THE MINIMUM SIZE OF A FINITE SUBSPACE PARTITION
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ABSTRACT. A subspace partition of P = PG(n, q) is a collection of subspaces
of P whose pairwise intersection is empty. Let o4(n,t) denote the minimum
size (i.e., minimum number of subspaces) in a subspace partition of P in which
the largest subspace has dimension ¢. In this paper, we determine the value of
oq(n,t) for n < 2t 4+ 2. Moreover, we use the value of o4(2t + 2,t) to find the
minimum size of a maximal partial ¢-spread in PG(3t + 2, q).

1. INTRODUCTION

A subspace partition (or partition) of P = PG(n, q) is a collection of subspaces of
P whose pairwise intersection is empty. Alternatively, we can think of IP as the vector
space of dimension n+ 1 over GF(q), denoted by V=V (n+1, ¢). Then, a subspace
partition of P is equivalent to a partition of V into a collection S of subspaces in
such a way that each nonzero vector of V' occurs in exactly one subspace in S. The
collection § is said to be a vector space partition (or simply a partition) of V. There
is a rich literature about partitions of V' (e.g., see [1, 3, 5, 14, 22] and the references
therein).

Let o4(n,t) denote the minimum size (i.e., minimum number of subspaces) in
a subspace partition of P in which the largest subspace has dimension ¢. Since
o4(n,n) =1 and o4(n,0) = (¢"*' —1)/(¢—1), we will focus on the case 0 < t < n.
Also note that if ¢t + 1 divides n + 1, then o4(n,t) is just the size of a t-spread of
P, i.e., a subspace partition of P in which all the subspaces have dimension ¢. For
0 <t < n, A. Beutelspacher [2] established the following general lower bound:

oo, t) > g F1 1.

In a recent manuscript, O. Heden and J. Lehmann [16] established new necessary
conditions for the existence of certain subspace partitions. In particular they proved
conditions for PG(2t — 1, ¢) to admit partitions with subspaces of dimensions ¢ and
d < t (see Theorem 11 in [16]). In the process, they also prove that for any partition
IT of PG(n, q) such that ¢ is the highest dimension that occurs in IT and d <n — ¢t
is another dimension that occurs in 1I,

|H| Z qt+1 _|_qd+1 4 1.

Their result is an improvement on a result of G. Spera [22] who proved that if IT is
a partition of PG(n, ¢) such that s is the smallest dimension that occurs in II, then
ITI] > ¢t + 1. In another related paper, A. Khare [20] established a sharp bound
for the minimum number of subspaces needed to cover (not necessary partition)
a given vector space V (finite or infinite) into subspaces with fixed co-dimension
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k < co. As observed above, if V = PG(n, q) and k+1 divides n+1, then a k-spread
provides a minimum covering of V.

Let n and ¢ be fixed integers such that 0 < ¢ < n. In this paper, we prove that
(see Corollary 7)

oq(n,t) = ¢ +1 for n < 2t + 2,
and
oq(n,t) = ¢4 gt 11 for n =2t 4 2.

We combine this result with a construction of P. Govaerts [13] to show (see The-
orem 11) that the minimum size of a maximal partial ¢-spread in PG(3t + 2,q) is
given by o4(2t +2,1).

2. MAIN RESULTS

In our proofs, we use several results of Heden and Lehmann [16]. We start with
some preliminary definitions introduced in [16].

Let n > 2 be an integer and let II be a subspace partition of P = PG(n, ¢q) with
m,; subspaces of dimension i, 0 <i < n—1. Let H be any (n— 1)-subspace of P and
let b; < m; be the number of subspaces of II that are contained in H. We say that
(Mp_1,...,mg) is the type of Il and b = (b,_1,...,bo) is the type of the hyperplane
H (with respect to II). Let s, denote the number of hyperplanes in P with type b
and define the set

B = {b Sy > 0}.
For 0 <i <n, let
i+1 _ 1
=1 —
q—1
denote the number of points in an i-space of II, and let
n—i __ 1
hq(n, ’L) = max {0, qq—l}
be the number of (n — 1)-spaces (or hyperplanes) in P that contain a fixed i-space
of P. Finally, for n = 2t + 2, we define
(1) pq(n,t) =g + 1.

By using a construction of A. Beutelspacher [1] (which was rediscovered by T.
Bu [5]), it is easy to see that there is a partial ¢t-spread in PG(n, q) of size pq(n,t).

