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MATHEMATICS DEPARTMENT

XAVIER UNIVERSITY

CINCINNATI, OHIO 45207, USA

PAPA SISSOKHO

MATHEMATICS DEPARTMENT

ILLINOIS STATE UNIVERSITY

NORMAL, ILLINOIS 61790, USA

Abstract. Let n and t be positive integers with t < n, and let q be a prime power. A partial
(t − 1)-spread of PG(n − 1, q) is a set of (t − 1)-dimensional subspaces of PG(n − 1, q) that are
pairwise disjoint. Let r ≡ n (mod t) with 0 ≤ r < t, and let Θi = (qi− 1)/(q− 1). We essentially
prove that if 2 ≤ r < t ≤ Θr, then the maximum size of a partial (t − 1)-spread of PG(n − 1, q)
is bounded from above by (Θn − Θt+r)/Θt + qr − (q − 1)(t − 3) + 1. We actually give tighter
bounds when certain divisibility conditions are satisfied. These bounds improve on the previously
known upper bound for the maximum size partial (t − 1)-spreads of PG(n − 1, q); for instance,
when dΘr

2
e+ 4 ≤ t ≤ Θr and q > 2. The exact value of the maximum size partial (t− 1)-spread

has been recently determined for t > Θr by the authors of this paper (see [21]).
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1. Introduction

Let n and t be positive integers with t < n, and let q be a prime power. Let PG(n − 1, q)
denote the (n− 1)-dimensional projective space over the finite field Fq. A partial (t− 1)-spread S
of PG(n− 1, q) is a collection of (t− 1)-dimensional subspaces of PG(n− 1, q) that are pairwise
disjoint. If S contains all the points of PG(n − 1, q), then it is called a (t − 1)-spread. It is
well-known that a (t − 1)-spread of PG(n − 1, q) exists if and only if t divides n (e.g., see [3, p.
29]). Besides their traditional relevance to Galois geometry [6, 11, 13, 17], partial (t− 1)-spreads
are used to build byte-correcting codes (e.g., see [7, 16]), 1-perfect mixed error-correcting codes
(e.g., see [15, 16]), orthogonal arrays (e.g., see [4]), and subspace codes (e.g., see [8, 10, 18]).

Convention: For the rest of the paper, we assume that q is a prime power, and n, t, and r are
integers such that n > t > r ≥ 0 and r ≡ n (mod t). We also use µq(n, t) to denote the maximum
size of any partial (t− 1)-spread of PG(n− 1, q).

The problem of determining µq(n, t) is a long standing open problem. Currently, the best
general upper bound for µq(n, t) is given by the following theorem of Drake and Freeman [4].
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Theorem 1. If r > 0, then µq(n, t) ≤ qn−qt+r

qt−1 + qr − bωc − 1,

where 2ω =
√

4qt(qt − qr) + 1− (2qt − 2qr + 1).

The following result is attributed to André [1] and Segre [22] for r = 0. For r = 1, it is due to
Hong and Patel [16] when q = 2, and Beutelspacher [2] when q > 2.

Theorem 2. If 0 ≤ r < t, then µq(n, t) ≥ qn−qt+r

qt−1 + 1, and equality holds if r ∈ {0, 1}.

In light of Theorem 2, it was later conjectured (e.g., see [5, 16]) that the value of µq(n, t) is
given by the lower bound in Theorem 2. However, this conjecture was disproved by El-Zanati,
Jordon, Seelinger, Sissokho, and Spence [9] who proved the following result.

Theorem 3. If n ≥ 8 and n mod 3 = 2, then µ2(n, 3) = 2n−25

7 + 2.

Recently, Kurz [19] proved the following theorem which upholds the lower bound for µq(n, t)
when q = 2, r = 2, and t > 3.

Theorem 4. If n > t > 3 and n mod t = 2, then µ2(n, t) = 2n−2t+2

2t−1 + 1.

For any integer i ≥ 1, let

(1) Θi = (qi − 1)/(q − 1).

Still recently, the authors of this paper affirmed the conjecture (e.g., see [5, 16]) on the value
of µq(n, t) for t > Θr and any prime power q, by proving the following general result (see [21]).

Theorem 5. If t > Θr, then µq(n, t) = qn−qt+r

qt−1 + 1.

In light of Theorem 5, it remains to determine the value of µq(n, t) for 2 ≤ r < t ≤ Θr. In this
paper, we apply the hyperplane averaging method that we devised in [21] to prove the following
results1. The rest of the paper is devoted to their proofs.

Theorem 6. Let c1 ≡ (t− 2) (mod q), 0 ≤ c1 < q, and c2 =

{
q if q2 | ((q − 1)(t− 2) + c1)

0 if q2 - ((q − 1)(t− 2) + c1) .

