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Abstract. A subspace partition of P = PG(n, q) is a collection of subspaces

of P whose pairwise intersection is empty. Let σq(n, t) denote the minimum
size (i.e., minimum number of subspaces) in a subspace partition of P in which

the largest subspace has dimension t. In this paper, we determine the value of

σq(n, t) for n ≤ 2t+ 2. Moreover, we use the value of σq(2t+ 2, t) to find the
minimum size of a maximal partial t-spread in PG(3t+ 2, q).

1. Introduction

A subspace partition (or partition) of P = PG(n, q) is a collection of subspaces of
P whose pairwise intersection is empty. Alternatively, we can think of P as the vector
space of dimension n+1 over GF(q), denoted by V = V (n+1, q). Then, a subspace
partition of P is equivalent to a partition of V into a collection S of subspaces in
such a way that each nonzero vector of V occurs in exactly one subspace in S. The
collection S is said to be a vector space partition (or simply a partition) of V . There
is a rich literature about partitions of V (e.g., see [1, 3, 5, 14, 22] and the references
therein).

Let σq(n, t) denote the minimum size (i.e., minimum number of subspaces) in
a subspace partition of P in which the largest subspace has dimension t. Since
σq(n, n) = 1 and σq(n, 0) = (qn+1− 1)/(q− 1), we will focus on the case 0 < t < n.
Also note that if t + 1 divides n + 1, then σq(n, t) is just the size of a t-spread of
P, i.e., a subspace partition of P in which all the subspaces have dimension t. For
0 < t < n, A. Beutelspacher [2] established the following general lower bound:

σq(n, t) ≥ qd
n+1
2 e + 1.

In a recent manuscript, O. Heden and J. Lehmann [16] established new necessary
conditions for the existence of certain subspace partitions. In particular they proved
conditions for PG(2t− 1, q) to admit partitions with subspaces of dimensions t and
d < t (see Theorem 11 in [16]). In the process, they also prove that for any partition
Π of PG(n, q) such that t is the highest dimension that occurs in Π and d < n− t
is another dimension that occurs in Π,

|Π| ≥ qt+1 + qd+1 + 1.

Their result is an improvement on a result of G. Spera [22] who proved that if Π is
a partition of PG(n, q) such that s is the smallest dimension that occurs in Π, then
|Π| ≥ qs+1 + 1. In another related paper, A. Khare [20] established a sharp bound
for the minimum number of subspaces needed to cover (not necessary partition)
a given vector space V (finite or infinite) into subspaces with fixed co-dimension
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k <∞. As observed above, if V ∼= PG(n, q) and k+1 divides n+1, then a k-spread
provides a minimum covering of V .

Let n and t be fixed integers such that 0 < t < n. In this paper, we prove that
(see Corollary 7)

σq(n, t) = qt+1 + 1 for n < 2t+ 2,

and

σq(n, t) = qt+2 + qdt/2e+1 + 1 for n = 2t+ 2.

We combine this result with a construction of P. Govaerts [13] to show (see The-
orem 11) that the minimum size of a maximal partial t-spread in PG(3t + 2, q) is
given by σq(2t+ 2, t).

2. Main results

In our proofs, we use several results of Heden and Lehmann [16]. We start with
some preliminary definitions introduced in [16].

Let n ≥ 2 be an integer and let Π be a subspace partition of P = PG(n, q) with
mi subspaces of dimension i, 0 ≤ i ≤ n−1. Let H be any (n−1)-subspace of P and
let bi ≤ mi be the number of subspaces of Π that are contained in H. We say that
(mn−1, . . . ,m0) is the type of Π and b = (bn−1, . . . , b0) is the type of the hyperplane
H (with respect to Π). Let sb denote the number of hyperplanes in P with type b
and define the set

B = {b : sb > 0}.
For 0 ≤ i ≤ n, let

θi =
qi+1 − 1

q − 1

denote the number of points in an i-space of Π, and let

hq(n, i) = max

{
0,
qn−i − 1

q − 1

}
be the number of (n− 1)-spaces (or hyperplanes) in P that contain a fixed i-space
of P. Finally, for n = 2t+ 2, we define

(1) µq(n, t) = qt+2 + 1.