Lemma 1 (Heden and Lehmann [16]). Let IT be a subspace partition of PG(n,q)
and let (bp—1,...,bg) be the type of the hyperplane H with respect to II. Then the
number of subspaces in 11 is

n—1
O =1+ bigt.
1=0

Lemma 2 (Heden and Lehmann [16]). Let IT be a subspace partition of PG(n,q)
of type (Myp—1,...,mp) and let b = (bp_1,...,by) be the type of the hyperplane H
with respect to I1. Let s, denote the number of hyperplanes in PG(n, q) with type b
and suppose that 0 < d,f < n —2. Then
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(ZZ) Z deb = mdhq(n, d),

beB
(i) b% (") sp = (") hg(n,2d + 1),
S
(Z"U) Z babesy = mgmdhq(n, d+/0+ ].)
beB

We will also use the next lemma of Beutelspacher [1] (also see Bu [5]).

Lemma 3 (Beutelspacher [1]). Let n,d be integers such that 0 < d < (n —1)/2.
Then PG(n,q) admits a partition with one subspace of dimension n —d — 1 and

g4 subspaces of dimension d.

We can now prove the following easy observation for the value of o4(n,t) when
n < 2t+ 2.

Proposition 4. Let n and t be fized integers such that 0 <t <n < 2t+ 1. Then
oq(n,t) =g + 1.

Proof. Since 0 <t <n <2t+1, we have n =t+a+1 with 0 < a <t LetII
be an arbitrary subspace partition of P = PG(n,q) whose largest subspace U has
dimension ¢. Since n > t, we have |[II| > 1. So let U’ € (Il \ {U}) be a subspace
of largest possible dimension. Then dim(U’) < a since n = ¢t +a + 1. Since II is
arbitrarily chosen, counting the number of subspaces in II yields

0, — 0,

(2) og(n,t) > || > 1+ =1+q""

a
Now the proposition follows from (2) and the existence (see Lemma 3) of a partition
Iy of PG(n,q) with one subspace of dimension ¢ and ¢'*! subspaces of dimension
a. (I

To prove our main result, Theorem 6, we first prove the following lemma which
may be of independent interest.

Lemma 5. Let n and t > 1 be fized integers such that n = 2t + 2. Let II be a
subspace partition of PG(n, q) with no subspace of dimension higher than t. Assume
furthermore that 11 contains two subspaces of dimensions t and d with 0 < d < t.
Then

|H| > qt+2 4 qd+1 41,

Proof. Let II be a subspace partition of PG(n, ¢) containing subspaces of dimension
t and d with 0 < d < t. Define

On — 0i—1 (pq(n, t) + ¢*)

O — 01 '
We first show that the lemma holds if m; < L. Note that II is the disjoint union
of A={Well: dim(W) =t} and B={W € II: dim(W) < ¢ — 1}. Since
|A| = my, we have

3) L=

Gn — MMy - Gt
1
On — my (0 — 0;1)
et—l
9n _ L(Ht - 9t—1)
i1

1] = |A] + B

v

mt—i—
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On — [0n — 011 (g (1) + ¢**1)]
Or—1
(4) = pg(n,t)+ gt
This shows that the lemma holds for m; < L.

Now suppose that m; > L. Since there exists a subspace of dimensions ¢ and d
in I, we have m; > 0 and mg > 0. It follows from Lemma 2(iv) that

(5) Z bibasy = mymahg(n,t +d+1) # 0.
beB
Moreover,
(6) Z bibgsy = Z bibgsy + Z bibgsy.
beB bEB bEB
0<by<q-—1 bt>q

If > bibgsy # 0, then there exists b € B such that b; > g, by > 1, and s, > 1.
beEB, by>q
In this case, Lemma 1 yields
n—1
(7) )= big"™™ + 1> big"™ +bagg™ +1 > g gt 4,
i=0
and the lemma follows. So we may assume that > bibgsy = 0. We will show
bEB, bi>q
that this contradicts the assumption m; > L. From (6) and Lemma 2(ii), we obtain

(q = Dmahg(n,d) = > (a—1)-bass

beB
= Y (@—1) basy+ Y (g—1) - basy
beB beB
0<by<q—1 by >q
> > bebasy+ Y be-basy
beB beB
0<b;<q—1 bi>q
= Z btbdsb
beB
(8) = mymghg(n,t+d+1)

Since my > 0, dividing both sides of (8) by my yields
< la=1) hy(n,d) _ (= 1)(¢***7-1)

9

( ) my >~ hq(n,t+d+ 1) qt+1—d -1

Since 0 < d <t — 1, the right side (9) is maximized when d = ¢t — 1. Hence
(-1 D —1) (¢-D(¢""P-1) ¢*T-1

t= giti-(=1 —1 @2 —1 T og+1
Also, since i4(n,t) = ¢"*? + 1 (see (1)) and L (defined in (3)) is minimized when
d =1t —1, the assumption m; > L yields
Oat+2 — Ou—1 - (pg(n, 1) + ¢")
0r — 01
(@ -1 = (¢ =D +q¢" +1)
(¢ —q")

my>L >
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qt+3 -1 S
L >y,
g+1 = K
which is a contradiction. Hence Y bibgsy # 0 and (7) holds. This concludes
beB, bi>q
the proof of the lemma. ([l

