A note on minimal zero-sum sequences over \mathbb{Z}

by
Papa A. Sissokho (Normal, IL)

1. Introduction. We shall follow the notation and definitions in Grynkiewicz's new monograph [15], and refer the reader to it for the definitions that were omitted here.

For all integers x and y with $x \leq y$, let $[x, y]=\{i \in \mathbb{Z}: x \leq i \leq y\}$. Let G_{0} be a non-empty subset of an additive abelian group G. Let $\mathcal{F}\left(G_{0}\right)$ denote the free multiplicative abelian monoid with basis G_{0}, and whose elements are the (unordered) sequences with terms in G_{0}. The identity element of $\mathcal{F}\left(G_{0}\right)$, also called the trivial sequence, is the sequence with no terms. The operation in $\mathcal{F}\left(G_{0}\right)$ is the sequence concatenation product that takes $R, T \in \mathcal{F}\left(G_{0}\right)$ to $S=R \cdot T \in \mathcal{F}\left(G_{0}\right)$. In this case, we say that $R($ and $T)$ is a subsequence of S. For every $S=s_{1} \cdot \ldots \cdot s_{t} \in \mathcal{F}\left(G_{0}\right)$, let
the length of S, denoted by $|S|$, be $|S|=t$;
the sum of S, denoted by $\sigma(S)$, be $\sigma(S)=s_{1}+\cdots+s_{t}$;
the average of S, denoted by S_{av}, be $S_{\mathrm{av}}=\sigma(S) /|S|$;
the infinite norm of S, denoted by $\|S\|_{\infty}$, be $\|S\|_{\infty}=\sup _{1 \leq i \leq t}\left|s_{i}\right|$.
For any $g \in G$ and any integer $d \geq 0$, we let

$$
g^{[d]}=\underbrace{g \cdot \ldots \cdot g}_{d},
$$

where $g^{[d]}$ denotes the empty sequence if $d=0$.
A zero-sum sequence over G_{0} is a sequence $S \in \mathcal{F}\left(G_{0}\right)$ such that $\sigma(S)=0$. Such a sequence is called minimal if it does not contain a proper non-trivial zero-sum subsequence. Then the submonoid

$$
\mathcal{B}_{0}=\mathcal{B}\left(G_{0}\right)=\left\{S \in \mathcal{F}\left(G_{0}\right): \sigma(S)=0\right\}
$$

[^0]of $\mathcal{F}\left(G_{0}\right)$ is a Krull monoid (see e.g. [15]). The set $\mathcal{A}\left(\mathcal{B}_{0}\right)$ of atoms of \mathcal{B}_{0} is the set of all minimal zero-sum sequences in \mathcal{B}_{0}. A characterization of $\mathcal{A}\left(\mathcal{B}_{0}\right)$ would shed some light on the factorization properties of \mathcal{B}_{0} (see e.g. [12, 13]).

Given a minimal zero-sum sequence $S=s_{1} \cdot \ldots \cdot s_{t} \in \mathcal{A}\left(\mathcal{B}_{0}\right)$, we are interested in bounding its length depending on its terms s_{i} for $i \in[1, t]$. We are also interested in finding a natural structure for $\mathcal{A}\left(\mathcal{B}_{0}\right)$ when G_{0} (and thus \mathcal{B}_{0}) is finite.

The study of zero-sum sequences in $\mathcal{B}(G)$ when G is a finite cyclic group is a very active area of research (see e.g. [2, 5, 6, 6, 18, 19, 22]), with applications to factorization theory (see e.g. [3, 10, 11, 12]). Similar, but less extensive, investigations have been carried out when G is an infinite cyclic group (see e.g. [4, 7, 13, 14]).

For all $S \in \mathcal{B}(\mathbb{Z})$ with $|S|$ finite and $|S|>1$, there exist positive integers a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{m} with $a_{1} \leq \cdots \leq a_{n}$ and $b_{1} \leq \cdots \leq b_{m}$ such that

$$
\begin{equation*}
S^{+}=\prod_{i=1}^{n} a_{i}^{\left[x_{i}\right]}, \quad S^{-}=\prod_{j=1}^{m}\left(-b_{j}\right)^{\left[y_{j}\right]}, \quad S=S^{+} \cdot S^{-} \tag{1.2}
\end{equation*}
$$

where x_{i} and y_{j} are positive integers for all $i \in[1, n]$ and $j \in[1, m]$.
In his work on Diophantine linear equations, Lambert [17] proved the following theorem.