By using a construction of A. Beutelspacher [1] (which was rediscovered by T.
Bu [5]), it is easy to see that there is a partial t-spread in PG(n, q) of size µq(n, t).

Lemma 1 (Heden and Lehmann [16]). Let Π be a subspace partition of PG(n, q)
and let (bn−1, . . . , b0) be the type of the hyperplane H with respect to Π. Then the
number of subspaces in Π is

|Π| = 1 +

n−1∑
i=0

biq
i+1.

Lemma 2 (Heden and Lehmann [16]). Let Π be a subspace partition of PG(n, q)
of type (mn−1, . . . ,m0) and let b = (bn−1, . . . , b0) be the type of the hyperplane H
with respect to Π. Let sb denote the number of hyperplanes in PG(n, q) with type b
and suppose that 0 ≤ d, ` ≤ n− 2. Then

(i)
∑
b∈B

sb = qn+1−1
q−1 ,
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(ii)
∑
b∈B

bdsb = mdhq(n, d),

(iii)
∑
b∈B

(
bd
2

)
sb =

(
md

2

)
hq(n, 2d+ 1),

(iv)
∑
b∈B

bdb`sb = m`mdhq(n, d+ `+ 1).

We will also use the next lemma of Beutelspacher [1] (also see Bu [5]).

Lemma 3 (Beutelspacher [1]). Let n, d be integers such that 0 ≤ d ≤ (n − 1)/2.
Then PG(n, q) admits a partition with one subspace of dimension n − d − 1 and
qn−d subspaces of dimension d.

We can now prove the following easy observation for the value of σq(n, t) when
n < 2t+ 2.

Proposition 4. Let n and t be fixed integers such that 0 < t < n ≤ 2t+ 1. Then

σq(n, t) = qt+1 + 1.

Proof. Since 0 < t < n ≤ 2t + 1, we have n = t + a + 1 with 0 ≤ a ≤ t. Let Π
be an arbitrary subspace partition of P = PG(n, q) whose largest subspace U has
dimension t. Since n > t, we have |Π| > 1. So let U ′ ∈ (Π \ {U}) be a subspace
of largest possible dimension. Then dim(U ′) ≤ a since n = t + a + 1. Since Π is
arbitrarily chosen, counting the number of subspaces in Π yields

σq(n, t) ≥ |Π| ≥ 1 +
θn − θt
θa

= 1 + qt+1.(2)

Now the proposition follows from (2) and the existence (see Lemma 3) of a partition
Π0 of PG(n, q) with one subspace of dimension t and qt+1 subspaces of dimension
a. �

To prove our main result, Theorem 6, we first prove the following lemma which
may be of independent interest.

Lemma 5. Let n and t ≥ 1 be fixed integers such that n = 2t + 2. Let Π be a
subspace partition of PG(n, q) with no subspace of dimension higher than t. Assume
furthermore that Π contains two subspaces of dimensions t and d with 0 ≤ d < t.
Then

|Π| ≥ qt+2 + qd+1 + 1.

Proof. Let Π be a subspace partition of PG(n, q) containing subspaces of dimension
t and d with 0 ≤ d < t. Define

L =
θn − θt−1

(
µq(n, t) + qd+1

)
θt − θt−1

.(3)

We first show that the lemma holds if mt ≤ L. Note that Π is the disjoint union
of A = {W ∈ Π : dim(W ) = t} and B = {W ∈ Π : dim(W ) ≤ t − 1}. Since
|A| = mt, we have

|Π| = |A|+ |B| ≥ mt +
θn −mt · θt

θt−1

=
θn −mt(θt − θt−1)

θt−1

≥ θn − L(θt − θt−1)

θt−1
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=
θn −

[
θn − θt−1

(
µq(n, t) + qd+1

)]
θt−1

= µq(n, t) + qd+1.(4)

This shows that the lemma holds for mt ≤ L.
Now suppose that mt > L. Since there exists a subspace of dimensions t and d

in Π, we have mt > 0 and md > 0. It follows from Lemma 2(iv) that∑
b∈B

btbdsb = mtmdhq(n, t+ d+ 1) 6= 0.(5)

Moreover, ∑
b∈B

btbdsb =
∑
b∈B

0≤bt≤q−1

btbdsb +
∑
b∈B
bt≥q

btbdsb.(6)

If
∑

b∈B, bt≥q
btbdsb 6= 0, then there exists b ∈ B such that bt ≥ q, bd ≥ 1, and sb ≥ 1.

