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Abstract. Let n and t be positive integers with t < n, and let q
be a prime power. A partial (t− 1)-spread of PG(n− 1, q) is a set
of (t− 1)-dimensional subspaces of PG(n− 1, q) that are pairwise
disjoint. Let r = n mod t. We prove that if t > (qr − 1)/(q − 1),
then the maximum size, i.e., cardinality, of a partial (t− 1)-spread
of PG(n−1, q) is (qn− qt+r)/(qt−1)+1. This essentially settles a
main open problem in this area. Prior to this result, this maximum
size was only known for r ∈ {0, 1} and for r = q = 2.
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1. Introduction

Let n and t be positive integers with t < n, and let q be a prime
power. Let PG(n−1, q) denote the (n−1)-dimensional projective space
over the finite field Fq. A partial (t − 1)-spread S of PG(n − 1, q) is
a collection of (t − 1)-dimensional subspaces of PG(n − 1, q) that are
pairwise disjoint. If S contains all the points of PG(n − 1, q), then it
is called a (t− 1)-spread. It follows from the work of André [1] that a
(t− 1)-spread of PG(n− 1, q) exists if and only if t− 1 divides n− 1.

Given positive integers n and t with t < n, the problem of finding the
maximum size, i.e., cardinality, of a partial (t−1)-spread of PG(n−1, q)
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is rather a natural one. It is directly related to the general problem
of classifying the maximal partial (t − 1)-spread. A maximal partial
(t−1)-spread is a set of (t−1)-dimensional subspaces which cannot be
extended to a larger set. This problem has been extensively studied [6,
13, 15, 20]. Besides their traditional relevance to Galois geometry,
partial (t − 1)-spreads are used to build byte-correcting codes (e.g.,
see [7, 19]), 1-perfect mixed error-correcting codes (e.g., see [18, 19]),
orthogonal arrays and (s, k, λ)-nets (e.g., see [4]). More recently, partial
(t−1)-spreads have also attracted renewed attention since they can be
viewed as subspace codes. In Section 4, we shall say more about the
connection between our results and subspace codes.

Let µq(n, t) denote the maximum size of any partial (t−1)-spread of
PG(n − 1, q). The problem of determining µq(n, t) is a long standing
open problem. A general upper bound for µq(n, t) is given by the
following theorem of Drake and Freeman [4].

Theorem 1. Let r = n mod t. Then µq(n, t) ≤
qn − qr

qt − 1
− bωc − 1,

where 2ω =
√

4qt(qt − qr) + 1− (2qt − 2qr + 1).

The following result is due to André [1] for r = 0. For r = 1, it is
due to Hong and Patel [19] when q = 2, and Beutelspacher [3] when
q > 2.

Theorem 2. Let r = n mod t. Then µq(n, t) ≥
qn − qt+r

qt − 1
+ 1, where

equality holds if r ∈ {0, 1}.

In light of Theorem 2, it was later conjectured (e.g., see [5, 19])
that the value of µq(n, t) is given by the lower bound in Theorem 2.
However, this conjecture was disproved by the second author of this
paper and his co-authors [11] who proved the following result.

Theorem 3. If n ≥ 8 and n mod 3 = 2, then µ2(n, 3) =
2n − 25

7
+ 2.

Very recently, Kurz [22] posted a preprint in which he proves the
following theorem which upholds the lower bound for µq(n, t) when
q = 2, r = 2, and t > 3.

Theorem 4. If n > t > 3 and n mod t = 2, then

µ2(n, t) =
2n − 2t+2

2t − 1
+ 1.

In this paper, we prove that the conjectured value of µq(n, t) holds for
almost all values of the parameters n, q, and t. The following theorem,
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our main result, generalizes Theorem 2 (set r = 1) and Theorem 4 (set
r = 2 and q = 2). In particular, this is the first comprehensive result
with the exact value of µq(n, t) for almost all values of the parameters
n, q, and t.

Theorem 5. Let r = n mod t. If t >
qr − 1

q − 1
, then

µq(n, t) =
qn − qt+r

qt − 1
+ 1.

We can use the language of graph theory to reformulate Theorem 5
as follows. LetHq(n, t) be the hypergraph whose vertices are the points
of PG(n−1, q) and whose edges are its (t−1)-subspaces. Then Hq(n, t)
is a (qt− 1)/(q− 1)-uniform hypergraph. Now Theorem 5 implies that
if r = n mod t and t > (qr − 1)/(q − 1), then the maximum size of a
matching in Hq(n, t) is (qn − qt+r)/(qt − 1) + 1.

