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A note on minimal zero-sum sequences over Z

by

Papa A. Sissokho (Normal, IL)

1. Introduction. We shall follow the notation and definitions in Gryn-
kiewicz’s new monograph [15], and refer the reader to it for the definitions
that were omitted here.

For all integers x and y with x ≤ y, let [x, y] = {i ∈ Z : x ≤ i ≤ y}. Let
G0 be a non-empty subset of an additive abelian group G. Let F(G0) denote
the free multiplicative abelian monoid with basis G0, and whose elements are
the (unordered) sequences with terms in G0. The identity element of F(G0),
also called the trivial sequence, is the sequence with no terms. The operation
in F(G0) is the sequence concatenation product that takes R, T ∈F(G0) to
S =R ·T ∈ F(G0). In this case, we say that R (and T ) is a subsequence of S.
For every S = s1 · . . . · st ∈ F(G0), let

the length of S, denoted by |S|, be |S| = t;

the sum of S, denoted by σ(S), be σ(S) = s1 + · · ·+ st;

the average of S, denoted by Sav, be Sav = σ(S)/|S|;
the infinite norm of S, denoted by ‖S‖∞, be ‖S‖∞ = sup

1≤i≤t
|si|.

(1.1)

For any g ∈ G and any integer d ≥ 0, we let

g[d] = g · . . . · g︸ ︷︷ ︸
d

,

where g[d] denotes the empty sequence if d = 0.

A zero-sum sequence over G0 is a sequence S ∈F(G0) such that σ(S) = 0.
Such a sequence is called minimal if it does not contain a proper non-trivial
zero-sum subsequence. Then the submonoid

B0 = B(G0) = {S ∈ F(G0) : σ(S) = 0}
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of F(G0) is a Krull monoid (see e.g. [15]). The set A(B0) of atoms of B0 is
the set of all minimal zero-sum sequences in B0. A characterization of A(B0)
would shed some light on the factorization properties of B0 (see e.g. [12, 13]).

Given a minimal zero-sum sequence S = s1 · . . . · st ∈ A(B0), we are
interested in bounding its length depending on its terms si for i ∈ [1, t]. We
are also interested in finding a natural structure for A(B0) when G0 (and
thus B0) is finite.

The study of zero-sum sequences in B(G) when G is a finite cyclic group
is a very active area of research (see e.g. [2, 5, 6, 9, 18, 19, 22]), with ap-
plications to factorization theory (see e.g. [3, 10, 11, 12]). Similar, but less
extensive, investigations have been carried out when G is an infinite cyclic
group (see e.g. [4, 7, 13, 14]).

For all S ∈ B(Z) with |S| finite and |S| > 1, there exist positive integers
a1, . . . , an and b1, . . . , bm with a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bm such that

(1.2) S+ =

n∏
i=1

a
[xi]
i , S− =

m∏
j=1

(−bj)[yj ], S = S+ · S−,

where xi and yj are positive integers for all i ∈ [1, n] and j ∈ [1,m].

In his work on Diophantine linear equations, Lambert [17] proved the
following theorem.

Theorem 1.1 (Lambert [17]). Let S be a minimal zero-sum sequence
over Z with |S| finite and |S| > 1. If S is as in (1.2), then

|S+| ≤ ‖S−‖∞ = bm and |S−| ≤ ‖S+‖∞ = an.

This was reformulated and reproved in the language of sequences by Ba-
ginski et al. [4]. Perhaps due to inconsistent notation across various areas,
Theorem 1.1 has been independently rediscovered by Diaconis et al. [8] and
Sahs et al. [21]. Currently, the best bounds for |S+| and |S−| are due to
Henk–Weismantel [16]. They proved the following theorem of which Theo-
rem 1.1 is a special case upon setting ` = m and k = n.

Theorem 1.2 (Henk–Weismantel [16]). Let S be a minimal zero-sum
sequence over Z with |S| finite and |S| > 1. If S is as in (1.2), then

|S+| ≤ b`−
`−1∑
j=1

⌊
b`− bj
an

⌋
yj +

m∑
j=`+1

⌈
bj− b`
a1

⌉
yj for all `∈ [1,m],(J`)

|S−| ≤ ak−
k−1∑
i=1

⌊
ak−ai
bm

⌋
xi +

n∑
i=k+1

⌈
ai−ak
b1

⌉
xi for all k ∈ [1, n].(Ik)

In this paper, we improve on Theorem 1.2 by proving the following the-
orem.
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Theorem 1.3. Let S be a minimal zero-sum sequence over Z with |S|
finite and |S| > 1. If S is as in (1.2), then

|S+| ≤ b−S−avc =

⌊∑m
j=1 bjyj∑m
j=1 yj

⌋
and |S−| ≤ bS+

avc =

⌊∑n
i=1 aixi∑n
i=1 xi

⌋
.