In this case, Lemma 1 yields

|Π| =
n−1∑
i=0

biq
i+1 + 1 ≥ btqt+1 + bdq

d+1 + 1 ≥ qt+2 + qd+1 + 1,(7)

and the lemma follows. So we may assume that
∑

b∈B, bt≥q
btbdsb = 0. We will show

that this contradicts the assumption mt > L. From (6) and Lemma 2(ii), we obtain

(q − 1)mdhq(n, d) =
∑
b∈B

(q − 1) · bdsb

=
∑
b∈B

0≤bt≤q−1

(q − 1) · bdsb +
∑
b∈B
bt≥q

(q − 1) · bdsb

≥
∑
b∈B

0≤bt≤q−1

bt · bdsb +
∑
b∈B
bt≥q

bt · bdsb

=
∑
b∈B

btbdsb

= mtmdhq(n, t+ d+ 1)(8)

Since md > 0, dividing both sides of (8) by md yields

mt ≤
(q − 1) hq(n, d)

hq(n, t+ d+ 1)
=

(q − 1)(q2t+2−d − 1)

qt+1−d − 1
.(9)

Since 0 ≤ d ≤ t− 1, the right side (9) is maximized when d = t− 1. Hence

mt ≤
(q − 1)(q2t+2−(t−1) − 1)

qt+1−(t−1) − 1
=

(q − 1)(qt+3 − 1)

q2 − 1
=
qt+3 − 1

q + 1
.

Also, since µq(n, t) = qt+2 + 1 (see (1)) and L (defined in (3)) is minimized when
d = t− 1, the assumption mt > L yields

mt > L ≥ θ2t+2 − θt−1 · (µq(n, t) + qt)

θt − θt−1

=
(q2t+3 − 1)− (qt − 1)(qt+2 + qt + 1)

(qt+1 − qt)
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≥ qt+3 − 1

q + 1
≥ mt,

which is a contradiction. Hence
∑

b∈B, bt≥q
btbdsb 6= 0 and (7) holds. This concludes

the proof of the lemma. �

Theorem 6. Let n and t ≥ 1 be fixed integers such that n = 2t+ 2. Then

σq(n, t) = qt+2 + qdt/2e+1 + 1.

Proof. Let Π be a subspace partition of PG(n, q) in which the largest subspace has
dimension t. Let β = dt/2e and define the set

G = {dim(W ) : W ∈ Π and β ≤ dim(W ) ≤ t− 1} .
First, suppose that G 6= ∅. Then for any d ∈ G, Lemma 5 yields

(10) |Π| ≥ qt+2 + qd+1 + 1 ≥ qt+2 + qβ+1 + 1.

So, we may assume that G = ∅. Hence, all other subspaces in Π have dimensions
at most β − 1. Recall from (1) that µq(n, t) = qt+2 + 1. We consider the following
two cases based on whether mt = µq(n, t) or not.

Case 1: mt = µq(n, t).
If bt ≥ q + 1 for some b ∈ B, then

(11) |Π| =
n−1∑
i=0

biq
i+1 + 1 ≥ bt · qt+1 + 1 ≥ qt+2 + qt+1 + 1 ≥ qt+2 + qβ+1 + 1.

If bt ≤ q for all b ∈ B, then

q
∑
b∈B

sb =
∑
b∈B

q · sb ≥
∑
b∈B

btsb = mthq(n, t).(12)

Using Lemma 2(i) and (ii), we infer that (12) holds if and only if

q

(
qn+1 − 1

q − 1

)
= q

∑
b∈B

sb ≥ mthq(n, t) = (qt+2 + 1) · q
n−t − 1

q − 1

⇔ qn+2 − q ≥ qn+2 − qt+2 + qn−t − 1
⇔ qn−t + q = qt+2 + q ≤ qt+2 + 1,

which is a contradiction since q > 1.

