it is closed
under union (or symmetric difference), i.e, for any A,B ∈ F , we have A∪B ∈
F (or AΔB ∈ F).

Let F be a union-closed family of sets. We call F non-trivial if it contains
a non-empty set. A generating set of F is a subfamily of sets G ⊆ F such that
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F is obtained by taking all the possible unions of sets in G. Equivalently, we
have

F = ∪mG, where m = |G|.

For any family of sets F , the ground set of F is defined by Fgd = ∪A∈FA.

The union-closed conjecture, due to Fránkl [4], can be stated as follows.

Conjecture 2. For any non-trivial union-closed family of sets F , there

exists an element x ∈ Fgd which appears in at least half of the sets of F .

This simply stated conjecture turned out to be quite difficult to solve.

Partial results that support Conjecture 2 can be found in [1, 3–5, 7–12] and

the references therein.

If one takes a Δ-closed family of sets, then it is easy to show that the

conclusion of Conjecture 2 holds. More precisely, the following proposition

holds.

Proposition 3. Let F be any non-trivial Δ-closed family of sets with ground

set Fgd. Then, any x ∈ Fgd appears in at least half of the sets in F .

Proof. Let F = {A1, . . . , Al} be a non-trivial Δ-closed family of sets on the

ground set Fg. For any x ∈ Fg, there exists at least one Ai containing x.

Suppose that the number of sets in F containing x is less than l
2 . Without

loss of generality, assume that x ∈ Al and each A1, . . . , A� l+1

2
� does not

contain x. Then the sets AlΔAi, where 1 ≤ i ≤ � l+1
2 �, are pairwise distinct

and each of them contains x. Since F is union-closed, all these sets are in F ,

and this contradicts the assumption that the number of sets in F containing

x is less than l
2 .

Let G be a non-empty family of l ≥ 2 sets and let n be a nonnegative

integer. We define the half-life of G with respect to ∪ to be the smallest

integer n such that some x ∈ Ggd appears in at least half of the sets in

∪nG. If no such n exists, then we define it as ∞. We use h∪(G) to denote

the half-life of G with respect to ∪. The half-life of G with respect to Δ is

defined similarly and denoted by hΔ(G). The following problem will help us

to understand the union-closed conjecture.

Problem 4. Determine h∪(G) and hΔ(G).

This rest of the paper is organized as follows. We give some bounds for

hΔ(G) and h∪(G) in Sections 2 and 3 respectively. In Section 4, we confirm

the union-closed conjecture for some special cases.
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2. Some bounds on hΔ(G)

Let G be a family with l ≥ 2 sets and x ∈ Ggd. For any positive integer n,

let Δn(G, x) be the family of sets in ΔnG containing x. Let Δn(G, x̄) be the

family of sets in ΔnG not containing x. We define the half-life of x ∈ Ggd

with respect to Δ, denoted by hΔ(G, x), to be the minimum between ∞ and

the smallest integer n such that

|Δn(G, x)|
|Δn(G)| ≥ 1

2
.

Thus,

hΔ(G) = min
x∈Ggd

hΔ(G, x).

If l = 2, then hΔ(G, x) = 1 for any x ∈ Ggd. So we assume l ≥ 3.

Proposition 5. For any family G with l ≥ 3 sets and for any x ∈ Ggd,

hΔ(G, x) ≤ |G| holds.

Proof. Since ΔlG is Δ-closed for l = |G|, Proposition 3 implies that

hΔ(G, x) ≤ |G|.

In order to state our main result in this section, we need the following

definition.

Definition 6. A family of non-empty sets S = {A1, . . . , Al} is called linearly

independent if for any integer j with 1 ≤ j ≤ l and for all indices i1, . . . , is ∈
{1, . . . , l} \ {j}, we have Aj 
= Ai1Δ · · ·ΔAis .

Lemma 7 will be used in Theorems 8 and 9.

Lemma 7. Let S = {A1, . . . , Al} be a linearly independent family of sets.

Let 1 ≤ i1 < · · · < is ≤ l and 1 ≤ j1 < · · · < jt ≤ l. Then, Ai1Δ · · ·ΔAis =

Aj1Δ · · ·ΔAjt if and only if {i1, . . . , is} = {j1, . . . , jt}.