The bounds in Theorems 1.1–1.3 are all tight for the minimal zero-sum
sequences

S = a
[ b
gcd(a,b)

] · (−b)[
a

gcd(a,b)
]
,

for all positive integers a and b. On the other hand, if we consider the
minimal zero-sum sequence S = 3[1] · 4[2] · (−1)[2] · (−9)[1], then Theorem 1.1
yields |S+| ≤ 9 and |S−| ≤ 4, Theorem 1.2 yields |S+| ≤ 4 and |S−| ≤ 4,
while Theorem 1.3 yields the tight bounds |S+| ≤ 3 and |S−| ≤ 3.

In Section 2, we prove Theorem 1.3 by refining the method of Sahs et
al. [21]. In Section 3, we define a natural partial order on the set A(B0) of
minimal zero-sum sequences and discuss its relevance. In Section 4, we show
that the bounds in Theorem 1.3 are always sharper than or equivalent to
the bounds in Theorem 1.2.

2. Proof of Theorem 1.3. Let G be an additive abelian group, and
let S = s1 · . . . · st ∈ F(G). For all i, j ∈ [1, t] such that i 6= j, let S′ be the
sequence obtained by removing the terms si and sj from S and inserting
(anywhere) the term si + sj . We call this process an (si, sj)-derivation and
say that S′ is (si, sj)-derived from S. We also say that S′ is derived from S
without specifying the pair (si, sj). For instance, if S = 2[3] · (−3)[2], then
S′ = 2[2] · (−3) · (−1) is (2,−3)-derived from S, and S′ = 4[1] · 2[1] · (−3)[2] is
(2, 2)-derived from S.

We will use the following lemma, which is a special case of Lemma 2 in
Sahs et al. [21]. For completeness, we include a very short proof.

Lemma 2.1. Let G be an additive abelian group. Let S = s1 · . . . · st be
a minimal zero-sum sequence over G, and let i, j ∈ [1, t] be such that i 6= j.
If S′ is (si, sj)-derived from S, then S′ is also a minimal zero-sum sequence
over G.

Proof. By definition S′ is a zero-sum sequence over G since si + sj ∈ G
and

σ(S′) = σ(s)− si − sj + (si + sj) = σ(S) = 0.

Suppose that S′ is not minimal. Then there exist non-trivial zero-sum sub-
sequences R and T such that S′ = R ·T , and the specific term si + sj (there
may be other copies of si+sj in S′ and S) is a subsequence of either R or T ,
and not both. Thus, either R or T is a proper zero-sum subsequence of S.
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This would contradict the minimality of S. Thus, S′ is minimal zero-sum
sequence.

We now prove our main theorem.

Proof of Theorem 1.3. Let S be a minimal zero-sum sequence over Z
with |S| finite and |S| > 1. Then there exist positive integers a1, . . . , an and
b1, . . . , bm with a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bm such that

S+ =
n∏

i=1

a
[xi]
i , S− =

m∏
j=1

(−bj)[yj ], S = S+ · S−,

where xi and yj are positive integers for all i ∈ [1, n] and j ∈ [1,m].

We shall prove by induction on |S| ≥ 2 that

(2.1) |S+| ≤ −S−av and |S−| ≤ S+
av.

If |S| = 2, then we must have m = n = 1, S = a1 · (−b1), and a1 − b1 = 0.
Since a1, b1 > 0, the statement (2.1) clearly holds. Assume that |S| ≥ 2
and (2.1) holds for all minimal zero-sum sequencesR such that 2 ≤ |R| < |S|.

If ai = bj for some i ∈ [1, n] and j ∈ [1,m], then S = ai · (−bj), as
otherwise S′ = ai · (−bj) would be a proper zero-sum subsequence of S,
which would contradict the minimality of S. Thus, we may assume that

{a1, . . . , an} ∩ {b1, . . . , bm} = ∅.

Without loss of generality, we also assume that an = ‖S+‖∞> ‖S−‖∞ = bm.

To prove the inductive step, we first show that |S+| ≤ −S−av. Since
xn > 0, ym > 0, and an − bm > 0, we can use Lemma 2.1 to perform an
(an,−bm)-derivation from S, and obtain the minimal zero-sum sequence

R = (an − bm)[1] · a[xn−1]n ·
n−1∏
i=1

a
[xi]
i · (−bm)[ym−1]

m∏
j=1

(−bj)[yj ],

where we omit the term an if xn = 1 and the term (−bm) if ym = 1.

Since |R| = |S| − 1, it follows from the induction hypothesis that

|R+| = 1 + (xn − 1) +
n−1∑
i=1

xi =
n∑

i=1

xi(2.2)

≤ −R−av =
(ym − 1)bm +

∑m−1
j=1 yjbj

(ym − 1) +
∑m−1

j=1 yj
.

