THE MINIMUM SIZE OF A FINITE SUBSPACE PARTITION

ESMERALDA L. NĂSTASE \dagger AND PAPA A. SISSOKHO \ddagger

Abstract

A subspace partition of $\mathbb{P}=\operatorname{PG}(n, q)$ is a collection of subspaces of \mathbb{P} whose pairwise intersection is empty. Let $\sigma_{q}(n, t)$ denote the minimum size (i.e., minimum number of subspaces) in a subspace partition of \mathbb{P} in which the largest subspace has dimension t. In this paper, we determine the value of $\sigma_{q}(n, t)$ for $n \leq 2 t+2$. Moreover, we use the value of $\sigma_{q}(2 t+2, t)$ to find the minimum size of a maximal partial t-spread in $\operatorname{PG}(3 t+2, q)$.

1. Introduction

A subspace partition (or partition) of $\mathbb{P}=\mathrm{PG}(n, q)$ is a collection of subspaces of \mathbb{P} whose pairwise intersection is empty. Alternatively, we can think of \mathbb{P} as the vector space of dimension $n+1$ over $\operatorname{GF}(q)$, denoted by $V=V(n+1, q)$. Then, a subspace partition of \mathbb{P} is equivalent to a partition of V into a collection \mathcal{S} of subspaces in such a way that each nonzero vector of V occurs in exactly one subspace in \mathcal{S}. The collection \mathcal{S} is said to be a vector space partition (or simply a partition) of V. There is a rich literature about partitions of V (e.g., see $[1,3,5,14,22]$ and the references therein).

Let $\sigma_{q}(n, t)$ denote the minimum size (i.e., minimum number of subspaces) in a subspace partition of \mathbb{P} in which the largest subspace has dimension t. Since $\sigma_{q}(n, n)=1$ and $\sigma_{q}(n, 0)=\left(q^{n+1}-1\right) /(q-1)$, we will focus on the case $0<t<n$. Also note that if $t+1$ divides $n+1$, then $\sigma_{q}(n, t)$ is just the size of a t-spread of \mathbb{P}, i.e., a subspace partition of \mathbb{P} in which all the subspaces have dimension t. For $0<t<n$, A. Beutelspacher [2] established the following general lower bound:

$$
\sigma_{q}(n, t) \geq q^{\left\lceil\frac{n+1}{2}\right\rceil}+1
$$

In a recent manuscript, O. Heden and J. Lehmann [16] established new necessary conditions for the existence of certain subspace partitions. In particular they proved conditions for $\mathrm{PG}(2 t-1, q)$ to admit partitions with subspaces of dimensions t and $d<t$ (see Theorem 11 in [16]). In the process, they also prove that for any partition Π of $\operatorname{PG}(n, q)$ such that t is the highest dimension that occurs in Π and $d<n-t$ is another dimension that occurs in Π,

$$
|\Pi| \geq q^{t+1}+q^{d+1}+1
$$

Their result is an improvement on a result of G. Spera [22] who proved that if Π is a partition of $\operatorname{PG}(n, q)$ such that s is the smallest dimension that occurs in Π, then $|\Pi| \geq q^{s+1}+1$. In another related paper, A. Khare [20] established a sharp bound for the minimum number of subspaces needed to cover (not necessary partition) a given vector space V (finite or infinite) into subspaces with fixed co-dimension

[^0]$k<\infty$. As observed above, if $V \cong \mathrm{PG}(n, q)$ and $k+1$ divides $n+1$, then a k-spread provides a minimum covering of V.

Let n and t be fixed integers such that $0<t<n$. In this paper, we prove that (see Corollary 7)

$$
\sigma_{q}(n, t)=q^{t+1}+1 \text { for } n<2 t+2
$$

and

$$
\sigma_{q}(n, t)=q^{t+2}+q^{\lceil t / 2\rceil+1}+1 \text { for } n=2 t+2 .
$$

We combine this result with a construction of P. Govaerts [13] to show (see Theorem 11) that the minimum size of a maximal partial t-spread in $\operatorname{PG}(3 t+2, q)$ is given by $\sigma_{q}(2 t+2, t)$.