Theorem 6. Let n and t > 1 be fized integers such that n =2t + 2. Then
ou(nt) = ¢ + gM/21Ht 41,
Proof. Let II be a subspace partition of PG(n, q) in which the largest subspace has
dimension ¢. Let 8 = [¢/2] and define the set
G={dim(W): W eIl and 8 < dim(W) <t—1}.
First, suppose that G # (). Then for any d € G, Lemma 5 yields
(10) | > ¢ 4+ ¢ + 1> g2 4 g7 41

So, we may assume that G = (). Hence, all other subspaces in IT have dimensions
at most B — 1. Recall from (1) that pg(n,t) = ¢*2 + 1. We consider the following
two cases based on whether m; = p14(n,t) or not.

Case 1: m; = p4(n,t).
If b, > g+ 1 for some b € B, then
n—1
(1) Of = Z big T 12l g T A 12 TP T 12 T P L
=0
If b, < ¢ for all b € B, then
(12) q Zsb: Zq-sb > thsb:mthq(n,t).
beB beB beB

Using Lemma 2(i) and (ii), we infer that (12) holds if and only if
n—t __ 1

qn+1 -1 42 q
q(gﬁ1>:q2%%2W%mw:@ 0

<:>qn—i-2 _qz qn+2 _qt+2+qn—t_1
" rg=¢"+q¢< ¢ +1,

which is a contradiction since ¢ > 1.

Case 2: my < pi4(n,t) — 1. In this case, each subspace in II, other than the m,
subspaces, has dimension at most 5 — 1 (so at most #g_1 points). Therefore, we
can estimate the number of subspaces in II as follows

0, —my - 6,

I > my +
051
_ 0, — mt(et - 9,6—1)
051
o On— (g(nt) = 1) - (B — 65-1)
= Qﬁ—l
_ (q2t+3 _ 1) _ qt+2(qt+1 _ qﬁ)
= qﬁ 7

(13) > ¢4 4
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Now it follows from (10), (11), and (13) that

I > g™ +¢" 41
holds in all cases. Since II is an arbitrarily chosen subspace partition, we obtain
(14) oa(n,t) > ¢+ ¢ 1

Moreover, it follows from Lemma 3 that there exists a partition ITy of PG(2¢+2, q)
into one subspace W of dimension ¢ + 1 and ¢**2 subspaces of dimension ¢. If ¢
is even, then ¢t + 2 = 2(8 + 1) and we can partition W into a S-spread containing
¢?t1 + 1 subspaces. If t is odd then ¢t +2 = 23 + 1 and we use Lemma 3 again
to partition T into one subspace of dimension 8 and ¢®*! subspaces of dimension
[ — 1. This shows that

(15) ¢+ "+ 1= |Tlg| > 0y (n, 1)
Finally (14) and (15) yield
ae(n,t) = ¢ + ¢+ 1.

O
Proposition 4 and Theorem 6 lead directly to the following corollary.
Corollary 7. Let n andt be fized integers such that 0 <t <mn. Then
oq(n,t) =g +1 forn < 2t+2,
and
oq(n,t) = ¢ 24 g L1 forn =2t + 2.
Proof. This follows directly from Proposition 4 and Theorem 6. O

We conclude this section by proposing the following conjecture.

Conjecture 8. Letn, k, and t be positive integers such that n = k(t+1). Ifk > 2

then
q(t+1)+1 (q(k—l)(t+1) _ 1)

qt+1 -1

O'q(n,t) = _|_qrt/2-|+1_~_1.
Note that Conjecture 8 holds for k = 2 (see Theorem 6) and o,(n,t) = ¢'** +1
for k =1 (see Proposition 4).

3. AN APPLICATION TO MAXIMAL PARTIAL {-SPREADS

Let P = PG(n, q) denote the projective space of dimension n over the Galois field
GF(q). A partial t-spread of P is a collection § = {W7,..., Wy} of t-dimensional
subspaces of P such that W; N W; = 0 for ¢ # j. The number |S]| is called the size
of S. If P = Uy cs W, then S is called a spread. Tt is well-known that a spread
exists if and only if ¢ + 1 divides n + 1.

A maximal partial t-spread is one which cannot be extended to a larger one.
The problem of classifying the maximal partial ¢-spreads of P has been extensively
studied (see [9, 11, 13, 15, 18, 19]). It has applications in the construction of
error-correcting codes [6, 8], orthogonal arrays [7, 10], and factorial designs [21].