Proof. Let I = {i1, . . . , is} and J = {j1, . . . , jt}. Suppose that I 
= J and

Ai1Δ · · ·ΔAis = Aj1Δ · · ·ΔAjt .(3)

We may assume that I ∩ J = ∅. Indeed, for each i ∈ I ∩ J we can operate

by AiΔ on both sides of (3) and consider resulting sets I ′ = I \ I ∩ J and
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J ′ = J \ I ∩ J . With the assumption I ∩ J = ∅, we can now operate by
Ai1Δ · · ·ΔAis−1

Δ on both sides of (3) to obtain

Ais = Ai1Δ · · ·ΔAis−1
ΔAj1Δ · · ·ΔAjt .

This contradicts the linear independence of S.
Theorem 8. Let S = {A1, . . . , Al} be a linearly independent family sets
with l ≥ 3. For x ∈ ∪l

i=1Ai, let qx be the number of sets in S containing x.
(a) If qx is even, then hΔ(S, x) ≤ � l−1

2 �.
(b) If qx is odd and hΔ(S, x) 
= l, then hΔ(S, x) ≤  l−1

2 �.
Proof. Since ΔlS is Δ-closed, Proposition 3 yields

(4) |Δl(S, x)| ≥ |Δl(S, x̄)|.

We simply write qx as q throughout the proof. Without loss of generality,
we assume that x ∈ Ai for 1 ≤ i ≤ q and x 
∈ Ai for i > q. Note that a set in
Δn(S, x) must be of the form Ai1Δ · · ·ΔAis , where there are an odd number
of indices ij ∈ {i1, . . . , is} such that ij ≤ q. Similarly, a set in Δn(S, x̄) must
be ∅ or of the form Ai1Δ · · ·ΔAis , where there are an even number of indices
ij ∈ {i1, . . . , is} such that ij ≤ q.

(a) q is even. For any positive integer n ≤ l − 2, define a function f on
Δn(S, x) by

f(Ai1Δ · · ·ΔAis) = Aj1Δ · · ·ΔAjl−s

where {j1, . . . , jl−s} = {1, . . . , l} \ {i1, . . . , is}. By Lemma 7, f is a one-
to-one function. Since q is even, f is an onto function from Δn(S, x) to
Δl(S, x)−Δl−n−1(S, x), which is the set

{Ai1Δ · · ·ΔAit : x ∈ Ai1Δ · · ·ΔAit , i1 < · · · < it, l − n ≤ t ≤ l}.

Therefore,

(5) |Δn(S, x)| = |Δl(S, x)| − |Δl−n−1(S, x)|.

Similarly, define a function g on Δn(S, x̄) by

g(Ai1Δ · · ·ΔAis) = Aj1Δ · · ·ΔAjl−s

where {j1, . . . , jl−s} = {1, . . . , l} \ {i1, . . . , is}, and

g(∅) = A1Δ · · ·ΔAl if n ≥ 2.
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Then g is a one-to-one and onto function from Δn(S, x̄) to Δl(S, x̄) −
Δl−n−1(S, x̄). Therefore,

(6) |Δn(S, x̄)| = |Δl(S, x̄)| − |Δl−n−1(S, x̄)|.

By (4), (5) and (6),

|Δn(S, x)|+ |Δl−n−1(S, x)| ≥ |Δn(S, x̄)|+ |Δl−n−1(S, x̄)|.

Thus, |Δn(S, x)| ≥ |Δn(S, x̄)| or |Δl−n−1(S, x)| ≥ |Δl−n−1(S, x̄|. If we take
n =  l−1

2 �, then we get

hΔ(S, x) ≤
⌊
l − 1

2

⌋
or hΔ(S, x) ≤

⌈
l − 1

2

⌉
.

(b) q is odd. For any positive integer n ≤ l − 1, define a function f on
Δn(S, x) by

f(Ai1Δ · · ·ΔAis) = Aj1Δ · · ·ΔAjl−s

where {j1, . . . , jl−s} = {1, . . . , l} \ {i1, . . . , is}.
By Lemma 7, f is a one-to-one function. Since q is odd, f is an onto

function from Δn(S, x) to Δl(S, x̄) − Δl−n−1(S, x̄), where Δ0(S, x̄) is the
family containing only the empty set ∅. Therefore,

(7) |Δn(S, x)| = |Δl(S, x̄)| − |Δl−n−1(S, x̄)|.

Similarly, define a function g on Δn(S, x̄) by

g(Ai1Δ · · ·ΔAis) = Aj1Δ · · ·ΔAjl−s

where {j1, . . . , jl−s} = {1, . . . , l} \ {i1, . . . , is}, and

g(∅) = A1Δ · · ·ΔAl if n ≥ 2.