ThEOREM 1.1 (Lambert [17]). Let S be a minimal zero-sum sequence over \mathbb{Z} with $|S|$ finite and $|S|>1$. If S is as in 1.2 , then

$$
\left|S^{+}\right| \leq\left\|S^{-}\right\|_{\infty}=b_{m} \quad \text { and } \quad\left|S^{-}\right| \leq\left\|S^{+}\right\|_{\infty}=a_{n}
$$

This was reformulated and reproved in the language of sequences by Baginski et al. 4]. Perhaps due to inconsistent notation across various areas, Theorem 1.1 has been independently rediscovered by Diaconis et al. 8] and Sahs et al. 21]. Currently, the best bounds for $\left|S^{+}\right|$and $\left|S^{-}\right|$are due to Henk-Weismantel [16]. They proved the following theorem of which Theorem 1.1 is a special case upon setting $\ell=m$ and $k=n$.

Theorem 1.2 (Henk-Weismantel [16]). Let S be a minimal zero-sum sequence over \mathbb{Z} with $|S|$ finite and $|S|>1$. If S is as in (1.2), then
$\left(J_{\ell}\right) \quad\left|S^{+}\right| \leq b_{\ell}-\sum_{j=1}^{\ell-1}\left\lfloor\frac{b_{\ell}-b_{j}}{a_{n}}\right\rfloor y_{j}+\sum_{j=\ell+1}^{m}\left\lceil\frac{b_{j}-b_{\ell}}{a_{1}}\right\rceil y_{j} \quad$ for all $\ell \in[1, m]$,
(I $\left.I_{k}\right) \quad\left|S^{-}\right| \leq a_{k}-\sum_{i=1}^{k-1}\left\lfloor\frac{a_{k}-a_{i}}{b_{m}}\right\rfloor x_{i}+\sum_{i=k+1}^{n}\left\lceil\frac{a_{i}-a_{k}}{b_{1}}\right\rceil x_{i} \quad$ for all $k \in[1, n]$.
In this paper, we improve on Theorem 1.2 by proving the following theorem.

Theorem 1.3. Let S be a minimal zero-sum sequence over \mathbb{Z} with $|S|$ finite and $|S|>1$. If S is as in 1.2 , then

$$
\left|S^{+}\right| \leq\left\lfloor-S_{\mathrm{av}}^{-}\right\rfloor=\left\lfloor\frac{\sum_{j=1}^{m} b_{j} y_{j}}{\sum_{j=1}^{m} y_{j}}\right\rfloor \quad \text { and } \quad\left|S^{-}\right| \leq\left\lfloor S_{\mathrm{av}}^{+}\right\rfloor=\left\lfloor\frac{\sum_{i=1}^{n} a_{i} x_{i}}{\sum_{i=1}^{n} x_{i}}\right\rfloor
$$

The bounds in Theorems $1.1-1.3$ are all tight for the minimal zero-sum sequences

$$
S=a^{\left[\frac{b}{\operatorname{gcd}(a, b)}\right]} \cdot(-b)^{\left[\frac{a}{\operatorname{gcd}(a, b)}\right]},
$$

for all positive integers a and b. On the other hand, if we consider the minimal zero-sum sequence $S=3^{[1]} \cdot 4^{[2]} \cdot(-1)^{[2]} \cdot(-9)^{[1]}$, then Theorem 1.1 yields $\left|S^{+}\right| \leq 9$ and $\left|S^{-}\right| \leq 4$, Theorem 1.2 yields $\left|S^{+}\right| \leq 4$ and $\left|S^{-}\right| \leq 4$, while Theorem 1.3 yields the tight bounds $\left|S^{+}\right| \leq 3$ and $\left|S^{-}\right| \leq 3$.

In Section 2, we prove Theorem 1.3 by refining the method of Sahs et al. [21]. In Section 3, we define a natural partial order on the set $\mathcal{A}\left(\mathcal{B}_{0}\right)$ of minimal zero-sum sequences and discuss its relevance. In Section 4, we show that the bounds in Theorem 1.3 are always sharper than or equivalent to the bounds in Theorem 1.2 .
2. Proof of Theorem 1.3. Let G be an additive abelian group, and let $S=s_{1} \cdot \ldots \cdot s_{t} \in \mathcal{F}(G)$. For all $i, j \in[1, t]$ such that $i \neq j$, let S^{\prime} be the sequence obtained by removing the terms s_{i} and s_{j} from S and inserting (anywhere) the term $s_{i}+s_{j}$. We call this process an $\left(s_{i}, s_{j}\right)$-derivation and say that S^{\prime} is $\left(s_{i}, s_{j}\right)$-derived from S. We also say that S^{\prime} is derived from S without specifying the pair $\left(s_{i}, s_{j}\right)$. For instance, if $S=2^{[3]} \cdot(-3)^{[2]}$, then $S^{\prime}=2^{[2]} \cdot(-3) \cdot(-1)$ is $(2,-3)$-derived from S, and $S^{\prime}=4^{[1]} \cdot 2^{[1]} \cdot(-3)^{[2]}$ is $(2,2)$-derived from S.