The general strategy of the proof of Theorem 5 is due to Beu-
telspacher who used it to prove Theorem 2. This strategy relies on
subspace partitions which we shall discuss in Section 2. Beutelspacher’s
approach was further extended by Kurz to prove Theorem 4. In this pa-
per, we developed an averaging argument to further extend this method
and prove our main result (see Theorem 5) in Section 3.

2. Subspace partitions

Let V = V (n, q) denote the vector space of dimension n over Fq. For
any subspace U of V , let U∗ denote the set of nonzero vectors in U .
A d-subspace of V (n, q) is a d-dimensional subspace of V (n, q); this is
equivalent to a d− 1-subspace in PG(n− 1, q).

A subspace partition P of V , also known as a vector space partition,
is a collection of nontrivial subspaces of V such that each vector of V ∗

is in exactly one subspace of P (e.g., see Heden [15] for a survey on
subspace partitions). The size of a subspace partition P is the number
of subspaces in P .

Suppose that there are s distinct dimensions, ds > · · · > d1, that
occur in a subspace partition P , and let ni denote the number of i-
subspaces in P . Then the expression [d

nds
s , . . . , d

nd1
1 ] is called the type

of P .

Remark 6. A partial (t − 1)-spread of PG(n − 1, q) of size nt is a
partial t-spread of V (n, q) of size nt. This is equivalent to a subspace
partition of V (n, q) of type [tnt , 1n1 ]. We will use this subspace partition
formulation in the proof of Lemma 9.
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To state the next lemmas, we need the following definitions. For any
integer i ≥ 1, let

Θi =
qi − 1

q − 1
.

Then, for i ≥ 1, Θi is the number of 1-subspaces in an i-subspace
of V (n, q). Let P be a subspace partition of V = V (n, q) of type
[d

nds
s , . . . , d

nd1
1 ]. For any hyperplane H of V , let bH,d be the number of

d-subspaces in P that are contained in H and set bH = [bH,ds , . . . , bH,d1 ].
Define the set B of hyperplane types as follows:

B = {bH : H is a hyperplane of V }.
For any b ∈ B, let sb denote the number of hyperplanes of V of type b.

We will also use Lemma 7 and Lemma 8 by Heden and Lehmann [16].

Lemma 7. Let P be a subspace partition of V (n, q) of type [d
nds
s , . . . , d

nd1
1 ].

If H is a hyperplane of V (n, q) and bH,d is as defined above, then

|P| = 1 +
s∑

i=1

bH,diq
di .

Lemma 8. Let P be a subspace partition of V (n, q), and let B and sb
be as defined above. Then ∑

b∈B

sb = Θn,

and for any d-subspace of P, the following holds:∑
b∈B

bdsb = ndΘn−d.

3. Proof of Theorem 5

Let n = kt+r and 1 ≤ r ≤ t−1. Throughout this section we assume
this definition of n. We use the following notation:

(1) ` =
qn−t − qr

qt − 1
.

Then the lower bound for µq(n, t) in Theorem 2 can be written as:

µq(n, t) ≥ `qt + 1.

We now prove our main lemma.

Lemma 9. Let n and t be positive integers with t < n, let q be a prime
power, and let r = n mod t. If r ≥ 1 and t > Θr, then µq(n, t) ≤ `qt+1.
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Proof. Recall that Θi = (qi − 1)/(q − 1) for any integer i ≥ 1. For
convenience, we also set

δi =
qi − 2qi−1 + 1

q − 1
.

Since q ≥ 2, we have the following easy facts, which we will use through-
out the proof.

(2) 0 < δi < qi−1; δi mod qi−1 = δi; 1 + δi+1 = qδi; and
δi+1

q
< δi.

The proof is by contradiction. So assume that µq(n, t) > `qt + 1.
Then PG(n − 1, q) has a (t − 1)-partial spread of size `qt + 2. Thus,
it follows from Remark 6 that there exists a subspace partition P0 of
V (n, q) of type [tnt , 1n1 ], where
(3)

nt = `qt+2 and n1 =

(
qr − 1

q − 1
− 1

)
qt+

qt+1 − 2qt + 1

q − 1
= (Θr−1)qt+δt+1.

We will prove by induction that for each integer j with 0 ≤ j ≤ Θr−1,
there exists a subspace partition Pj of Hj

∼= V (n− j, q) of type

(4) [tmj,t , (t− 1)mj,t−1 , . . . , (t− j)mj,t−j , 1mj,1 ],

where mj,t, . . . ,mj,t−j, mj,1, and cj are nonnegative integers such that

(5)
t∑

i=t−j

mj,i = nt = `qt + 2,

and

(6) mj,1 = cjq
t−j + δt+1−j, and 0 ≤ cj ≤ Θr − 1− j.