Then g is a one-to-one and onto function from Δn(S, x̄) to Δl(S, x) −
Δl−n−1(S, x), where Δ0(S, x) is the empty family. Therefore,

(8) |Δn(S, x̄)| = |Δl(S, x)| − |Δl−n−1(S, x)|.

By (4), (7) and (8),

|Δn(S, x)| − |Δn(S, x̄)| ≤ |Δl−n−1(S, x)| − |Δl−n−1(S, x̄)|.
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Swapping n with l − n− 1 yields

|Δn(S, x)| − |Δn(S, x̄)| ≥ |Δl−n−1(S, x)| − |Δl−n−1(S, x̄)|.

Thus,

|Δn(S, x)| − |Δn(S, x̄)| = |Δl−n−1(S, x)| − |Δl−n−1(S, x̄)|.

So if hΔ(S, x) 
= l, then there exists at least one n ≤ l − 1 such that

hΔ(S, x) ≤ min{n, l − n− 1} ≤
⌊
l − 1

2

⌋
.

Theorem 9. Let G = {A1, . . . , Al} be a linearly independent family of l ≥ 3
sets. Let qx be the number of sets in G containing x.

(a) hΔ(G, x) = 2 if and only if (l+1)−
√
l−1

2 ≤ qx < l
2 .

(b) If qx = 1, then hΔ(G, x) = l.
(c) If qx = 2 and l ≥ 5, then hΔ(G, x) = � l−1

2 �.
(d) If qx = 3 and l ≥ 7, then hΔ(G, x) = � l−1−

√
l−1

2 �.

Proof. We simply write qx as q throughout the proof. Without loss of gen-
erality, we assume that x ∈ Ai for 1 ≤ i ≤ q and x 
∈ Ai for i > q.

Note that a set in Δn(G, x) must be of the form Ai1Δ · · ·ΔAis , where
there are an odd number of indices ij ∈ {i1, . . . , is} such that ij ≤ q. Simi-
larly, a set in Δn(G, x̄) must be ∅ or of the form Ai1Δ · · ·ΔAis , where there
are an even number of indices ij ∈ {i1, . . . , is} such that ij ≤ q. Also recall
that, by Lemma 7, all sets Ai1Δ · · ·ΔAis with i1 < · · · < is and 1 ≤ s ≤ l
are pairwise distinct. So for n ≥ 2, we obtain

(9) |Δn(G, x)| =
min{	 q−1

2

,	n−1

2

}∑

k=0

(
q

2k + 1

)min{l−q,n−(2k+1)}∑
j=0

(
l − q

j

)
,

and

(10) |Δn(G, x̄)| =
min{	 q

2

,	n

2

}∑

k=0

(
q

2k

)min{l−q,n−2k}∑
j=0

(
l − q

j

)
.

To show that |Δn(G, x)| ≥ 1
2 |ΔnG|, it is equivalent to show that |Δn(G, x)|−

|Δn(G, x̄)| ≥ 0.
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(a) Now assume hΔ(G, x) = 2. Since

|Δ2G| = 1 +

(
l

1

)
+

(
l

2

)
and |Δ2(G, x)| = q + q(l − q),

then |Δ2(G, x)| ≥ 1
2 |Δ2G| if and only if q + q(l − q) ≥ 1

2(1 + l +
(
l
2

)
).

Solving the previous inequality for q yields (l+1)−
√
l−1

2 ≤ q ≤ (l+1)+
√
l−1

2 .

Since hΔ(G, x) = 1 when q ≥ l
2 , we conclude that (l+1)−

√
l−1

2 ≤ q < l
2 .

(b) If q = 1, then for 2 ≤ n ≤ l − 1,

|Δn(G, x)| − |Δn(G, x̄)| =
n−1∑
j=0

(
l − 1

j

)
−

n∑
j=0

(
l − 1

j

)

= −
(
l − 1

n

)

< 0.

By Proposition 5, hΔ(G, x) = l.