We will use the following lemma, which is a special case of Lemma 2 in Sahs et al. [21]. For completeness, we include a very short proof.

LEMMA 2.1. Let G be an additive abelian group. Let $S=s_{1} \cdot \ldots \cdot s_{t}$ be a minimal zero-sum sequence over G, and let $i, j \in[1, t]$ be such that $i \neq j$. If S^{\prime} is $\left(s_{i}, s_{j}\right)$-derived from S, then S^{\prime} is also a minimal zero-sum sequence over G.

Proof. By definition S^{\prime} is a zero-sum sequence over G since $s_{i}+s_{j} \in G$ and

$$
\sigma\left(S^{\prime}\right)=\sigma(s)-s_{i}-s_{j}+\left(s_{i}+s_{j}\right)=\sigma(S)=0
$$

Suppose that S^{\prime} is not minimal. Then there exist non-trivial zero-sum subsequences R and T such that $S^{\prime}=R \cdot T$, and the specific term $s_{i}+s_{j}$ (there may be other copies of $s_{i}+s_{j}$ in S^{\prime} and S) is a subsequence of either R or T, and not both. Thus, either R or T is a proper zero-sum subsequence of S.

This would contradict the minimality of S. Thus, S^{\prime} is minimal zero-sum sequence.

We now prove our main theorem.
Proof of Theorem 1.3. Let S be a minimal zero-sum sequence over \mathbb{Z} with $|S|$ finite and $|S|>1$. Then there exist positive integers a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{m} with $a_{1} \leq \cdots \leq a_{n}$ and $b_{1} \leq \cdots \leq b_{m}$ such that

$$
S^{+}=\prod_{i=1}^{n} a_{i}^{\left[x_{i}\right]}, \quad S^{-}=\prod_{j=1}^{m}\left(-b_{j}\right)^{\left[y_{j}\right]}, \quad S=S^{+} \cdot S^{-},
$$

where x_{i} and y_{j} are positive integers for all $i \in[1, n]$ and $j \in[1, m]$.
We shall prove by induction on $|S| \geq 2$ that

$$
\begin{equation*}
\left|S^{+}\right| \leq-S_{\mathrm{av}}^{-} \quad \text { and } \quad\left|S^{-}\right| \leq S_{\mathrm{av}}^{+} \tag{2.1}
\end{equation*}
$$

If $|S|=2$, then we must have $m=n=1, S=a_{1} \cdot\left(-b_{1}\right)$, and $a_{1}-b_{1}=0$. Since $a_{1}, b_{1}>0$, the statement (2.1) clearly holds. Assume that $|S| \geq 2$ and (2.1) holds for all minimal zero-sum sequences R such that $2 \leq|R|<|S|$.

If $a_{i}=b_{j}$ for some $i \in[1, n]$ and $j \in[1, m]$, then $S=a_{i} \cdot\left(-b_{j}\right)$, as otherwise $S^{\prime}=a_{i} \cdot\left(-b_{j}\right)$ would be a proper zero-sum subsequence of S, which would contradict the minimality of S. Thus, we may assume that

$$
\left\{a_{1}, \ldots, a_{n}\right\} \cap\left\{b_{1}, \ldots, b_{m}\right\}=\emptyset .
$$

Without loss of generality, we also assume that $a_{n}=\left\|S^{+}\right\|_{\infty}>\left\|S^{-}\right\|_{\infty}=b_{m}$.
To prove the inductive step, we first show that $\left|S^{+}\right| \leq-S_{\text {av }}^{-}$. Since $x_{n}>0, y_{m}>0$, and $a_{n}-b_{m}>0$, we can use Lemma 2.1 to perform an $\left(a_{n},-b_{m}\right)$-derivation from S, and obtain the minimal zero-sum sequence

$$
R=\left(a_{n}-b_{m}\right)^{[1]} \cdot a_{n}^{\left[x_{n}-1\right]} \cdot \prod_{i=1}^{n-1} a_{i}^{\left[x_{i}\right]} \cdot\left(-b_{m}\right)^{\left[y_{m}-1\right]} \prod_{j=1}^{m}\left(-b_{j}\right)^{\left[y_{j}\right]},
$$