The base case, j = 0, holds since P0 is a subspace partition of H0 =
V (n, q) with type [tnt , 1n1 ], and with the properties given in (3), which
thus satisfies the conditions specified in (4), (5), and (6).

For the inductive step, suppose that for some j, with 0 ≤ j < Θr−1,
we have constructed a subspace partition Pj of Hj

∼= V (n− j, q) of the
type given in (4), and with the properties given in (5) and (6). We
then use Lemma 8 to determine the average, bavg,1, of the values bH,1
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over all hyperplanes H of Hj.

bavg,1 =

∑
b∈B b1 sb∑
b∈B sb

=
mj,1Θn−1−j

Θn−j
=
(
cjq

t−j + δt+1−j
)(qn−1−j − 1

qn−j − 1

)

<
cjq

t−j + δt+1−j

q

(7)

< cjq
t−j−1 + δt−j.

It follows from (7) that there exists a hyperplane Hj+1 of Hj with

(8) bHj+1,1 ≤ bavg,1 < cjq
t−j−1 + δt−j.

Next, we apply Lemma 7 and (2) to the partition Pj and the hyperplane
Hj+1 of Hj to obtain:

1 + bHj+1,1 q +
t∑

i=t−j

bHj+1,i q
i = |Pj| = nt +mj,1

= `qt + 2 + cjq
t−j + δt+1−j

= 1 + `qt + cjq
t−j + qδt−j,(9)

where 0 ≤ cj ≤ Θr − 1− j. Simplifying (9) yields

(10) bHj+1,1 +
t∑

i=t−j

bHj+1,i q
i−1 = `qt−1 + cjq

t−j−1 + δt−j.

Then, it follows from (2) and (10) that

(11) bHj+1,1 mod qt−j−1 = δt−j.

By (8) and (11), there exists a nonnegative integer cj+1 such that

(12) mj+1,1 = bHj+1,1 = cj+1q
t−j−1 + δt−j, and 0 ≤ cj+1 ≤ Θr − 2− j.

Let Pj+1 be the subspace partition of Hj+1 defined by:

Pj+1 = {W ∩Hj+1 : W ∈ Pj}.
Since t − j > 2 (because j + 1 < Θr < t) and dim(W ∩ Hj+1) ∈
{dimW, dimW −1} for each W ∈ Pj, it follows that Pj+1 is a subspace
partition of Hj+1 of type

(13) [tmj+1,t , (t− 1)mj+1,t−1 , . . . , (t− j − 1)mj+1,t−j−1 , 1mj+1,1 ],

where mj+1,t,mj+1,t−1, . . . ,mj+1,t−j−1 satisfy

(14)
t∑

i=t−j−1

mj+1,i =
t∑

i=t−j

mj,i = nt.
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The inductive step follows since Pj+1 is a subspace partition of
Hj+1

∼= V (n − j − 1, q) of the type given in (13), which satisfies the
conditions in (14) and (12).

Thus far, we have shown that the desired subspace partition Pj of
Hj exists for any integer j such that 0 ≤ j ≤ Θr − 1.

For the final part of the proof, we set j = Θr − 1 and show that the
existence of the subspace partition PΘr−1 of HΘr−1 leads to a contra-
diction. If j = Θr − 1, then it follows from (6) that cΘr−1 = 0 and
mΘr−1,1 = δt+2−Θr . We use Lemma 8 one last time to determine the
average, bavg,1, of the values bH,1 over all hyperplanes H of HΘr−1. We
obtain,

bavg,1 =

∑
b∈B b1 sb∑
b∈B sb

=
mΘr−1,1Θn−Θr

Θn−Θr+1

= δt+2−Θr

qn−Θr − 1

qn−Θr+1 − 1

<
δt+2−Θr

q

< δt+1−Θr .(15)

It follows from (15) that there exists a hyperplane H∗ of HΘr−1 with

(16) bH∗,1 ≤ bavg,1 < δt+1−Θr .

We then use Lemma 7 and (2) on the partition PΘr−1 and the hyper-
plane H∗ of HΘr−1 to obtain:

1 + bH∗,1 q +
t∑

i=t−Θr+1

bH∗,i q
i = |PΘr−1| = nt +mΘr−1,1

= `qt + 2 + δt+2−Θr(17)

= 1 + `qt + qδt+1−Θr ,

Simplifying (17) yields

(18) bH∗,1 +
t∑

i=t−Θr+1

bH∗,i q
i−1 = `qt−1 + δt+1−Θr .