(c) If q = 2 and l ≥ 5, then for 2 ≤ n ≤ l − 2,

|Δn(G, x)| − |Δn(G, x̄)| = 2

n−1∑
j=0

(
l − 2

j

)
−

⎛
⎝ n∑

j=0

(
l − 2

j

)
+

n−2∑
j=0

(
l − 2

j

)⎞⎠

=

(
l − 2

n− 1

)
−
(
l − 2

n

)

≥ 0,

where the last inequality holds if and only if n ≥ � l−1
2 �. So hΔ(G, x) = � l−1

2 �.
(d) If q = 3 and l ≥ 7, then for 2 ≤ n ≤ l − 3,

|Δn(G, x)| − |Δn(G, x̄)| = 3

n−1∑
j=0

(
l − 3

j

)
+

n−3∑
j=0

(
l − 3

j

)

−

⎛
⎝ n∑

j=0

(
l − 3

j

)
+ 3

n−2∑
j=0

(
l − 3

j

)⎞⎠

= 2

(
l − 3

n− 1

)
−
(
l − 3

n

)
−
(
l − 3

n− 2

)

≥ 0,
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where the last inequality holds if and only if � l−1−
√
l−1

2 � ≤ n ≤ � l−1+
√
l−1

2 �.
So hΔ(G, x) = � l−1−

√
l−1

2 �.

Remark 10. It follows from the proof of Theorem 9 part (d) that |Δn(G,x)|
|ΔnG|

is not necessarily monotone with respect to n.

Theorem 11. Let G = {A1, . . . , Am} be a family of sets and let l ≥ 3 be

the maximum size of a linearly independent subset S of G. For x ∈ ∪l
i=1Ai,

let qx be the number of sets in G containing x.

(a) If qx is even, then hΔ(G, x) ≤ l − 1.

(b) If qx is odd and S ⊂ G, then hΔ(G, x) ≤ l − 1.

Proof. Let S = {A1, . . . , Al} be a maximum linearly independent subset of

G. Then for every non-empty set Aj ∈ G, there exists 1 ≤ i1 < · · · < is ≤ l

such that Aj = Ai1Δ · · ·ΔAis . Since

ΔlG = ΔlS = {∅} ∪ {Ai1Δ · · ·ΔAis : 1 ≤ i1 < · · · < is ≤ l},

both ΔlG and ΔlS are Δ-closed. Furthermore, Δl−1S = ΔlS \ {A1ΔA3 · · ·
ΔAl} and Δl−1G is either Δl−1S or ΔlS.

(a) Assume that qx is even. If Δl−1G = ΔlS, then Δl−1G is Δ-closed, and

it follows from Proposition 3 that hΔ(G, x) ≤ l− 1. So we may assume that

Δl−1G = Δl−1S.
Our goal now is to show that |Δl−1(G, x)| ≥ |Δl−1G|/2. Since Δl−1(S, x)=

Δl−1(G, x), it suffices to show that

|Δl−1(S, x)| ≥ |Δl−1S|/2.

By Proposition 3, |Δl(S, x)| ≥ |ΔlS|/2. Note that |ΔlS|− |Δl−1S| = 1 since

the only element in ΔlS \Δl−1S is A1Δ · · ·ΔAl.

Since qx is even, then A1Δ · · ·ΔAl does not contain x, and consequently

|Δl−1(S, x)| = |Δl(S, x)|. Hence, |Δl−1(S, x)| ≥ |Δl−1S|/2.

(b) Assume that qx is odd and S ⊆ G. We claim that Δl−1G = ΔlS. Note

that Δl−1S ⊆ Δl−1G ⊆ ΔlS and ΔlS \ Δl−1S = {A1Δ · · ·ΔAl}. Since

S ⊂ G, then there exists Ai ∈ G \S such that Ai is the symmetric difference

of at least two sets in S; therefore, A1Δ · · ·ΔAl ∈ Δl−1G and consequently

Δl−1G = ΔlS. Then again it follows from Proposition 3 that hΔ(G, x) ≤ l−1

since Δl−1G is Δ-closed.
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3. Some bounds on h∪(G)

Let G be a family with l ≥ 2 sets and x ∈ Ggd. For any positive integer n,

let ∪n(G, x) be the family of sets in ∪nG containing x. Let ∪n(G, x̄) be the

family of sets in ∪nG not containing x. Recall that the half-life of x ∈ Ggd

with respect to ∪, denoted by h∪(G, x), is the minimum between ∞ and the

smallest integer n such that

| ∪n (G, x)|
| ∪n (G)| ≥ 1

2
.

Thus,

h∪(G) = min
x∈Ggd

h∪(G, x).

If the union-closed conjecture (Conjecture 2) is true, then h∪(G) ≤ |G|.
We know from Remark 10 that |Δn(G, x)|/|ΔnG| is not necessarily mono-

tone with respect to n. It is interesting to investigate whether or not | ∪n

(G, x)|/|∪nG| is monotone with respect to n. If |∪n (G, x)|/|∪nG| were mono-

tone, then union-closed conjecture would hold if and only if h∪(G) ≤ |G|.
We now provide two results about h∪(G, x) when its value is significantly

less than |G|.