If 2 ≤ r < t ≤ Θr, then

µq(n, t) ≤
qn − qt+r

qt − 1
+ qr − (q − 1)(t− 2)− c1 + c2.

Consequently,

µq(n, t) ≤
qn − qt+r

qt − 1
+ qr − (q − 1)(t− 3) + 1.

Remark 7. The best possible bound in Theorem 6 is obtained when t ≡ aq + 1 (mod q2), 1 ≤
a ≤ q − 1 (equivalently, when t ≡ 1 (mod q) but t 6≡ 1 (mod q2)). In this case, we can check that
c1 = q − 1 and c2 = 0, which implies that

µq(n, t) ≤
qn − qt+r

qt − 1
+ qr − (q − 1)(t− 1).

This was already noted in [21, Lemma 10 and Remark 11] for r ≥ 2 and t = Θr = (qr−1)/(q−1).

1Also see [20] for a recent preprint in this area.
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Corollary 8. Let fq(n, t) denote the upper bound for µq(n, t) in Theorem 1 and let gq(n, t)denote
the upper bound for µq(n, t) in Theorem 6. Let c1 and c2 be as defined in Theorem 6. If r ≥ 2
and 2r ≤ t ≤ Θr then

gq(n, t)− fq(n, p) =

⌊
qr

2

⌋
− (q − 1)(t− 2)− c1 + c2.

Consequently, for dΘr
2 e+ 4 ≤ t ≤ Θr with q > 2, and for dΘr

2 e+ 5 ≤ t ≤ Θr with q = 2, we have

gq(n, t)− fq(n, p) < 0,

and thus the upper bound for µq(n, t) given in Theorem 6 is tighter than the Drake–Freeman bound
in Theorem 1.

In Section 2, we present some auxiliary results from the area of subspace partitions, and in
Section 3 we prove Theorem 6 and Corollary 8.

2. Subspace partitions

Let V = V (n, q) denote the vector space of dimension n over Fq. For any subspace U of V , let
U∗ denote the set of nonzero vectors in U . A d-subspace of V (n, q) is a d-dimensional subspace
of V (n, q); this is equivalent to a (d− 1)-subspace in PG(n− 1, q).

A subspace partition P of V , also known as a vector space partition, is a collection of nontrivial
subspaces of V such that each vector of V ∗ is in exactly one subspace of P (e.g., see Heden [13]
for a survey on subspace partitions). The size of a subspace partition P, denoted by |P|, is the
number of subspaces in P.

Suppose that there are s distinct integers, ds > · · · > d1, that occur as dimensions of subspaces
in a subspace partition P, and let ni denote the number of i-subspaces in P. Then the expression
[d

nds
s , . . . , d

nd1
1 ] is called the type of P.

Remark 9. A partial (t−1)-spread of PG(n−1, q) of size nt is a partial t-spread of V (n, q) of size
nt. This is equivalent to a subspace partition of V (n, q) of type [tnt , 1n1 ], where n1 = Θn − ntΘt.
We will use this subspace partition formulation in the proof of Lemma 14.

Also, we will use the following theorem due to Heden [12] in the proof of Lemma 14.

Theorem 10. [12, Theorem 1] Let P be a subspace partition of V (n, q) of type [d
nds
s , . . . , d

nd1
1 ],

where ds > . . . > d1. Then,

(i) if qd2−d1 does not divide nd1 and if d2 < 2d1, then nd1 ≥ qd1 + 1.
(ii) if qd2−d1 does not divide nd1 and d2 ≥ 2d1, then either nd1 = (qd2 − 1)/(qd1 − 1) or

nd1 > 2qd2−d1.
(iii) if qd2−d1 divides nd1 and d2 < 2d1, then nd1 ≥ qd2 − qd1 + qd2−d1.
(iv) if qd2−d1 divides nd1 and d2 ≥ 2d1, then nd1 ≥ qd2.

To state the next lemmas, we need the following definitions. Recall that for any integer i ≥ 1,

Θi = (qi − 1)/(q − 1).

Then, for i ≥ 1, Θi is the number of 1-subspaces in an i-subspace of V (n, q). Let P be a

subspace partition of V = V (n, q) of type [d
nds
s , . . . , d

nd1
1 ]. For any hyperplane H of V , let bH,d be
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the number of d-subspaces in P that are contained in H and set bH = [bH,ds , . . . , bH,d1 ]. Define
the set B of hyperplane types as follows:

B = {bH : H is a hyperplane of V }.
For any b ∈ B, let sb denote the number of hyperplanes of V of type b.