where we omit the term a_{n} if $x_{n}=1$ and the term $\left(-b_{m}\right)$ if $y_{m}=1$.
Since $|R|=|S|-1$, it follows from the induction hypothesis that

$$
\begin{align*}
\left|R^{+}\right| & =1+\left(x_{n}-1\right)+\sum_{i=1}^{n-1} x_{i}=\sum_{i=1}^{n} x_{i} \tag{2.2}\\
& \leq-R_{\mathrm{av}}^{-}=\frac{\left(y_{m}-1\right) b_{m}+\sum_{j=1}^{m-1} y_{j} b_{j}}{\left(y_{m}-1\right)+\sum_{j=1}^{m-1} y_{j}} .
\end{align*}
$$

Since $b_{m}=\left\|S^{-}\right\|_{\infty} \geq\left\|R^{-}\right\|_{\infty}$, it follows from (2.2) that

$$
\left|R^{+}\right|=\sum_{i=1}^{n} x_{i} \leq \frac{b_{m}+\left(y_{m}-1\right) b_{m}+\sum_{j=1}^{m-1} y_{j} b_{j}}{1+\left(y_{m}-1\right)+\sum_{j=1}^{m-1} y_{j}}=\frac{-\sigma\left(S^{-}\right)}{\left|S^{-}\right|}=-S_{\mathrm{av}}^{-} .
$$

Thus,

$$
\begin{equation*}
S^{+}=\sum_{i=1}^{n} x_{i}=\left|R^{+}\right| \leq-S_{\mathrm{av}}^{-} \tag{2.3}
\end{equation*}
$$

Next, we show that $\left|S^{-}\right| \leq S_{\mathrm{av}}^{+}$. Since $\sigma(S)=0$, we have $\sigma\left(S^{+}\right)=$ $-\sigma\left(S^{-}\right)$. This observation and 2.3 yield

$$
\begin{equation*}
\left|S^{+}\right| \leq-S_{\mathrm{av}}^{-}=\frac{-\sigma\left(S^{-}\right)}{\left|S^{-}\right|}=\frac{\sigma\left(S^{+}\right)}{\left|S^{-}\right|}, \quad \text { so } \quad\left|S^{-}\right| \leq \frac{\sigma\left(S^{+}\right)}{\left|S^{+}\right|}=S_{\mathrm{av}}^{+} \tag{2.4}
\end{equation*}
$$

Since $\left|S^{+}\right|$and $\left|S^{-}\right|$are integers, the theorem follows from (2.3) and (2.4) by taking the floors of S_{av}^{+}and $-S_{\mathrm{av}}^{-}$.

Remark 2.2. Let S be as in 1.2 and suppose that there exists $t \in[1, m]$ such that

$$
\begin{equation*}
a_{n}>b_{t}>-S_{\mathrm{av}}^{-}=\frac{\sum_{j=1}^{m} b_{j} y_{j}}{\sum_{j=1}^{m} y_{j}} \tag{2.5}
\end{equation*}
$$

Then the $\left(a_{n},-b_{t}\right)$-derivation on S yields the minimal zero-sum sequence

$$
R=\left(a_{n}-b_{t}\right)^{[1]} \cdot a_{n}^{\left[x_{n}-1\right]} \cdot \prod_{i=1}^{n-1} a_{i}^{\left[x_{i}\right]} \cdot\left(-b_{t}\right)^{\left[y_{t}-1\right]} \prod_{j=1, j \neq t}^{m}\left(-b_{j}\right)^{\left[y_{j}\right]}
$$

Thus, by applying Theorem 1.3 to R, we obtain

$$
\begin{equation*}
\left|S^{+}\right|=\sum_{i=1}^{n} x_{i}=\left|R^{+}\right| \leq\left\lfloor-R_{\mathrm{av}}^{-}\right\rfloor \tag{2.6}
\end{equation*}
$$