2. Main Results

In our proofs, we use several results of Heden and Lehmann [16]. We start with some preliminary definitions introduced in [16].

Let $n \geq 2$ be an integer and let Π be a subspace partition of $\mathbb{P}=\operatorname{PG}(n, q)$ with m_{i} subspaces of dimension $i, 0 \leq i \leq n-1$. Let H be any $(n-1)$-subspace of \mathbb{P} and let $b_{i} \leq m_{i}$ be the number of subspaces of Π that are contained in H. We say that $\left(m_{n-1}, \ldots, m_{0}\right)$ is the type of Π and $b=\left(b_{n-1}, \ldots, b_{0}\right)$ is the type of the hyperplane H (with respect to Π). Let s_{b} denote the number of hyperplanes in \mathbb{P} with type b and define the set

$$
B=\left\{b: s_{b}>0\right\}
$$

For $0 \leq i \leq n$, let

$$
\theta_{i}=\frac{q^{i+1}-1}{q-1}
$$

denote the number of points in an i-space of Π, and let

$$
h_{q}(n, i)=\max \left\{0, \frac{q^{n-i}-1}{q-1}\right\}
$$

be the number of ($n-1$)-spaces (or hyperplanes) in \mathbb{P} that contain a fixed i-space of \mathbb{P}. Finally, for $n=2 t+2$, we define

$$
\begin{equation*}
\mu_{q}(n, t)=q^{t+2}+1 \tag{1}
\end{equation*}
$$

By using a construction of A. Beutelspacher [1] (which was rediscovered by T. $\mathrm{Bu}[5])$, it is easy to see that there is a partial t-spread in $\mathrm{PG}(n, q)$ of size $\mu_{q}(n, t)$.
Lemma 1 (Heden and Lehmann [16]). Let Π be a subspace partition of $\operatorname{PG}(n, q)$ and let $\left(b_{n-1}, \ldots, b_{0}\right)$ be the type of the hyperplane H with respect to Π. Then the number of subspaces in Π is

$$
|\Pi|=1+\sum_{i=0}^{n-1} b_{i} q^{i+1}
$$

Lemma 2 (Heden and Lehmann [16]). Let Π be a subspace partition of $\operatorname{PG}(n, q)$ of type $\left(m_{n-1}, \ldots, m_{0}\right)$ and let $b=\left(b_{n-1}, \ldots, b_{0}\right)$ be the type of the hyperplane H with respect to Π. Let s_{b} denote the number of hyperplanes in $\operatorname{PG}(n, q)$ with type b and suppose that $0 \leq d, \ell \leq n-2$. Then
(i) $\sum_{b \in B} s_{b}=\frac{q^{n+1}-1}{q-1}$,
(ii) $\sum_{b \in B} b_{d} s_{b}=m_{d} h_{q}(n, d)$,
(iii) $\sum_{b \in B}\binom{b_{d}}{2} s_{b}=\binom{m_{d}}{2} h_{q}(n, 2 d+1)$,
(iv) $\sum_{b \in B} b_{d} b_{\ell} s_{b}=m_{\ell} m_{d} h_{q}(n, d+\ell+1)$.

We will also use the next lemma of Beutelspacher [1] (also see $\mathrm{Bu}[5]$).
Lemma 3 (Beutelspacher [1]). Let n, d be integers such that $0 \leq d \leq(n-1) / 2$. Then $\operatorname{PG}(n, q)$ admits a partition with one subspace of dimension $n-d-1$ and q^{n-d} subspaces of dimension d.

We can now prove the following easy observation for the value of $\sigma_{q}(n, t)$ when $n<2 t+2$.