Proposition 12. Let G = ∪l
i=1Gi be a family of sets, where Gi is a union

closed family of sets and let x be an element in the ground set of G. Assume

that |Gi| = g > 1 for 1 ≤ i ≤ l and Ai1 ∪ · · · ∪ Ais 
= Aj1 ∪ · · · ∪ Ajk for

{i1, . . . , is} 
= {j1, . . . , jk}, where Aip ∈ Gip for 1 ≤ p ≤ l. Finally, assume

that there is an i0, with 1 ≤ i0 ≤ l, such that x belongs to all sets in Gi0

and x does not belong to any other set. Then h∪(G, x) ≤ l − 1 whenever

l ≥ 1 + ln 2/ ln(1 + 1/g). Moreover, the union-closed conjecture is true for

∪lG, and thus h∪(G, x) ≤ l = |G|/g holds in general.

Proof. Since all Ai1 ∪ · · · ∪Ais are pairwise distinct where i1 < · · · < is and

each Aij is from Gj , 1 ≤ j ≤ s and 1 ≤ s ≤ l, then

|∪nG| =
n∑

j=1

gj
(
l

j

)
.

Since a set in ∪nG containing x must be of the form

Ai0 or Ai0 ∪Ai1 ∪ · · · ∪Ais ,
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then

|∪n(G, x)| =
n−1∑
j=0

g · gj
(
l − 1

j

)
.

So,

2|∪n(G, x)| = g +

n−1∑
j=1

(
gj
(
l − 1

j − 1

)
+ gj

(
l − 1

j

))

+

n−1∑
j=1

(
gj+1 − gj

)(l − 1

j

)
+ gn−1+1

(
l − 1

n− 1

)

≥ g +

n−1∑
j=1

gj
(
l

j

)
+

n−1∑
j=1

gj
(
l − 1

j

)
+ gn−1+1

(
l − 1

n− 1

)

= | ∪n G|+ g +

n−1∑
j=1

gj
(
l − 1

j

)
+ gn−1+1

(
l − 1

n− 1

)
− gn

(
l

n

)
,

here we used the assumption g > 1.

Case 1. If n = l − 1, then

2|∪l−1(G, x)| ≥ | ∪l−1 G|+ g +

l−2∑
j=1

gj
(
l − 1

j

)
+ gl−1(l − 1)− gl−1l

≥ | ∪l−1 G|+
l−1∑
j=0

gj
(
l − 1

j

)
− gl−1 + gl−1(l − 1)− gl−1l

= | ∪l−1 G|+ (1 + g)l−1 − gl−1 + gl−1(l − 1)− gl−1l

= | ∪l−1 G|+ (1 + g)l−1 − 2gl−1.

Therefore, 2| ∪l−1 (G, x)| ≥ | ∪l−1 G| when l ≥ 1 + ln 2/ ln(1 + 1/g).

Case 2. If n = l, then

2|∪l(G, x)| ≥ | ∪l G|+ g + gl
(
l − 1

l − 1

)
− gl

(
l

l

)
> | ∪l G|.

Therefore, we have shown that h∪(G) ≤ l− 1 when l > 1+ ln 2/ ln(1+ 1/g).

Moreover, the union-closed conjecture is true for ∪lG and thus, h∪(G) ≤ l

in general.
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Remark 13. If g = 1 in Proposition 12, then ∪iG = ΔiG for any i, and the
case is covered in Theorem 9 (b).

Proposition 14. Let G = ∪l
i=1Gi be a family of sets where each Gi is union

closed and A ∩ B = ∅ for A ∈ Gi and B ∈ Gj (i 
= j). Assume there is an
i0 and an x ∈ Gi0 such that x is in at least (|Gi0 | + 1)/2 of the sets of Gi0.
Then the union-closed conjecture is true for ∪lG and thus, h∪(G, x) ≤ l.

Proof. Let |Gi| = ki. Without loss of generality, let x be in at least (k1+1)/2

sets of G1. We will show that | ∪l (G, x)| ≥ |∪lG|
2 .