Since $-R_{\mathrm{av}}^{-}<-S_{\mathrm{av}}^{-}$(by the definition of R and 2.5$)$, the bound for $\left|S^{+}\right|$ in (2.6) is sometimes better than $\left|S^{+}\right| \leq\left\lfloor-S_{\text {av }}^{-}\right\rfloor$given by Theorem 1.3 . By symmetry, we may sometimes obtain a better bound for $\left|S^{-}\right|$in a similar manner.
3. The structure of the minimal zero-sum sequences. Let G_{0} be a finite subset of \mathbb{Z}. We are interested in finding a natural structure on the set $\mathcal{A}\left(\mathcal{B}_{0}\right)$ of minimal zero-sum sequences in $\mathcal{B}_{0}=\mathcal{B}\left(G_{0}\right)$. As mentioned in the introduction, $\mathcal{A}\left(\mathcal{B}_{0}\right)$ is also the set of atoms of the Krull monoid \mathcal{B}_{0}. There are other interesting interpretations of $\mathcal{A}\left(\mathcal{B}_{0}\right)$. In the context of Diophantine linear equations (see e.g. [16, 17, 20]), $\mathcal{A}\left(\mathcal{B}_{0}\right)$ corresponds to the union of all Hilbert bases $\left(^{1}\right)$, which are minimal generating sets of all the solutions. In the context of integer partitions, each sequence $S=$ $a_{1} \cdot \ldots \cdot a_{p} \cdot\left(-b_{1}\right) \cdot \ldots \cdot\left(-b_{q}\right) \in \mathcal{A}\left(\mathcal{B}_{0}\right)$ such that $p+q \geq 3, a_{i}>0$ for $i \in[1, p]$, and $b_{j}>0$ for $j \in[1, q]$, corresponds to the primitive partition identity

[^1]$a_{1}+\cdots+a_{p}=b_{1}+\cdots+b_{q}$ (see [8, p. 1]). Primitive partition identities were studied by Diaconis et al. [8] who were motivated by applications in Gröbner bases, computational statistics, and integer programming (see e.g. [23, 24]).

In the process of characterizing $\mathcal{A}\left(\mathcal{B}_{0}\right)$, we assume that $S=s_{1} \cdot \ldots \cdot s_{t}$ $\in \mathcal{A}\left(\mathcal{B}_{0}\right)$ is equivalent to $-S=\left(-s_{1}\right) \cdot \ldots \cdot\left(-s_{t}\right) \in \mathcal{A}\left(\mathcal{B}_{0}\right)$ and we only include one of them in $\mathcal{A}\left(\mathcal{B}_{0}\right)$. For any positive integer n, define the n-derived set, $\mathcal{D}_{n}(S)$, of $S=s_{1} \cdot \ldots \cdot s_{t} \in \mathcal{B}(\mathbb{Z})$ by
$\mathcal{D}_{n}(S)=\left\{S^{\prime}: i, j \in[1, t], i \neq j, S^{\prime}\right.$ is $\left(s_{i}, s_{j}\right)$-derived, and $\left.\left\|S^{\prime}\right\|_{\infty} \leq n\right\}$.
Given $R, S \in \mathcal{B}(\mathbb{Z})$, we write $R \prec_{n} S$ if and only if $R=S$ or $R \in \mathcal{D}_{n}(S)$.
The following proposition is a direct consequence of Lemma 2.1.
Proposition 3.1. Let n be a positive integer, $G_{0}=[-n, n]$, and $\mathcal{B}_{0}=\mathcal{B}\left(G_{0}\right)$.
(i) If $S \in \mathcal{A}\left(\mathcal{B}_{0}\right)$, then $\mathcal{D}_{n}(S) \subseteq \mathcal{A}\left(\mathcal{B}_{0}\right)$.
(ii) $\mathcal{P}_{n}=\left(\mathcal{A}\left(\mathcal{B}_{0}\right), \prec_{n}\right)$ is a poset.

For instance, if $S=2^{[3]} \cdot(-3)^{[2]}$, then Figure 1 shows the poset \mathcal{P}_{3}. Note that $S^{\prime}=2^{[3]} \cdot(-6)$ is $(-3,-3)$-derived from S, but $S^{\prime} \notin \mathcal{D}_{3}(S)$ since $\left\|S^{\prime}\right\|_{\infty}=6>3$.

Fig. 1. The poset \mathcal{P}_{3}
Let \mathcal{M}_{n} be the set of maximal elements of the poset \mathcal{P}_{n} of Proposition 3.1, i.e., \mathcal{M}_{n} contains all minimal sequences $R \in \mathcal{A}\left(\mathcal{B}_{0}\right)$ that cannot be derived from any $S \in \mathcal{A}\left(\mathcal{B}_{0}\right)$. Then the following proposition is immediate.