Proposition 4. Let n and t be fixed integers such that $0<t<n \leq 2 t+1$. Then

$$
\sigma_{q}(n, t)=q^{t+1}+1
$$

Proof. Since $0<t<n \leq 2 t+1$, we have $n=t+a+1$ with $0 \leq a \leq t$. Let Π be an arbitrary subspace partition of $\mathbb{P}=\operatorname{PG}(n, q)$ whose largest subspace U has dimension t. Since $n>t$, we have $|\Pi|>1$. So let $U^{\prime} \in(\Pi \backslash\{U\})$ be a subspace of largest possible dimension. Then $\operatorname{dim}\left(U^{\prime}\right) \leq a$ since $n=t+a+1$. Since Π is arbitrarily chosen, counting the number of subspaces in Π yields

$$
\begin{equation*}
\sigma_{q}(n, t) \geq|\Pi| \geq 1+\frac{\theta_{n}-\theta_{t}}{\theta_{a}}=1+q^{t+1} \tag{2}
\end{equation*}
$$

Now the proposition follows from (2) and the existence (see Lemma 3) of a partition Π_{0} of $\operatorname{PG}(n, q)$ with one subspace of dimension t and q^{t+1} subspaces of dimension a.

To prove our main result, Theorem 6, we first prove the following lemma which may be of independent interest.

Lemma 5. Let n and $t \geq 1$ be fixed integers such that $n=2 t+2$. Let Π be a subspace partition of $\mathrm{PG}(n, q)$ with no subspace of dimension higher than t. Assume furthermore that Π contains two subspaces of dimensions t and d with $0 \leq d<t$. Then

$$
|\Pi| \geq q^{t+2}+q^{d+1}+1
$$

Proof. Let Π be a subspace partition of $\mathrm{PG}(n, q)$ containing subspaces of dimension t and d with $0 \leq d<t$. Define

$$
\begin{equation*}
L=\frac{\theta_{n}-\theta_{t-1}\left(\mu_{q}(n, t)+q^{d+1}\right)}{\theta_{t}-\theta_{t-1}} \tag{3}
\end{equation*}
$$

We first show that the lemma holds if $m_{t} \leq L$. Note that Π is the disjoint union of $A=\{W \in \Pi: \operatorname{dim}(W)=t\}$ and $B=\{W \in \Pi: \operatorname{dim}(W) \leq t-1\}$. Since $|A|=m_{t}$, we have

$$
\begin{aligned}
|\Pi|=|A|+|B| & \geq m_{t}+\frac{\theta_{n}-m_{t} \cdot \theta_{t}}{\theta_{t-1}} \\
& =\frac{\theta_{n}-m_{t}\left(\theta_{t}-\theta_{t-1}\right)}{\theta_{t-1}} \\
& \geq \frac{\theta_{n}-L\left(\theta_{t}-\theta_{t-1}\right)}{\theta_{t-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\theta_{n}-\left[\theta_{n}-\theta_{t-1}\left(\mu_{q}(n, t)+q^{d+1}\right)\right]}{\theta_{t-1}} \\
& =\mu_{q}(n, t)+q^{d+1}
\end{aligned}
$$

This shows that the lemma holds for $m_{t} \leq L$.
Now suppose that $m_{t}>L$. Since there exists a subspace of dimensions t and d in Π, we have $m_{t}>0$ and $m_{d}>0$. It follows from Lemma 2(iv) that

$$
\begin{equation*}
\sum_{b \in B} b_{t} b_{d} s_{b}=m_{t} m_{d} h_{q}(n, t+d+1) \neq 0 \tag{5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\sum_{b \in B} b_{t} b_{d} s_{b}=\sum_{\substack{b \in B \\ 0 \leq b_{t} \leq q-1}} b_{t} b_{d} s_{b}+\sum_{\substack{b \in B \\ b_{t} \geq q}} b_{t} b_{d} s_{b} \tag{6}
\end{equation*}
$$

If $\sum_{b \in B, b_{t} \geq q} b_{t} b_{d} s_{b} \neq 0$, then there exists $b \in B$ such that $b_{t} \geq q, b_{d} \geq 1$, and $s_{b} \geq 1$. In this case, Lemma 1 yields

$$
\begin{equation*}
|\Pi|=\sum_{i=0}^{n-1} b_{i} q^{i+1}+1 \geq b_{t} q^{t+1}+b_{d} q^{d+1}+1 \geq q^{t+2}+q^{d+1}+1 \tag{7}
\end{equation*}
$$

and the lemma follows. So we may assume that $\sum_{b \in B, b_{t} \geq q} b_{t} b_{d} s_{b}=0$. We will show that this contradicts the assumption $m_{t}>L$. From (6) and Lemma 2(ii), we obtain