Case 2: mt ≤ µq(n, t) − 1. In this case, each subspace in Π, other than the mt

subspaces, has dimension at most β − 1 (so at most θβ−1 points). Therefore, we
can estimate the number of subspaces in Π as follows

|Π| ≥ mt +
θn −mt · θt

θβ−1

=
θn −mt(θt − θβ−1)

θβ−1

≥ θn − (µq(n, t)− 1) · (θt − θβ−1)

θβ−1

=
(q2t+3 − 1)− qt+2(qt+1 − qβ)

qβ − 1
≥ qt+2 + qβ+1 + q.(13)
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Now it follows from (10), (11), and (13) that

|Π| ≥ qt+2 + qβ+1 + 1

holds in all cases. Since Π is an arbitrarily chosen subspace partition, we obtain

(14) σq(n, t) ≥ qt+2 + qβ+1 + 1.

Moreover, it follows from Lemma 3 that there exists a partition Π0 of PG(2t+2, q)
into one subspace W of dimension t + 1 and qt+2 subspaces of dimension t. If t
is even, then t + 2 = 2(β + 1) and we can partition W into a β-spread containing
qβ+1 + 1 subspaces. If t is odd then t + 2 = 2β + 1 and we use Lemma 3 again
to partition W into one subspace of dimension β and qβ+1 subspaces of dimension
β − 1. This shows that

(15) qt+2 + qβ+1 + 1 = |Π0| ≥ σq(n, t).
Finally (14) and (15) yield

σq(n, t) = qt+2 + qβ+1 + 1.

�

Proposition 4 and Theorem 6 lead directly to the following corollary.

Corollary 7. Let n and t be fixed integers such that 0 < t < n. Then

σq(n, t) = qt+1 + 1 for n < 2t+ 2,

and

σq(n, t) = qt+2 + qdt/2e+1 + 1 for n = 2t+ 2.

Proof. This follows directly from Proposition 4 and Theorem 6. �

We conclude this section by proposing the following conjecture.

Conjecture 8. Let n, k, and t be positive integers such that n = k(t+ 1). If k ≥ 2
then

σq(n, t) =
q(t+1)+1(q(k−1)(t+1) − 1)

qt+1 − 1
+ qdt/2e+1 + 1.

Note that Conjecture 8 holds for k = 2 (see Theorem 6) and σq(n, t) = qt+1 + 1
for k = 1 (see Proposition 4).

3. An application to maximal partial t-spreads

Let P = PG(n, q) denote the projective space of dimension n over the Galois field
GF(q). A partial t-spread of P is a collection S = {W1, . . . ,Wk} of t-dimensional
subspaces of P such that Wi ∩Wj = ∅ for i 6= j. The number |S| is called the size
of S. If P =

⋃
W∈SW , then S is called a spread. It is well-known that a spread

exists if and only if t+ 1 divides n+ 1.
A maximal partial t-spread is one which cannot be extended to a larger one.

The problem of classifying the maximal partial t-spreads of P has been extensively
studied (see [9, 11, 13, 15, 18, 19]). It has applications in the construction of
error-correcting codes [6, 8], orthogonal arrays [7, 10], and factorial designs [21].

Let n and t be fixed integers and let k and r be the unique integers defined by
n− t = k(t+ 1) + r− 1 and 0 ≤ r ≤ t. We let τq(n, t) denote the minimum number
of subspaces in any maximal partial t-spread of P. The maximal partial t-spread
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S of P such that |S| = τq(n, t), is called a minimum size maximal partial t-spread.
Beutelspacher [1] showed that for r = 0 and any positive integers k and t,

τq(n, t) =
qk(t+1) − 1

qt+1 − 1
.

For r > 0, P. Govaerts [13] proved several results related to the number τq(n, t). In
particular, he provided an upper bound for τq(n, t) by constructing a class of small
(not necessarily minimum) size of maximal partial t-spreads of P. We will use his
bound in the case r = 1. For n = k(t+ 1), define

µq(n, t) =
q(t+1)+1(q(k−1)(t+1) − 1)

qt+1 − 1
+ 1.

Lemma 9 (Govaerts [13]). Let n, k, and t ≥ 0 be fixed integers and write n =
k(t + 1) + t. If k ≥ 2 then there exist (see page 610 in [13] for a construction)
maximal partial t-spreads of PG(n, q) of size µq(n− t, t) + qdt/2e+1. Consequently,

τq(n, t) ≤ µq(n− t, t) + qdt/2e+1.