Proposition 3.2. Let n be a positive integer, $G_{0}=[-n, n]$, and $\mathcal{B}_{0}=\mathcal{B}\left(G_{0}\right)$. If \mathcal{Q} is a set such that $\mathcal{M}_{n} \subseteq \mathcal{Q} \subseteq \mathcal{A}\left(\mathcal{B}_{0}\right)$, then

$$
\mathcal{A}\left(\mathcal{B}_{0}\right)=\mathcal{Q} \cup \bigcup_{S \in \mathcal{Q}} \mathcal{D}_{n}(S)
$$

where we assume that $S \in \mathcal{A}\left(\mathcal{B}_{0}\right)$ is equivalent to $-S \in \mathcal{A}\left(\mathcal{B}_{0}\right)$.

For instance, Figure 1 shows that

$$
\mathcal{M}_{3}=\left\{2^{[3]} \cdot(-3)^{[2]}, 1^{[3]} \cdot(-3)^{[1]}\right\}
$$

We also verified that

$$
\begin{equation*}
\mathcal{M}_{n} \subseteq\left\{a^{\left[\frac{b}{\operatorname{gcd}(a, b)}\right]} \cdot(-b)^{\left[\frac{a}{\operatorname{gcd}(a, b)}\right]}: a, b \in[1, n]\right\} \quad \text { for } n \in[1,5] \tag{3.1}
\end{equation*}
$$

However, by using the 4ti2-software package [1], we found that (3.1) does not hold for $n=6$. In particular,

$$
\begin{aligned}
& \mathcal{M}_{6}-\left\{a^{\left[\frac{b}{\operatorname{gcd}(a, b)}\right]} \cdot(-b)^{\left[\frac{a}{\operatorname{gcd}(a, b)}\right]}: a, b \in[1,6]\right\} \\
&=\left\{2^{[2]} \cdot 3^{[1]} \cdot 5^{[1]} \cdot(-6)^{[2]}, 1^{[1]} \cdot 3^{[1]} \cdot 4^{[2]} \cdot(-6)^{[2]}\right\}
\end{aligned}
$$

Determining \mathcal{M}_{n} (or a small enough superset of \mathcal{M}_{n}), for all $n>0$, would directly yield an algorithm for generating \mathcal{P}_{n}, and an approach for computing the cardinality of $\mathcal{A}\left(\mathcal{B}_{0}\right)$ (e.g., by studying the Möbius function of \mathcal{P}_{n}).
4. Comparison of the bounds in Theorems $1.2 \& 1.3$. In this section, we show that the bounds in Theorem 1.3 are in general sharper than or equivalent to the bounds in Theorem 1.2. To do this, we will show that it is enough to compare those two theorems for sequences S (where S is as in (1.2)) such that

$$
\begin{equation*}
a_{1} \leq\left|S^{-}\right|=\sum_{j=1}^{m} y_{j} \leq a_{n} \quad \text { and } \quad b_{1} \leq\left|S^{+}\right|=\sum_{i=1}^{n} x_{i} \leq b_{m} \tag{4.1}
\end{equation*}
$$

First, note that it follows from Theorem 1.1 that

$$
\begin{equation*}
\sum_{j=1}^{m} y_{j}=\left|S^{-}\right| \leq a_{n} \quad \text { and } \quad \sum_{i=1}^{n} x_{i}=\left|S^{+}\right| \leq b_{m} \tag{4.2}
\end{equation*}
$$

Let $\ell \in[1, m], k \in[1, n]$, and consider the upper bounds

$$
\begin{align*}
& U_{J_{\ell}}=b_{\ell}-\sum_{j=1}^{\ell-1}\left\lfloor\frac{b_{\ell}-b_{j}}{a_{n}}\right\rfloor y_{j}+\sum_{j=\ell+1}^{m}\left\lfloor\frac{b_{\ell}-b_{j}}{a_{1}}\right\rfloor y_{j} \tag{4.3}\\
& U_{I_{k}}=a_{k}-\sum_{i=1}^{k-1}\left\lfloor\frac{a_{k}-a_{i}}{b_{m}}\right\rfloor x_{i}+\sum_{i=k+1}^{n}\left\lceil\frac{a_{i}-a_{k}}{b_{1}}\right\rfloor x_{i}, \tag{4.4}
\end{align*}
$$

in the inequalities $\left(J_{\ell}\right)$ and $\left(I_{k}\right)$ of Theorem 1.2 , where $a_{1} \leq \cdots \leq a_{n}$ and $b_{1} \leq \cdots \leq b_{m}$.