Form a complete l partite graph H whose parts are the Gi families 1 ≤
i ≤ l. Then | ∪l G| is the total number of cliques in H and | ∪l (G, x)| is the
total number of cliques containing a vertex A ∈ ∪l

i=1Gi such that x ∈ A. So

| ∪l G| =
l∑

i=1

ki +
∑

1≤i1<i2≤l

ki1ki2 + · · ·

+
∑

1≤i1<···<il−1≤l

ki1ki2 · · · kil−1
+ k1k2 · · · kl,

and

| ∪l (G, x)| = 1 + k1
2

+
1 + k1

2

l∑
i=2

ki +
1 + k1

2

∑
2≤i1<i2≤l

ki1ki2 + · · ·

+
1 + k1

2

∑
2≤i1<···<il−2≤l

ki1ki2 · · · kil−2
+

1 + k1
2

k2 · · · kl

=
1

2
+

1

2

(
k1 +

l∑
i=2

ki

)
+

1

2

(
k1

l∑
i=2

ki +
∑

2≤i1<i2≤l

ki1ki2

)
+ · · ·(11)

+
1

2

(
k1

∑
2≤i1<···<il−2≤l

ki1ki2 · · · kil−2
+ k2 · · · kl−1

)
+

k1
2
k2 · · · kl−1.

From (11) and the expression of | ∪l G| above, we obtain

| ∪l (G, x)| = 1

2
+

1

2

l∑
i=1

ki +
1

2

∑
1≤i1<i2≤l

ki1ki2 + · · ·

+
1

2

∑
1≤i1<···<il−1≤l

ki1ki2 · · · kil−1
+

1

2
k1k2 · · · kl

>
| ∪l G|

2
.
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4. Some special cases of union-closed conjecture

Let G = {A1, . . . , Al} be a family of l sets. We follow the same notations
as in the previous section. Note that ∪lG is the union-closed family of sets
generated by the sets in G.

Definition 15. We say that {{Ai1 , . . . , Ais}, {Aj1 , . . . , Ajt}} is an overcount
in ∪nG (resp. ∪n(G, x)) if the following conditions hold

(i) Ai1 ∪ · · · ∪Ais and Aj1 ∪ · · · ∪Ajt are in ∪nG (resp. ∪n(G, x)),
(ii) {Ai1 , . . . , Ais} 
= {Aj1 , . . . , Ajt},
(iii) Ai1 ∪ · · · ∪Ais = Aj1 ∪ · · · ∪Ajt .

We define an auxiliary graph Hn = (V,En) (resp. Hn
x = (V,En

x )) corre-
sponding to the overcounts in ∪nG (resp. ∪n(G, x) ) as follows. Let

V = {{Ai1 , . . . , Ais} : 1 ≤ i1 < · · · < is ≤ n ≤ l}

and join L ∈ V and R ∈ V by an edge in Hn (resp. Hn
x ) if {L,R} is an

overcount in ∪nG (resp. ∪n(G, x)).

Definition 16. A set O of overcounts in ∪nG (or ∪n(G, x)) is independent
if the corresponding edges in graph Hn (resp. Hn

x ) do not induce a cycle.

Lemma 17. Let G = {A1, . . . , Al} be a family of l sets. Let x ∈ Ggd and cx
be the maximum number of independent overcounts in ∪n(G, x). Let c be the
maximum number of independent overcounts in ∪nG. Suppose that x is in q
sets Ai ∈ G. Then, 2| ∪n (G, x)| − | ∪n G| ≥ 0 if and only if

c− 2cx ≥ 2

n∑
i=1

(
l − q

i

)
−

n∑
i=1

(
l

i

)
.

Proof. Without loss of generality, we assume that x ∈ Ai for 1 ≤ i ≤ q and
x 
∈ Ai for i > q. Let us estimate | ∪n G| and | ∪n (G, x)|.

Note that every set in ∪nG is of the form Ai1∪· · ·∪Ais , where 1 ≤ s ≤ n.
If Ai1 ∪ · · · ∪Ais are pairwise distinct, then | ∪n G| =

∑n
i=1

(
l
i

)
. In general,

(12) | ∪n G| =
n∑

i=1

(
l

i

)
− c.

Similarly, every set in ∪n(G, x) is of the form Ai1 ∪· · ·∪Ais , where 1 ≤ s ≤ n
and 1 ≤ i1 ≤ q. If all these Ai1 ∪ · · · ∪ Ais are distinct, then | ∪n (G, x)| =
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∑n
i=1

(
l
i

)
−
∑n

i=1

(
l−q
i

)
. In general

(13) | ∪n (G, x)| =
n∑

i=1

(
l

i

)
−

n∑
i=1

(
l − q

i

)
− cx.