Then, (2) and (18) imply that

(19) bH∗,1 mod qt−Θr = δt+1−Θr .

Since t − Θr ≥ 1, it follows from (18) and (19) that bH∗,1 ≥ δt+1−Θr ,
which contradicts (16). Thus, µq(n, t) ≤ `qt + 1 and the proof is com-
plete. �
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Proof of Theorem 5. For r = 0, Theorem 5 is just the result of André [1],
and for r = 1, it follows from Theorem 2. For r ≥ 2, Theorem 5 holds
since the lower bound for µq(n, t) given in Theorem 2 and the upper
bound given in Lemma 9 are equal. �

4. Concluding Remarks

Applying the same averaging method used in the proof of Lemma 9
substantially improves the upper bound given by Drake and Freeman
(see Theorem 1) in some of the remaining cases, i.e., when t ∈ [r+1,Θr].
However, we omit those types of results here and will address them
elsewhere. For instance, we can prove the following lemma.

Lemma 10. Let n and t be positive integers with t < n, and let r =
n mod t. If r ≥ 2 and t = Θr, then µq(n, t) ≤ `qt + q.

Remark 11. If n, t, and r satisfy the hypothesis of Lemma 10, then
(after some simplifications) Theorem 1 yields µq(n, t) ≤ `qt +

⌈
qr

2

⌉
.

As mentioned in the introduction (Section 1), our result (Theorem 5)
settles almost all the remaining cases of one of the main unsolved prob-
lems related to partial (t−1)-spreads over PG(n−1, q). As a corollary,
Theorem 5 also settles several open problems in the area of subspace
coding that were raised by Etzion [8], Etzion–Storme [9], and Heinlein
et al. [17].

A subspace code over PG(n − 1, q) is a collection of subspaces of
PG(n − 1, q) (e.g., see [9, Section 4] for a recent survey). In their
seminal paper, Köetter and Kschischang [21] showed that subspace
codes were well-suited for error-correction in the new model for infor-
mation transfer called network coding [2]. Partial (t− 1)-spreads form
an important class of subspace codes, called Grassmannian codes (e.g.,
see [21, 10, 12]). Our result implies that the largest known partial
(t− 1)-spread codes are optimal for almost all values of n, t, and q.

References

[1] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translations-
gruppe, Math Zeit. 60 (1954), 156–186.

[2] R. Ahlswede, N. Cai, S.-Yen, R. Li, R. Yeung, Network information flow, IEEE
Trans. Inf. Theory 46 (2000), 1204–1216.

[3] A. Beutelspacher, Partial spreads in finite projective spaces and partial designs,
Math. Zeit. 145 (1975), 211–229.

[4] D. Drake and J. Freeman, Partial t-spreads and group constructible (s, r, µ)-
nets, J. Geom. 13 (1979), 211–216.



THE MAXIMUM SIZE OF A PARTIAL SPREAD 9

[5] J. Eisfeld and L. Storme, (Partial) t-spreads and minimal t-covers in fi-
nite spaces, Lecture notes from the Socrates Intensive Course in Finite Ge-
ometry and its Applications, Ghent, April 2000, Published electronically at
http://www.maths.qmul.ac.uk/∼leonard/partialspreads/eisfeldstorme.ps.

[6] J. Eisfeld , L. Storme , and P. Sziklai, On the spectrum of the sizes of maximal
partial line spreads in PG(2n, q), n ≥ 3, Designs Codes Crypt. 36 (2005),
101–110.

[7] T. Etzion, Perfect byte-correcting codes, IEEE Trans. Inf. Theory 44 (1998),
3140–3146.

[8] T. Etzion, Problems on q-analogs in coding theory,
http://arxiv.org/abs/1305.6126.

[9] T. Etzion and L. Storme, Galois geometries and coding theory, Designs Codes
Crypt. 78 (2016), 311–350.

[10] T. Etzion A. Vardy, Error-correcting codes in projective space, IEEE Trans.
Inf. Theory 57 (1998), 1165–1173.

[11] S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho, and L. Spence, The max-
imum size of a partial 3-spread in a finite vector space over GF(2), Designs
Codes Crypt. 54 (2010), 101–107.

[12] E. Gorla and A. Ravagnani, Partial spreads in random network coding, Fin.
Fields Appl. 26 (2014), 104–115.
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