We can apply our main result, Theorem 6, to determine the value of τq(3t+2, t).
Our strategy is due to Govaerts but we replace his set-partition based analysis with
the more appropriate subspace-partition analysis. We first introduce the relevant
definitions. A set of points B of P is called a blocking set with respect to the
t-spaces of P if W ∩B 6= ∅ for any t-spaces W in P. Note that any (n− t)-space of
P is a blocking set with respect to the t-spaces of P. Such blocking sets are called
trivial. The following lemma follows from the results of Govaerts (see case 2, page
612 in [13]).

Lemma 10 (Govaerts [13]). Let n, k, and t be positive integers such that n =
k(t+1)+t. If k ≥ 2 and S is a minimum size maximal partial t-spread of PG(n, q),
then

⋃
W∈SW contains a trivial blocking set.

We can use Lemma 10 with k = 2 to prove the following theorem.

Theorem 11. For any positive integer t, we have

τq(3t+ 2, t) ≥ σq(2t+ 2, t).

Proof. Let S be a minimum size maximal partial t-spread in PG(3t + 2, q). Then
by Lemma 10, A =

⋃
W∈SW contains a trivial blocking set. In other words, there

exists a (2t+ 2)-space B ⊆ A. Let

ΠS = {W ∩B : W ∈ S}.
Since B is a blocking set with respect to t-spaces, we have W ∩ B 6= ∅ for any
W ∈ S. Thus, ΠS is a subspace partition of B ∼= PG(2t+2, q) containing subspaces
of dimensions at most t. If ΠS contains a t-subspace, then it follows from Theorem 6
and the minimality of S that

τq(3t+ 2, t) = |S| = |ΠS | ≥ σq(2t+ 2, t).

If ΠS contains no t-subspace, then each subspace in ΠS has dimension at most t−1
(and contains at most θt−1 points). So we can estimate the number of subspaces
in ΠS to obtain

τq(3t+ 2, t) = |S| = |ΠS | ≥
⌈
θ2t+2

θt−1

⌉
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=

⌈
q(2t+2)+1 − 1

qt − 1

⌉
> qt+2 + qdt/2e+1 + 1 = σq(2t+ 2, t).

(16)

This concludes the proof of the theorem. �

We can now prove the following corollary which determines the number τq(3t+
2, t) for all t ≥ 1. The cases 1 ≤ t ≤ 2 were already known from the work of
Govaerts [13].

Corollary 12. Let t ≥ 1 be a fixed integer. Then

τq(3t+ 2, t) = σq(2t+ 2, t) = qt+2 + qdt/2e+1 + 1.

Proof. This is a direct consequence of Theorem 6, Lemma 9, and Theorem 11. �

We believe that if Conjecture 8 is true, it can be combined with Lemma 9 to
prove that

τq(n, t) = σq(n− t, t) =
q(t+1)+1(q(k−1)(t+1) − 1)

qt+1 − 1
+ qdt/2e+1 + 1,

for any integers k ≥ 2 and t ≥ 1 such that n = k(t+ 1) + t.
We remark that the cases for k = 1 and 1 ≤ r ≤ t, i.e., 2t + 1 ≤ n ≤ 3t, have

proved to be difficult. In particular, for n = 3 and t = 1, Glynn [12] established
the following lower bound

τq(3, 1) ≥ 2q,

while Gács and Szönyi [11] later proved the following upper bound

τq(3, 1) ≤

{
(2 ln q + 1)q + 1, if q odd

(6.1 ln q + 1)q + 1, if q > q0 even,

Although the gap between these bounds is somewhat considerable, they are (as far
as we know) the best bounds for τq(3, 1).

Furthermore, there are (e.g., see Hirschfeld [17]) maximal partial 1-spreads of
PG(3, q) of size q2 − q + 2 for any q > 3, and of size 7 for q = 3. For a while, it
was generally believed that these maximal partial 1-spreads have largest possible
size among all maximal partial 1-spreads which are not 1-spreads. However, for
q = 7, Heden [15] constructed a maximal partial 1-spread of size 45. All the
maximal partial 1-spreads of PG(3, q) of size 45 have subsequently been classified
by Blokhuis, Brouwer, and Wilbrink [4].
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