We will also use Lemma 11 and Lemma 12 by Heden and Lehmann [14] in the proof of
Lemma 14.

Lemma 11. [14, Equation (1)] Let P be a subspace partition of V (n, q) of type [d
nds
s , . . . , d

nd1
1 ].

If H is a hyperplane of V (n, q) and bH,d is as defined above, then

|P| = 1 +

s∑
i=1

bH,diq
di .

Lemma 12. [14, Equation (2) and Corollary 5] Let P be a subspace partition of V (n, q), and let
B and sb be as defined above. Then ∑

b∈B
sb = Θn,

and for 1 ≤ d ≤ n− 1, we have ∑
b∈B

bdsb = ndΘn−d.

3. Proofs of the main results

Recall that q is a prime power, and n, t, and r are integers such that n > t > r ≥ 0, and r ≡ n
(mod t). To prove our main result, we first need to prove the following two technical lemmas.

Lemma 13. Let x be an integer such that 0 < x < qr. For any positive integer i, let δi =
qi · dxq−iΘie − xΘi. Then the following properties hold:

(i) dxq−tΘte = d x
q−1e.

(ii) for 1 ≤ i ≤ t, we have 0 ≤ δi < qi, q | (x+ δi+1), and δi = q−1(x+ δi+1) mod qi.
(iii) δi = 0 if and only if qi | x.

Proof. Let α and β be integers such that x = α(q − 1) + β, α ≥ 0, and 0 ≤ β < q − 1. Since
0 < x < qr and r < t hold by hypothesis, it follows that

(2) 0 ≤ α < x < qr < qt and α(q − 1) ≤ x < qr < qt.

If β = 0, then by (2), we obtain⌈
xq−tΘt

⌉
=

⌈
α(qt − 1)

qt

⌉
=

⌈
α− α

qt

⌉
= α =

⌈
x

q − 1

⌉
.(3)

Now suppose 1 ≤ β < q − 1. First, since β ≥ 1, it follows from (2) that⌈
xq−tΘt

⌉
=

⌈
[α(q − 1) + β](qt − 1)

qt(q − 1)

⌉
≥
⌈

[α(q − 1) + 1](qt − 1)

qt(q − 1)

⌉
=

⌈
α+

(qt − 1)− α(q − 1)

qt(q − 1)

⌉
= α+ 1.(4)
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Second, since β < q − 1, it follows from (2) and the properties of the ceiling function that⌈
xq−tΘt

⌉
=

⌈
[α(q − 1) + β](qt − 1)

qt(q − 1)

⌉
≤
⌈

(α+ 1)(qt − 1)

qt

⌉
=

⌈
α+ 1− α+ 1

qt

⌉
= α+ 1.(5)

Then (4) and (5) imply that for 1 ≤ β < q − 1,

dxq−tΘte = α+ 1 =

⌈
x

q − 1

⌉
,

which completes the proof of (i).

We now prove (ii). Since 0 ≤ dae − a < 1 holds for any real number a, we have

0 ≤ dq−ixΘie − q−ixΘi < 1 =⇒ δi = qidxq−iΘie − xΘi < qi and δi ≥ 0.

By the definition of δi, we have that

x+ δi+1 = x+ qi+1 · dxq−i−1Θi+1e − xΘi+1 = q(qi · dxq−i−1Θi+1e − xΘi),

and thus,

q−1(x+ δi+1) ≡ qi · dxq−i−1Θi+1e − xΘi

≡ −xΘi

≡ qi · dxq−iΘie − xΘi

≡ δi (mod qi).(6)

Finally, we prove (iii). Since gcd(qi,Θi) = 1 for any positive integer i, we have

δi = qi · dxq−iΘie − xΘi = 0⇐⇒ dxq−iΘie = xq−iΘi ⇐⇒ qi|x.

�

We now prove our main lemma.

Lemma 14. Let x be a positive integer such that q | x and q2 - x. Let ` = (qn−t − qr)/(qt − 1).
If r ≥ 2 and t ≥ Θr − dx/(q − 1)e+ 2, then µq(n, t) ≤ `qt + x.

Proof. If x ≥ qr, then Theorem 1 implies the nonexistence of a partial t-spread of size `qt + x.
Thus, we can assume that x < qr.

Recall that Θi = (qi − 1)/(q − 1) for any integer i ≥ 1. For an integer i, with 2 ≤ i ≤ t, let

(7) δi = qi · dxq−iΘie − xΘi.