Since bm = ‖S−‖∞ ≥ ‖R−‖∞, it follows from (2.2) that

|R+| =
n∑

i=1

xi ≤
bm + (ym − 1)bm +

∑m−1
j=1 yjbj

1 + (ym − 1) +
∑m−1

j=1 yj
=
−σ(S−)

|S−|
= −S−av.
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Thus,

(2.3) S+ =
n∑

i=1

xi = |R+| ≤ −S−av.

Next, we show that |S−| ≤ S+
av. Since σ(S) = 0, we have σ(S+) =

−σ(S−). This observation and (2.3) yield

(2.4) |S+| ≤ −S−av =
−σ(S−)

|S−|
=
σ(S+)

|S−|
, so |S−| ≤ σ(S+)

|S+|
= S+

av.

Since |S+| and |S−| are integers, the theorem follows from (2.3) and (2.4)
by taking the floors of S+

av and −S−av.

Remark 2.2. Let S be as in (1.2) and suppose that there exists t ∈ [1,m]
such that

(2.5) an > bt > −S−av =

∑m
j=1 bjyj∑m
j=1 yj

.

Then the (an,−bt)-derivation on S yields the minimal zero-sum sequence

R = (an − bt)[1] · a[xn−1]n ·
n−1∏
i=1

a
[xi]
i · (−bt)[yt−1]

m∏
j=1, j 6=t

(−bj)[yj ].

Thus, by applying Theorem 1.3 to R, we obtain

(2.6) |S+| =
n∑

i=1

xi = |R+| ≤ b−R−avc.

Since −R−av < −S−av (by the definition of R and (2.5)), the bound for |S+|
in (2.6) is sometimes better than |S+| ≤ b−S−avc given by Theorem 1.3. By
symmetry, we may sometimes obtain a better bound for |S−| in a similar
manner.

3. The structure of the minimal zero-sum sequences. Let G0

be a finite subset of Z. We are interested in finding a natural structure on
the set A(B0) of minimal zero-sum sequences in B0 = B(G0). As mentioned
in the introduction, A(B0) is also the set of atoms of the Krull monoid
B0. There are other interesting interpretations of A(B0). In the context
of Diophantine linear equations (see e.g. [16, 17, 20]), A(B0) corresponds
to the union of all Hilbert bases (1), which are minimal generating sets of
all the solutions. In the context of integer partitions, each sequence S =
a1 · . . . ·ap · (−b1) · . . . · (−bq) ∈ A(B0) such that p+q ≥ 3, ai > 0 for i ∈ [1, p],
and bj > 0 for j ∈ [1, q], corresponds to the primitive partition identity

(1) This union is also known as the Graver basis of the corresponding toric ideal
(see e.g. [24]).
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a1 + · · ·+ap = b1 + · · ·+ bq (see [8, p. 1]). Primitive partition identities were
studied by Diaconis et al. [8] who were motivated by applications in Gröbner
bases, computational statistics, and integer programming (see e.g. [23, 24]).

In the process of characterizing A(B0), we assume that S = s1 · . . . · st
∈ A(B0) is equivalent to −S = (−s1)·. . .·(−st) ∈ A(B0) and we only include
one of them in A(B0). For any positive integer n, define the n-derived set,
Dn(S), of S = s1 · . . . · st ∈ B(Z) by

Dn(S) = {S′ : i, j ∈ [1, t], i 6= j, S′ is (si, sj)-derived, and ‖S′‖∞ ≤ n}.
Given R,S ∈ B(Z), we write R ≺n S if and only if R = S or R ∈ Dn(S).

The following proposition is a direct consequence of Lemma 2.1.

Proposition 3.1. Let n be a positive integer, G0 = [−n, n], and
B0 = B(G0).

(i) If S ∈ A(B0), then Dn(S) ⊆ A(B0).
(ii) Pn = (A(B0),≺n) is a poset.

For instance, if S = 2[3] · (−3)[2], then Figure 1 shows the poset P3.
Note that S′ = 2[3] · (−6) is (−3,−3)-derived from S, but S′ 6∈ D3(S) since
‖S′‖∞ = 6 > 3.

2[3] · (−3)[2]

2[2] · (−3) · (−1)

2 · 1 · (−3)

2 · (−2)

0

1[3] · (−3)

1[2] · (−2) ' 2 · (−1)[2]

3 · (−3) 1 · (−1)   

 

  

 

  

Fig. 1. The poset P3

Let Mn be the set of maximal elements of the poset Pn of Proposi-
tion 3.1, i.e.,Mn contains all minimal sequences R ∈ A(B0) that cannot be
derived from any S ∈ A(B0). Then the following proposition is immediate.