Without loss of generality, assume that $b_{m} \geq a_{n}$. Then $\left\lfloor\frac{a_{k}-a_{i}}{b_{m}}\right\rfloor=0$ for $1 \leq i<k \leq n$, and it follows from (4.4) that

$$
\begin{equation*}
U_{I_{k}} \geq a_{k} \geq a_{1} \quad \text { for all } k \in[1, n] \tag{4.5}
\end{equation*}
$$

Thus, it follows from (4.2), 4.5), and the fact that $S_{\mathrm{av}}^{+} \geq a_{1}$ that Theorems 1.2 and 1.3 can only give meaningful upper bounds for $\left|S^{-}\right|$if

$$
\begin{equation*}
a_{1} \leq\left|S^{-}\right|=\sum_{j=1}^{m} y_{j} \leq a_{n} \tag{4.6}
\end{equation*}
$$

Next, it follows from the definition of $-S_{\text {av }}^{-}$in (1.1) that

$$
\begin{align*}
-S_{\mathrm{av}}^{-} & =\frac{-\sigma\left(S^{-}\right)}{\left|S^{-}\right|}=\frac{\sum_{j=1}^{m} b_{j} y_{j}}{\sum_{j=1}^{m} y_{j}} \tag{4.7}\\
& =\frac{\sum_{j=1}^{m} b_{\ell} y_{j}-\sum_{j=1}^{\ell-1}\left(b_{\ell}-b_{j}\right) y_{j}+\sum_{j=\ell+1}^{m}\left(b_{j}-b_{\ell}\right) y_{j}}{\sum_{j=1}^{m} y_{j}} \\
& =b_{\ell}-\frac{\sum_{j=1}^{\ell-1}\left(b_{\ell}-b_{j}\right) y_{j}}{\sum_{j=1}^{m} y_{j}}+\frac{\sum_{j=\ell+1}^{m}\left(b_{j}-b_{\ell}\right) y_{j}}{\sum_{j=1}^{m} y_{j}}
\end{align*}
$$

Since $a_{1} \leq \cdots \leq a_{n}$ and $b_{1} \leq \cdots \leq b_{m}$, it follows from (4.6) and (4.7) that

$$
\begin{align*}
-S_{\mathrm{av}}^{-} & \leq b_{\ell}-\sum_{j=1}^{\ell-1} \frac{\left(b_{\ell}-b_{j}\right) y_{j}}{a_{n}}+\sum_{j=\ell+1}^{m} \frac{\left(b_{j}-b_{\ell}\right) y_{j}}{a_{1}} \tag{4.8}\\
& \leq b_{\ell}-\sum_{j=1}^{\ell-1}\left\lfloor\frac{b_{\ell}-b_{j}}{a_{n}}\right\rfloor y_{j}+\sum_{j=\ell+1}^{m}\left\lceil\frac{b_{j}-b_{\ell}}{a_{1}}\right\rceil y_{j}=U_{J_{\ell}}
\end{align*}
$$

Thus, Theorem 1.3 and 4.8 yield

$$
\begin{equation*}
\left|S^{+}\right| \leq\left\lfloor-S_{\mathrm{av}}^{-}\right\rfloor \leq-S_{\mathrm{av}}^{-} \leq U_{J_{\ell}} \tag{4.9}
\end{equation*}
$$

which implies inequality $\left(J_{\ell}\right)$ of Theorem 1.2 .
Moreover, it follows from 4.9) and the definition of $-S_{\mathrm{av}}^{-}$that

$$
\begin{equation*}
b_{1} \leq-S_{\mathrm{av}}^{-} \leq U_{J_{\ell}} \tag{4.10}
\end{equation*}
$$

Thus, it follows from (4.2) and 4.10 that Theorems 1.2 and 1.3 can only give meaningful upper bounds for $\left|S^{+}\right|$if

$$
\begin{equation*}
b_{1} \leq\left|S^{+}\right|=\sum_{i=1}^{n} x_{i} \leq b_{m} \tag{4.11}
\end{equation*}
$$

Similarly to the proof of (4.9), we can now use (4.11) to show (although we omit the details here) that Theorem 1.3 implies inequality $\left(I_{k}\right)$ of Theorem 1.2 , i.e.

$$
\begin{equation*}
\left|S^{-}\right| \leq\left\lfloor S_{\mathrm{av}}^{+}\right\rfloor \leq S_{\mathrm{av}}^{+} \leq U_{I_{k}} \tag{4.12}
\end{equation*}
$$

Finally, it follows from (4.9) and 4.12 that the bounds in Theorem 1.3 are in general sharper than or equivalent to the bounds in Theorem 1.2.

Acknowledgments. The author thanks Alfred Geroldinger for pointing to and providing background material related to zero-sum sequences and their applications to factorization theory. The author also thanks the reviewer for making valuable comments.