$$
\begin{align*}
(q-1) m_{d} h_{q}(n, d) & =\sum_{b \in B}(q-1) \cdot b_{d} s_{b} \\
& =\sum_{\substack{b \in B \\
0 \leq b_{t} \leq q-1}}(q-1) \cdot b_{d} s_{b}+\sum_{\substack{b \in B \\
b_{t} \geq q}}(q-1) \cdot b_{d} s_{b} \\
& \geq \sum_{\substack{b \in B \\
0 \leq b_{t} \leq q-1}} b_{t} \cdot b_{d} s_{b}+\sum_{\substack{b \in B \\
b_{t} \geq q}} b_{t} \cdot b_{d} s_{b} \\
& =\sum_{b \in B} b_{t} b_{d} s_{b} \\
& =m_{t} m_{d} h_{q}(n, t+d+1) \tag{8}
\end{align*}
$$

Since $m_{d}>0$, dividing both sides of (8) by m_{d} yields

$$
\begin{equation*}
m_{t} \leq \frac{(q-1) h_{q}(n, d)}{h_{q}(n, t+d+1)}=\frac{(q-1)\left(q^{2 t+2-d}-1\right)}{q^{t+1-d}-1} \tag{9}
\end{equation*}
$$

Since $0 \leq d \leq t-1$, the right side (9) is maximized when $d=t-1$. Hence

$$
m_{t} \leq \frac{(q-1)\left(q^{2 t+2-(t-1)}-1\right)}{q^{t+1-(t-1)}-1}=\frac{(q-1)\left(q^{t+3}-1\right)}{q^{2}-1}=\frac{q^{t+3}-1}{q+1}
$$

Also, since $\mu_{q}(n, t)=q^{t+2}+1$ (see (1)) and L (defined in (3)) is minimized when $d=t-1$, the assumption $m_{t}>L$ yields

$$
\begin{aligned}
m_{t}>L & \geq \frac{\theta_{2 t+2}-\theta_{t-1} \cdot\left(\mu_{q}(n, t)+q^{t}\right)}{\theta_{t}-\theta_{t-1}} \\
& =\frac{\left(q^{2 t+3}-1\right)-\left(q^{t}-1\right)\left(q^{t+2}+q^{t}+1\right)}{\left(q^{t+1}-q^{t}\right)}
\end{aligned}
$$

$$
\geq \frac{q^{t+3}-1}{q+1} \geq m_{t}
$$

which is a contradiction. Hence $\sum_{b \in B, b_{t} \geq q} b_{t} b_{d} s_{b} \neq 0$ and (7) holds. This concludes the proof of the lemma.

Theorem 6. Let n and $t \geq 1$ be fixed integers such that $n=2 t+2$. Then

$$
\sigma_{q}(n, t)=q^{t+2}+q^{\lceil t / 2\rceil+1}+1
$$

Proof. Let Π be a subspace partition of $\operatorname{PG}(n, q)$ in which the largest subspace has dimension t. Let $\beta=\lceil t / 2\rceil$ and define the set

$$
G=\{\operatorname{dim}(W): W \in \Pi \text { and } \beta \leq \operatorname{dim}(W) \leq t-1\}
$$

First, suppose that $G \neq \emptyset$. Then for any $d \in G$, Lemma 5 yields

$$
\begin{equation*}
|\Pi| \geq q^{t+2}+q^{d+1}+1 \geq q^{t+2}+q^{\beta+1}+1 \tag{10}
\end{equation*}
$$

So, we may assume that $G=\emptyset$. Hence, all other subspaces in Π have dimensions at most $\beta-1$. Recall from (1) that $\mu_{q}(n, t)=q^{t+2}+1$. We consider the following two cases based on whether $m_{t}=\mu_{q}(n, t)$ or not.