Proposition 3.2. Let n be a positive integer, G0 = [−n, n], and
B0 = B(G0). If Q is a set such that Mn ⊆ Q ⊆ A(B0), then

A(B0) = Q∪
⋃
S∈Q
Dn(S),

where we assume that S ∈ A(B0) is equivalent to −S ∈ A(B0).
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For instance, Figure 1 shows that

M3 = {2[3] · (−3)[2], 1[3] · (−3)[1]}.
We also verified that

(3.1) Mn ⊆ {a[
b

gcd(a,b)
] · (−b)[

a
gcd(a,b)

]
: a, b ∈ [1, n]} for n ∈ [1, 5].

However, by using the 4ti2-software package [1], we found that (3.1) does
not hold for n = 6. In particular,

M6 − {a[
b

gcd(a,b)
] · (−b)[

a
gcd(a,b)

]
: a, b ∈ [1, 6]}

= {2[2] · 3[1] · 5[1] · (−6)[2], 1[1] · 3[1] · 4[2] · (−6)[2]}.

Determining Mn (or a small enough superset of Mn), for all n > 0,
would directly yield an algorithm for generating Pn, and an approach for
computing the cardinality of A(B0) (e.g., by studying the Möbius function
of Pn).

4. Comparison of the bounds in Theorems 1.2 & 1.3. In this
section, we show that the bounds in Theorem 1.3 are in general sharper than
or equivalent to the bounds in Theorem 1.2. To do this, we will show that
it is enough to compare those two theorems for sequences S (where S is as
in (1.2)) such that

(4.1) a1 ≤ |S−| =
m∑
j=1

yj ≤ an and b1 ≤ |S+| =
n∑

i=1

xi ≤ bm.

First, note that it follows from Theorem 1.1 that

(4.2)
m∑
j=1

yj = |S−| ≤ an and
n∑

i=1

xi = |S+| ≤ bm.

Let ` ∈ [1,m], k ∈ [1, n], and consider the upper bounds

UJ` = b` −
`−1∑
j=1

⌊
b` − bj
an

⌋
yj +

m∑
j=`+1

⌊
b` − bj
a1

⌋
yj ,(4.3)

UIk = ak −
k−1∑
i=1

⌊
ak − ai
bm

⌋
xi +

n∑
i=k+1

⌈
ai − ak
b1

⌉
xi,(4.4)

in the inequalities (J`) and (Ik) of Theorem 1.2, where a1 ≤ · · · ≤ an and
b1 ≤ · · · ≤ bm.

Without loss of generality, assume that bm ≥ an. Then
⌊
ak−ai
bm

⌋
= 0 for

1 ≤ i < k ≤ n, and it follows from (4.4) that

(4.5) UIk ≥ ak ≥ a1 for all k ∈ [1, n].
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Thus, it follows from (4.2), (4.5), and the fact that S+
av ≥ a1 that Theo-

rems 1.2 and 1.3 can only give meaningful upper bounds for |S−| if

(4.6) a1 ≤ |S−| =
m∑
j=1

yj ≤ an.

Next, it follows from the definition of −S−av in (1.1) that

−S−av =
−σ(S−)

|S−|
=

∑m
j=1 bjyj∑m
j=1 yj

(4.7)

=

∑m
j=1 b`yj −

∑`−1
j=1(b` − bj)yj +

∑m
j=`+1(bj − b`)yj∑m

j=1 yj

= b` −
∑`−1

j=1(b` − bj)yj∑m
j=1 yj

+

∑m
j=`+1(bj − b`)yj∑m

j=1 yj
.

Since a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bm, it follows from (4.6) and (4.7) that

−S−av ≤ b` −
`−1∑
j=1

(b` − bj)yj
an

+
m∑

j=`+1

(bj − b`)yj
a1

(4.8)

≤ b` −
`−1∑
j=1

⌊
b` − bj
an

⌋
yj +

m∑
j=`+1

⌈
bj − b`
a1

⌉
yj = UJ` .

Thus, Theorem 1.3 and (4.8) yield

(4.9) |S+| ≤ b−S−avc ≤ −S−av ≤ UJ` ,

which implies inequality (J`) of Theorem 1.2.

Moreover, it follows from (4.9) and the definition of −S−av that

(4.10) b1 ≤ −S−av ≤ UJ` .

Thus, it follows from (4.2) and (4.10) that Theorems 1.2 and 1.3 can only
give meaningful upper bounds for |S+| if

(4.11) b1 ≤ |S+| =
n∑

i=1

xi ≤ bm.

Similarly to the proof of (4.9), we can now use (4.11) to show (although
we omit the details here) that Theorem 1.3 implies inequality (Ik) of Theo-
rem 1.2, i.e.

(4.12) |S−| ≤ bS+
avc ≤ S+

av ≤ UIk .

Finally, it follows from (4.9) and (4.12) that the bounds in Theorem 1.3 are
in general sharper than or equivalent to the bounds in Theorem 1.2.
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