By (12) and (13), we see that 2| ∪n (G, x)| − | ∪n G| ≥ 0 is equivalent
to c− 2cx ≥ 2

∑n
i=1

(
l−q
i

)
−
∑n

i=1

(
l
i

)
.

By taking l = n in the above lemma, we obtain the following results
confirming some special cases of the union-closed conjecture.

Theorem 18. Let G = {A1, . . . , Al} be a family of l sets. Let x ∈ ∪l
i=1Ai

and cx be the maximum number of independent overcounts in ∪l(G, x). Let
c be the maximum number of independent overcounts in ∪lG and γ = c− cx.
Suppose that x is in q sets Ai ∈ G.

(1) The union-closed conjecture is true for ∪lG if and only if there exists
an x ∈ ∪l

i=1Ai such that c ≥ 2cx − 2l + 2l−q+1 − 1.
(2) In particular, the union-closed conjecture is true for ∪lG if one of the

following conditions holds:

(2.a) cx ≤ 2l − 2l−q+1 + 1.

(2.b) γ ≥ 2l−q − 1− q.

(2.c) 2l−q ≤ q + 1.

(2.d) | ∪l G| ≥ 2l−q+1 − 2.

Proof. Taking n = l in (12) and (13), we have

(14) | ∪l G| = 2l − 1− c and | ∪l (G, x)| = 2l − 2l−q − cx.

(1) By (14), we see that 2| ∪l (G, x)| − | ∪l G| ≥ 0 is equivalent to c ≥
2cx − 2l + 2l−q+1 − 1.

(2.a) Note that c ≥ cx. If cx ≤ 2l − 2l−q+1 + 1, then (14) yield

2| ∪l (G, x)| − | ∪l G| ≥ 2l − 2l−q+1 + 1− cx ≥ 0.

(2.b) Note that |∪l(G, x)| ≥ q, so cx ≤ 2l−2l−q−q. If γ = c−cx ≥ 2l−q−1−q,
then (14) yield

2| ∪l (G, x)| − | ∪l G| ≥ 2l − 2l−q+1 + 1− cx + γ ≥ 0,

because cx ≤ 2l − 2l−q − q and γ ≥ 2l−q − 1− q.
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(2.c) Since cx ≤ 2l − 2l−q − q and 2l−q ≤ q + 1, then equations (14) yield

2| ∪l (G, x)| − | ∪l G| ≥ 2l − 2l−q+1 + 1− cx ≥ 0.

(2.d) If | ∪l G| ≥ 2l−q+1 − 2, then equation (14) yields c ≤ 2l − 2l−q+1 + 1.
Since cx ≤ c, then cx ≤ 2l − 2l−q+1 + 1 and (2.d) follows from (2.a).

The next corollary follows directly from Theorem 18 (2.d) and the fact
that the union-closed conjecture holds for the families with a generating
family of pairwise disjoint sets.

Corollary 19. The union-closed conjecture holds for a union-closed family
F of sets if F has a generating family of sets G with |G| ≤ log2(|F|+2)+1.

Given a family of sets G with l sets, we say that ∪lG satisfies the averaged
Fránkl’s property if

∑
x∈Ggd

(2| ∪l (G, x)| − | ∪l G|) ≥ 0.

Satisfying the averaged Fránkl’s property clearly implies satisfying the union-
closed conjecture. As observed in [2], there are many families G with l
sets such that ∪lG satisfying the union-closed conjecture, but the averaged
Fránkl’s property fails.

For any family of sets G = {A1, . . . , Al}, recall that the ground set of G
is Ggd = ∪l

i=1Ai. For any x ∈ Ggd, we let

qx(G) = {A : x ∈ A ∈ G} and qmin(G) = min
x∈Ggd

qx(G).

Furthermore, we sometimes write qx (resp. qmin) instead of qx(G) (resp.
qmin(G)) if the family G is clear from the context.

Let O be a maximum independent set of overcounts in ∪lG. Then for
any overcount W = {L,R} ∈ O, we let SW =

⋃
A∈LA =

⋃
A∈R A. Then SW

is a union of some sets Ai ∈ G. Define the average size of a set SW over all
W ∈ O by

(15) s(G) = 1

|O|
∑
W∈O

|SW |.