Case 1: $m_{t}=\mu_{q}(n, t)$.
If $b_{t} \geq q+1$ for some $b \in B$, then

$$
\begin{equation*}
|\Pi|=\sum_{i=0}^{n-1} b_{i} q^{i+1}+1 \geq b_{t} \cdot q^{t+1}+1 \geq q^{t+2}+q^{t+1}+1 \geq q^{t+2}+q^{\beta+1}+1 \tag{11}
\end{equation*}
$$

If $b_{t} \leq q$ for all $b \in B$, then

$$
\begin{equation*}
q \sum_{b \in B} s_{b}=\sum_{b \in B} q \cdot s_{b} \geq \sum_{b \in B} b_{t} s_{b}=m_{t} h_{q}(n, t) \tag{12}
\end{equation*}
$$

Using Lemma 2(i) and (ii), we infer that (12) holds if and only if

$$
\begin{aligned}
& q\left(\frac{q^{n+1}-1}{q-1}\right)=q \sum_{b \in B} s_{b} \geq m_{t} h_{q}(n, t)=\left(q^{t+2}+1\right) \cdot \frac{q^{n-t}-1}{q-1} \\
& \Leftrightarrow q^{n+2}-q \geq q^{n+2}-q^{t+2}+q^{n-t}-1 \\
& \Leftrightarrow q^{n-t}+q=q^{t+2}+q \leq q^{t+2}+1
\end{aligned}
$$

which is a contradiction since $q>1$.

Case 2: $m_{t} \leq \mu_{q}(n, t)-1$. In this case, each subspace in Π, other than the m_{t} subspaces, has dimension at most $\beta-1$ (so at most $\theta_{\beta-1}$ points). Therefore, we can estimate the number of subspaces in Π as follows

$$
\begin{align*}
|\Pi| & \geq m_{t}+\frac{\theta_{n}-m_{t} \cdot \theta_{t}}{\theta_{\beta-1}} \\
& =\frac{\theta_{n}-m_{t}\left(\theta_{t}-\theta_{\beta-1}\right)}{\theta_{\beta-1}} \\
& \geq \frac{\theta_{n}-\left(\mu_{q}(n, t)-1\right) \cdot\left(\theta_{t}-\theta_{\beta-1}\right)}{\theta_{\beta-1}} \\
& =\frac{\left(q^{2 t+3}-1\right)-q^{t+2}\left(q^{t+1}-q^{\beta}\right)}{q^{\beta}-1} \\
& \geq q^{t+2}+q^{\beta+1}+q . \tag{13}
\end{align*}
$$

Now it follows from (10), (11), and (13) that

$$
|\Pi| \geq q^{t+2}+q^{\beta+1}+1
$$

holds in all cases. Since Π is an arbitrarily chosen subspace partition, we obtain

$$
\begin{equation*}
\sigma_{q}(n, t) \geq q^{t+2}+q^{\beta+1}+1 \tag{14}
\end{equation*}
$$

Moreover, it follows from Lemma 3 that there exists a partition Π_{0} of $\mathrm{PG}(2 t+2, q)$ into one subspace W of dimension $t+1$ and q^{t+2} subspaces of dimension t. If t is even, then $t+2=2(\beta+1)$ and we can partition W into a β-spread containing $q^{\beta+1}+1$ subspaces. If t is odd then $t+2=2 \beta+1$ and we use Lemma 3 again to partition W into one subspace of dimension β and $q^{\beta+1}$ subspaces of dimension $\beta-1$. This shows that

$$
\begin{equation*}
q^{t+2}+q^{\beta+1}+1=\left|\Pi_{0}\right| \geq \sigma_{q}(n, t) \tag{15}
\end{equation*}
$$

Finally (14) and (15) yield

$$
\sigma_{q}(n, t)=q^{t+2}+q^{\beta+1}+1
$$

Proposition 4 and Theorem 6 lead directly to the following corollary.
Corollary 7. Let n and t be fixed integers such that $0<t<n$. Then

$$
\sigma_{q}(n, t)=q^{t+1}+1 \text { for } n<2 t+2
$$

and

$$
\sigma_{q}(n, t)=q^{t+2}+q^{\lceil t / 2\rceil+1}+1 \text { for } n=2 t+2 \text {. }
$$

Proof. This follows directly from Proposition 4 and Theorem 6.
We conclude this section by proposing the following conjecture.
Conjecture 8. Let n, k, and t be positive integers such that $n=k(t+1)$. If $k \geq 2$ then

$$
\sigma_{q}(n, t)=\frac{q^{(t+1)+1}\left(q^{(k-1)(t+1)}-1\right)}{q^{t+1}-1}+q^{\lceil t / 2\rceil+1}+1
$$

Note that Conjecture 8 holds for $k=2$ (see Theorem 6) and $\sigma_{q}(n, t)=q^{t+1}+1$ for $k=1$ (see Proposition 4).