Let n and t be fixed integers and let k£ and r be the unique integers defined by
n—t=k(t+1)+r—1and 0 <r <t Welet 74(n,t) denote the minimum number
of subspaces in any maximal partial t-spread of P. The maximal partial ¢t-spread
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S of P such that |S| = 74(n, t), is called a minimum size maximal partial t-spread.
Beutelspacher [1] showed that for r = 0 and any positive integers k and ¢,

g 1

Tq(n,t) = T

For r > 0, P. Govaerts [13] proved several results related to the number 7,(n,t). In
particular, he provided an upper bound for 7,(n,t) by constructing a class of small
(not necessarily minimum) size of maximal partial ¢-spreads of P. We will use his
bound in the case r = 1. For n = k(t + 1), define
(t+1)+1 (o (k=1)(t+1) _
q (g 1)
,uq(nvt) = C]t+1 1 + 1.

Lemma 9 (Govaerts [13]). Let n, k, and t > 0 be fized integers and write n =
E(t+ 1)+t Ifk > 2 then there exist (see page 610 in [13] for a construction)
mazimal partial t-spreads of PG(n,q) of size pg(n — t,t) + ¢It/2171. Consequently,

T4(n,t) < pg(n —t,t) + q[t/21+1.

We can apply our main result, Theorem 6, to determine the value of 7,(3t+2,¢).
Our strategy is due to Govaerts but we replace his set-partition based analysis with
the more appropriate subspace-partition analysis. We first introduce the relevant
definitions. A set of points B of P is called a blocking set with respect to the
t-spaces of P if W N B # ) for any t¢-spaces W in P. Note that any (n — t)-space of
P is a blocking set with respect to the t-spaces of P. Such blocking sets are called
trivial. The following lemma follows from the results of Govaerts (see case 2, page
612 in [13]).

Lemma 10 (Govaerts [13]). Let n, k, and t be positive integers such that n =
k(t+1)+t. If k > 2 and S is a minimum size mazimal partial t-spread of PG(n, q),
then Jycs W contains a trivial blocking set.

We can use Lemma 10 with £ = 2 to prove the following theorem.

Theorem 11. For any positive integer t, we have
T3t +2,t) > 04(2t + 2,1).

Proof. Let S be a minimum size maximal partial ¢-spread in PG(3t + 2, ¢). Then
by Lemma 10, A = [ J;cg W contains a trivial blocking set. In other words, there
exists a (2t + 2)-space B C A. Let

Mg ={WnNB: WeS}
Since B is a blocking set with respect to t-spaces, we have W N B # () for any
W e S. Thus, I is a subspace partition of B = PG(2t+2, ¢) containing subspaces

of dimensions at most t. If IIs contains a t-subspace, then it follows from Theorem 6
and the minimality of S that

Ta(3t +2,t) = |S] = Is| > 0,2t + 2,1).
If ITs contains no t-subspace, then each subspace in IIs has dimension at most ¢ — 1

(and contains at most 6;_; points). So we can estimate the number of subspaces
in IIs to obtain

0
(3t 2,0) = |5 = |ls] > [ ﬂ

01
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q(2t+2)+1 -1
¢t —1
> qt+2—|—q|—t/2-|+1+1:Uq(2t+27t)~

This concludes the proof of the theorem. O

We can now prove the following corollary which determines the number 7, (3t +
2,t) for all ¢ > 1. The cases 1 < t < 2 were already known from the work of
Govaerts [13].

Corollary 12. Lett > 1 be a fixed integer. Then
T3t +2,1) = 04 (2t + 2,t) = ¢+ + ¢+ 41,
Proof. This is a direct consequence of Theorem 6, Lemma 9, and Theorem 11. O

We believe that if Conjecture 8 is true, it can be combined with Lemma 9 to
prove that

q(t+1)+1(q(k71)(t+1) _ 1)
qt+1 —1

Te(n,t) = o4(n —t,t) = +glt/2H g
for any integers k > 2 and ¢ > 1 such that n = k(t+ 1) + ¢.

We remark that the cases for k =1 and 1 <r <, ie., 2t +1 < n < 3t, have
proved to be difficult. In particular, for n = 3 and ¢t = 1, Glynn [12] established
the following lower bound

74(3,1) > 2g,

while Gacs and Szonyi [11] later proved the following upper bound

21 1 1 if ¢ odd
oy < [ e i
(6.1lng+ 1)g+1, if ¢ > qo even,

Although the gap between these bounds is somewhat considerable, they are (as far
as we know) the best bounds for 7,(3, 1).

Furthermore, there are (e.g., see Hirschfeld [17]) maximal partial 1-spreads of
PG(3,q) of size ¢*> — ¢ + 2 for any ¢ > 3, and of size 7 for ¢ = 3. For a while, it
was generally believed that these maximal partial 1-spreads have largest possible
size among all maximal partial 1-spreads which are not 1-spreads. However, for
q = 7, Heden [15] constructed a maximal partial 1-spread of size 45. All the
maximal partial 1-spreads of PG(3, q) of size 45 have subsequently been classified
by Blokhuis, Brouwer, and Wilbrink [4].
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