Let cx be the maximum number of independent overcounts in ∪l(G, x) and
define the average value of cx over all x ∈ Ggd by

(16) c(G) = 1

|Ggd|
∑
x∈Ggd

cx.
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Theorem 20. Let G be a family of l sets with g = |Ggd|. Let s = s(G) and
c = c(G) be as defined in (15) and (16) respectively. Then g/s ≥ 1 always
holds.
(i) The averaged Fránkl’s property is true for ∪lG if and only if

(2− g/s)c ≤ 1 + 2l − (2l/g)
∑

x∈Ggd

1

2qx−1
.

In particular, the averaged Fránkl’s property is true for ∪lG if g/s ≥ 2.
(ii) The union-closed conjecture is true for ∪lG if 1 ≤ (g/s) < 2, and there
exists x ∈ Ggd satisfying

cx ≤ min

{
2l − 2l−qx+1 + 1

2− g/s
, c

}
.

In particular, the union-closed conjecture is true for ∪lG if c ≤ 2l−2l−qx+1+1
2−g/s .

(iii) The union-closed conjecture is true for ∪lG for any positive number
ε < 1 with

1 + ε ≤ g/s < 2 and qmin ≥ 1− log2(ε).

Moreover, by combining (i) and (iii), it follows that the union-closed con-
jecture is true for ∪lG whenever g/s > 1 and qmin ≥ 1− log2(g/s− 1).

Proof. Let O be a maximum independent set of overcounts in ∪lG. For any
x ∈ Ggd, let Ox ⊆ O denote the (possibly empty) set of all those overcounts
W = {L,R} ∈ O for which x ∈ SW =

⋃
A∈LA =

⋃
A∈R A. We count in two

ways the number of pairs (x,W ) such that x ∈ Ggd and W ∈ Ox. Then we
have

∑
W∈O

|SW | =
∑
x∈Ggd

|Ox|.(17)

Let c = |O|, and let Cx be a maximum independent set of overcounts in
∪l(G, x) with cx = |Cx|. If |Cx| > |Ox| then O′ = (O \ Ox) ∪ Cx is also an
independent set of overcounts in ∪lG with |O′| > |O|, which contradicts O
being of maximum size. So we may assume that cx = |Cx| = |Ox| for any
x ∈ Ggd. Then (17) yields

∑
W∈O

|SW | =
∑
x∈Ggd

cx.(18)
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Now, it follows from (18) and the definitions of s and c (see (15) and (16))
that

c = (g/s) · c.(19)

In general g ≥ s since SW ⊆ Ggd for all W ∈ O.
(i) Applying (14), we have

∑
x∈Ggd

(2| ∪l (G, x)| − | ∪l G|) ≥ 0 if and only
if

∑
x∈Ggd

(2| ∪l (G, x)| − | ∪l G|) =
∑
x∈Ggd

(2(2l − 2l−qx − cx)− (2l − 1− c)) ≥ 0

if and only if

c ≥
2
∑

x∈Ggd
cx

g
+

2l

g

∑
x∈Ggd

1

2qx−1
− 2l − 1,

if and only if

c ≥ 2c+
2l

g

∑
x∈Ggd

1

2qx−1
− 2l − 1.

By (19), the above inequality holds if and only if

(2− g/s)c ≤ 1 + 2l − 2l

g

∑
x∈Ggd

1

2qx−1
.

If there exists x ∈ Ggd satisfying

cx ≤ min

{
2l − 2l−qx+1 + 1

2− g/s
, c

}
,

then by (19), we obtain

c = (g/s) · c ≥ (g/s)cx ≥ 2cx − 2l + 2l−qx+1 − 1,

because cx ≤ (2l − 2l−qx+1 + 1)/(2 − g/s) holds by hypothesis. Now (ii)
follows from Theorem 18 (2.b).

To prove (iii), first note 2−g/s ≤ 1−ε since (by hypothesis) g/s ≥ 1+ε.
Consequently, the sufficient condition in (ii), namely c ≤ (2l − 2l−qx+1 +
1)/(2− g/s), holds if

(20) c ≤ (1− ε)−1 · (2l − 2l−qx+1 + 1).
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Now (20) holds because

c ≤ 2l ≤ (1− ε)−1 · (2l − 2l−qx+1 + 1),

where the last inequality holds since ε < 1 and

qx ≥ qmin ≥ 1− log2(ε) ⇒ 2l ≤ (1− ε)−1 · (2l − 2l−qx+1 + 1).

The proof of part (iii) is now complete.
The last statement of the theorem is a straightforward combination of

(i) and (iii).
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