3. An application to maximal partial t-Spreads

Let $\mathbb{P}=\mathrm{PG}(n, q)$ denote the projective space of dimension n over the Galois field $\operatorname{GF}(q)$. A partial t-spread of \mathbb{P} is a collection $\mathcal{S}=\left\{W_{1}, \ldots, W_{k}\right\}$ of t-dimensional subspaces of \mathbb{P} such that $W_{i} \cap W_{j}=\emptyset$ for $i \neq j$. The number $|\mathcal{S}|$ is called the size of \mathcal{S}. If $\mathbb{P}=\bigcup_{W \in \mathcal{S}} W$, then \mathcal{S} is called a spread. It is well-known that a spread exists if and only if $t+1$ divides $n+1$.

A maximal partial t-spread is one which cannot be extended to a larger one. The problem of classifying the maximal partial t-spreads of \mathbb{P} has been extensively studied (see $[9,11,13,15,18,19]$). It has applications in the construction of error-correcting codes [6, 8], orthogonal arrays [7, 10], and factorial designs [21].

Let n and t be fixed integers and let k and r be the unique integers defined by $n-t=k(t+1)+r-1$ and $0 \leq r \leq t$. We let $\tau_{q}(n, t)$ denote the minimum number of subspaces in any maximal partial t-spread of \mathbb{P}. The maximal partial t-spread
\mathcal{S} of \mathbb{P} such that $|\mathcal{S}|=\tau_{q}(n, t)$, is called a minimum size maximal partial t-spread. Beutelspacher [1] showed that for $r=0$ and any positive integers k and t,

$$
\tau_{q}(n, t)=\frac{q^{k(t+1)}-1}{q^{t+1}-1}
$$

For $r>0, \mathrm{P}$. Govaerts [13] proved several results related to the number $\tau_{q}(n, t)$. In particular, he provided an upper bound for $\tau_{q}(n, t)$ by constructing a class of small (not necessarily minimum) size of maximal partial t-spreads of \mathbb{P}. We will use his bound in the case $r=1$. For $n=k(t+1)$, define

$$
\mu_{q}(n, t)=\frac{q^{(t+1)+1}\left(q^{(k-1)(t+1)}-1\right)}{q^{t+1}-1}+1
$$

Lemma 9 (Govaerts [13]). Let n, k, and $t \geq 0$ be fixed integers and write $n=$ $k(t+1)+t$. If $k \geq 2$ then there exist (see page 610 in [13] for a construction) maximal partial t-spreads of $\mathrm{PG}(n, q)$ of size $\mu_{q}(n-t, t)+q^{\lceil t / 2\rceil+1}$. Consequently,

$$
\tau_{q}(n, t) \leq \mu_{q}(n-t, t)+q^{\lceil t / 2\rceil+1}
$$

We can apply our main result, Theorem 6 , to determine the value of $\tau_{q}(3 t+2, t)$. Our strategy is due to Govaerts but we replace his set-partition based analysis with the more appropriate subspace-partition analysis. We first introduce the relevant definitions. A set of points B of \mathbb{P} is called a blocking set with respect to the t-spaces of \mathbb{P} if $W \cap B \neq \emptyset$ for any t-spaces W in \mathbb{P}. Note that any $(n-t)$-space of \mathbb{P} is a blocking set with respect to the t-spaces of \mathbb{P}. Such blocking sets are called trivial. The following lemma follows from the results of Govaerts (see case 2, page 612 in [13]).

Lemma 10 (Govaerts [13]). Let n, k, and t be positive integers such that $n=$ $k(t+1)+t$. If $k \geq 2$ and \mathcal{S} is a minimum size maximal partial t-spread of $\mathrm{PG}(n, q)$, then $\bigcup_{W \in \mathcal{S}} W$ contains a trivial blocking set.