References

[1] 4ti2 team, 4ti2-A software package for algebraic, geometric and combinatorial problems on linear spaces, www.4ti2.de.
[2] D. Adams, Jr, Structure of minimal zero-sum sequences of maximal lengths, Master's Thesis, San Diego State Univ., 2010.
[3] N. Baeth and A. Geroldinger, Monoids of modules and arithmetic of direct-sum decompositions, Pacific J. Math. 271 (2014), 257-320.
[4] P. Baginski, S. Chapman, R. Rodriguez, G. Schaeffer, and Y. She, On the Delta set and catenary degree of Krull monoids with infinite cyclic divisor class group, J. Pure Appl. Algebra 214 (2010), 1334-1339.
[5] Y. Caro, Zero-sum problems - a survey, Discrete Math. 152 (1996), 93-113.
[6] P. Erdős, A. Ginzburg and A. Ziv, A theorem in additive number theory, Bull. Res. Council Israel 10F (1961), 41-43.
[7] S. Chapman, W. Schmid, and W. Smith, On minimal distances in Krull monoids with infinite class group, Bull. London Math. Soc. 40 (2008), 613-618.
[8] P. Diaconis, R. Graham, and B. Sturmfels, Primitive partition identities, in: Paul Erdős is 80, Vol. II, János Bolyai Society, Budapest, 1995, 1-20.
[9] W. Gao, Zero sums in finite cyclic groups, Integers 0 (2000), \#A12, 7 pp.
[10] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, Expo. Math. 24 (2006), 337-369.
[11] A. Geroldinger, Additive group theory and non-unique factorizations, in: Combinatorial Number Theory and Additive Group Theory, A. Geroldinger and I. Ruzsa (eds.), Adv. Courses Math. CRM Barcelona, Birkhäuser, 2009, 1-86.
[12] A. Geroldinger and F. Halter-Koch, Non-unique factorizations: a survey, in: Multiplicative Ideal Theory in Commutative Algebra, Springer, New York, 2006, 207-226.
[13] W. Gao, A. Geroldinger, and D. Grynkiewicz, Inverse zero-sum problems III, Acta Arith. 141 (2010), 103-152.
[14] A. Geroldinger, D. Grynkiewicz, G. Schaeffer, and W. Schmid, On the arithmetic of Krull monoids with infinite cyclic class group, J. Pure Appl. Algebra 214 (2010), 2219-2250.
[15] D. Grynkiewicz, Structural Additive Theory, Springer, 2013.
[16] M. Henk and R. Weismantel, On minimal solutions of linear diophantine equations, Contrib. Algebra Geom. 41 (2000), 49-55.
[17] J. Lambert, Une borne pour les générateurs des solutions entières positives d'une équation diophantienne linéaire, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 39-40.
[18] Y. Li and J. Peng, Minimal zero-sum sequences of length four over finite cyclic groups II, Int. J. Number Theory 9 (2013), 845-866.
[19] V. Ponomarenko, Minimal zero sequences of finite cyclic groups, Integers 4 (2004), \#A24, 6 pp.
[20] L. Pottier, Minimal solutions of linear diophantine systems: bounds and algorithms, in: Lecture Notes in Comput. Sci. 488, Springer, 1991, 162-173.
[21] M. Sahs, P. Sissokho, and J. Torf, A zero-sum theorem over \mathbb{Z}, Integers 13 (2013), \#A70, 11 pp .
[22] C. Shen and L. Xia, Minimal zero-sum sequences of length four over cyclic group with order $n=q^{\alpha} p^{\beta}$, J. Number Theory 133 (2013), 4047-4068.
[23] B. Sturmfels, Gröbner Bases and Convex Polytopes, Univ. Lecture Ser. 8, Amer. Math. Soc., Providence, RI, 1996.
[24] B. Sturmfels and R. Thomas, Variation of cost functions in integer programming, Math. Program. 77 (1997), 357-387.

Papa A. Sissokho Mathematics Department Illinois State University Normal, IL 61790-4520, U.S.A.
E-mail: psissok@ilstu.edu

Received on 10.1.2014 and in revised form on 3.7.2014

[^0]: 2010 Mathematics Subject Classification: Primary 11B75; Secondary 11B30, 11P70.
 Key words and phrases: minimal zero-sum sequence, primitive partition identity, Hilbert basis.

[^1]: $\left({ }^{1}\right)$ This union is also known as the Graver basis of the corresponding toric ideal (see e.g. [24]).