We can use Lemma 10 with $k=2$ to prove the following theorem.
Theorem 11. For any positive integer t, we have

$$
\tau_{q}(3 t+2, t) \geq \sigma_{q}(2 t+2, t)
$$

Proof. Let \mathcal{S} be a minimum size maximal partial t-spread in $\operatorname{PG}(3 t+2, q)$. Then by Lemma 10, $A=\bigcup_{W \in \mathcal{S}} W$ contains a trivial blocking set. In other words, there exists a $(2 t+2)$-space $B \subseteq A$. Let

$$
\Pi_{S}=\{W \cap B: W \in \mathcal{S}\} .
$$

Since B is a blocking set with respect to t-spaces, we have $W \cap B \neq \emptyset$ for any $W \in \mathcal{S}$. Thus, $\Pi_{\mathcal{S}}$ is a subspace partition of $B \cong \mathrm{PG}(2 t+2, q)$ containing subspaces of dimensions at most t. If $\Pi_{\mathcal{S}}$ contains a t-subspace, then it follows from Theorem 6 and the minimality of \mathcal{S} that

$$
\tau_{q}(3 t+2, t)=|S|=\left|\Pi_{\mathcal{S}}\right| \geq \sigma_{q}(2 t+2, t)
$$

If $\Pi_{\mathcal{S}}$ contains no t-subspace, then each subspace in $\Pi_{\mathcal{S}}$ has dimension at most $t-1$ (and contains at most θ_{t-1} points). So we can estimate the number of subspaces in $\Pi_{\mathcal{S}}$ to obtain

$$
\tau_{q}(3 t+2, t)=|S|=\left|\Pi_{\mathcal{S}}\right| \geq\left\lceil\frac{\theta_{2 t+2}}{\theta_{t-1}}\right\rceil
$$

$$
\begin{aligned}
& =\left\lceil\frac{q^{(2 t+2)+1}-1}{q^{t}-1}\right\rceil \\
& >q^{t+2}+q^{\lceil t / 2\rceil+1}+1=\sigma_{q}(2 t+2, t)
\end{aligned}
$$

This concludes the proof of the theorem.
We can now prove the following corollary which determines the number $\tau_{q}(3 t+$ $2, t)$ for all $t \geq 1$. The cases $1 \leq t \leq 2$ were already known from the work of Govaerts [13].

Corollary 12. Let $t \geq 1$ be a fixed integer. Then

$$
\tau_{q}(3 t+2, t)=\sigma_{q}(2 t+2, t)=q^{t+2}+q^{\lceil t / 2\rceil+1}+1
$$

Proof. This is a direct consequence of Theorem 6, Lemma 9, and Theorem 11.
We believe that if Conjecture 8 is true, it can be combined with Lemma 9 to prove that

$$
\tau_{q}(n, t)=\sigma_{q}(n-t, t)=\frac{q^{(t+1)+1}\left(q^{(k-1)(t+1)}-1\right)}{q^{t+1}-1}+q^{\lceil t / 2\rceil+1}+1
$$

for any integers $k \geq 2$ and $t \geq 1$ such that $n=k(t+1)+t$.
We remark that the cases for $k=1$ and $1 \leq r \leq t$, i.e., $2 t+1 \leq n \leq 3 t$, have proved to be difficult. In particular, for $n=3$ and $t=1$, Glynn [12] established the following lower bound

$$
\tau_{q}(3,1) \geq 2 q
$$

while Gács and Szönyi [11] later proved the following upper bound

$$
\tau_{q}(3,1) \leq \begin{cases}(2 \ln q+1) q+1, & \text { if } q \text { odd } \\ (6.1 \ln q+1) q+1, & \text { if } q>q_{0} \text { even }\end{cases}
$$

Although the gap between these bounds is somewhat considerable, they are (as far as we know) the best bounds for $\tau_{q}(3,1)$.

Furthermore, there are (e.g., see Hirschfeld [17]) maximal partial 1-spreads of $\mathrm{PG}(3, q)$ of size $q^{2}-q+2$ for any $q>3$, and of size 7 for $q=3$. For a while, it was generally believed that these maximal partial 1-spreads have largest possible size among all maximal partial 1-spreads which are not 1-spreads. However, for $q=7$, Heden [15] constructed a maximal partial 1-spread of size 45. All the maximal partial 1-spreads of $\mathrm{PG}(3, q)$ of size 45 have subsequently been classified by Blokhuis, Brouwer, and Wilbrink [4].

References

[1] A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math Zeit 145 (1975), 211-229.
[2] A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces, Geom Dedicata 9 (1980), 425-449.
[3] A. Blinco, S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, and C. Vanden Eynden, On Vector space partitions and uniformly resolvable designs, Des Codes Cryptogr 15 (2008), 69-77.
[4] A. Blokhuis, A. Brouwer, and H. Wilbrink, Blocking sets in $\operatorname{PG}(2, p)$ for small p, and partial spreads in PG(3,7). Advanc Geom 3 (2003), 245-243.
[5] T. Bu, Partitions of a vector space, Disc Math 31 (1980), 79-83.
[6] W. Clark and L. Dunning, Partial partitions of vector spaces arising from the construction of byte error control codes, Ars Combin 33 (1992), 161-177.
[7] C. Colbourn and M. Greig, Orthogonal arrays of index more than one, in: The CRC handbook of combinatorial designs. Edited by C. Colbourn and J. Dinitz. CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL (2007), 219-228.
[8] D. Drake and J. Freeman, Partial t-spreads and group constructible (s, r, μ)-nets. J Geom 13 (1979), 211-216.
[9] J. Eisfeld, L. Storme, and P. Sziklai, On the spectrum of the sizes of maximal partial line spreads in PG(2n, $q), n \geq 3$, Des Codes Cryptogr 36 (2005), 101-110.
[10] S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho, and L. Spence, The maximum size of a partial 3-spread in a finite vector space over GF(2), Des Codes Cryptogr 54 (2010), 101-107.
[11] A. Gács and T. Szönyi, On maximal partial spreads in $\operatorname{PG}(n, q)$ Des Codes Cryptogr 29 (2003), 123-129.
[12] D. G. Glynn, A lower bound for maximal partial spreads in PG(3, q) Ars Combin 13 (1982), 39-40.
[13] P. Govaerts, Small maximal partial t-spreads, Bull Belg Math Soc Simon Stevin 12 (2005), 607-615.
[14] O. Heden, Partitions of finite abelian groups, Europ J Combin 7 (1986), 11-25.
[15] O. Heden, A Maximal Partial Spread of Size 45 in PG(3, 7), Des Codes Cryptogr 22 (2001), 331-334.
[16] O. Heden and J. Lehmann, Some necessary conditions for vector space partitions, submitted.
[17] J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Oxford Univ. Press, Oxford, 1985.
[18] S. Hong and A. Patel, A general class of maximal codes for computer applications IEEE Trans Comput C-21 (1972), 1322-1331.
[19] D. Jungnickel and L. Storme, A note on maximal partial spreads with deficiency $q+1, q$ even, J Combin Theory Ser A 102 (2003), 443-446.
[20] A. Khare, Vector spaces as unions of proper subspaces, Lin Alg and its Appl 431 (2009), 1681-1686.
[21] Pritam Ranjan, Derek R. Bingham, and Angela M. Dean, Existence and construction of randomization defining contrast subspaces for regular factorial designs, Ann Statist 37 (2009), 3580-3599.
[22] G. Spera, On Partitions of Finite vector Spaces, arXiv:0902.3075v1 [math.CO] (2009) 14 pp.
\dagger Mathematics Department, Xavier University, 3800 Victory Parkway, Cincinnati, Оніо 45207.
\ddagger Mathematics Department, Illinois State University, Normal, Illinois 61790.
E-mail address: nastasee@xavier.edu, psissok@ilstu.edu

[^0]: 2000 Mathematics Subject Classification. 51E14, 51E23, 51E10.
 Key words and phrases. Subspace partition; Vector space partitions; Partial t-spreads.