Applying Lemma 13(i), we let

(8) h := dq−txΘte =

⌈
x

q − 1

⌉
.
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The proof is by contradiction. So assume that µq(n, t) > `qt + x. Then PG(n − 1, q) has a
(t − 1)-partial spread of size `qt + 1 + x. Thus, it follows from Remark 9 that there exists a
subspace partition P0 of V (n, q) of type [tnt , 1n1 ], with

nt = `qt + 1 + x, and

n1 = qtΘr − xΘt = qt(Θr − dq−txΘte) + (qtdq−txΘte − xΘt) = qt(Θr − h) + δt,(9)

where h is given by (8) and δt is given by (7).
We will prove by induction that for each integer j with 0 ≤ j ≤ t− 2, there exists a subspace

partition Pj of Hj
∼= V (n− j, q) of type

(10) [tmj,t , (t− 1)mj,t−1 , . . . , (t− j)mj,t−j , 1mj,1 ],

where mj,t, . . . ,mj,t−j are nonnegative integers such that

(11)
t∑

i=t−j
mj,i = nt = `qt + 1 + x,

and where mj,1 and cj are integers such that

(12) mj,1 = cjq
t−j + δt−j , and 0 ≤ cj ≤ max{Θr − h− j, 0}.

The base case, j = 0, holds since P0 is a subspace partition of H0 = V (n, q) with type [tnt , 1n1 ],
and letting m0,t = nt and m0,1 = n1, P0 is of type given in (10), and it satisfies the properties
given in (11) and (12).

For the inductive step, suppose that for some j, with 0 ≤ j < t − 2, we have constructed a
subspace partition Pj of Hj

∼= V (n− j, q) of the type given in (10), and with the properties given
in (11) and (12). We then use Lemma 12 to determine the average, bavg,1, of the values bH,1 over
all hyperplanes H of Hj . We have

bavg,1 :=
mj,1Θn−1−j

Θn−j
=
(
cjq

t−j + δt−j
)(qn−1−j − 1

qn−j − 1

)
< (cjq

t−j + δt−j)q
−1

= cjq
t−j−1 + q−1δt−j .(13)

It follows from (13) that there exists a hyperplane Hj+1 of Hj with

(14) bHj+1,1 ≤ bavg,1 < cjq
t−j−1 + q−1δt−j .

Next, we apply Lemma 11 to the subspace partition Pj and the hyperplane Hj+1 of Hj to obtain:

1 + bHj+1,1 q +
t∑

i=t−j
bHj+1,i q

i = |Pj |

= nt +mj,1

= `qt + 1 + x+ cjq
t−j + δt−j ,(15)

where 0 ≤ cj ≤ max{Θr − h− j, 0}. Simplifying (15) yields

bHj+1,1 +

t∑
i=t−j

bHj+1,i q
i−1 = `qt−1 + cjq

t−j−1 + q−1(x+ δt−j).(16)
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Then, it follows from Lemma 13(ii) and (16) that

(17) bHj+1,1 ≡ q−1(x+ δt−j) ≡ δt−j−1 (mod qt−j−1).

Since 0 ≤ q−1δt−j < qt−j−1 by Lemma 13(ii), it follows from (14) and (17) that there exists a
nonnegative integer cj+1 such that

bHj+1,1 = cj+1q
t−j−1 + δt−j−1 and

0 ≤ cj+1 ≤ max{cj − 1, 0} ≤ max{Θr − h− j − 1, 0}.(18)

Let Pj+1 be the subspace partition of Hj+1 defined by:

Pj+1 = {W ∩Hj+1 : W ∈ Pj},
and by the definition made in (18), let mj+1,1 = bHj+1,1. Since t − j > 2 and dim(W ∩Hj+1) ∈
{dimW, dimW − 1} for each W ∈ Pj , it follows that Pj+1 is a subspace partition of Hj+1 of type

(19) [tmj+1,t , (t− 1)mj+1,t−1 , . . . , (t− j − 1)mj+1,t−j−1 , 1mj+1,1 ],

where mj+1,t,mj+1,t−1, . . . ,mj+1,t−j−1 are nonnegative integers such that

(20)

t∑
i=t−j−1

mj+1,i =

t∑
i=t−j

mj,i = nt.

The inductive step follows since Pj+1 is a subspace partition of Hj+1
∼= V (n− j − 1, q) of the

type given in (19), which satisfies the conditions in (18) and (20).

Thus far, we have shown that the desired subspace partition Pj of Hj exists for any integer
j such that 0 ≤ j ≤ t − 2. Since q2 - x by hypothesis, Lemma 13(iii) implies that δt−j 6= 0 for
j ∈ [0, t− 2]. Thus, mj,1 = cjq

t−j + δt−j 6= 0 for j ∈ [0, t− 2]. If j ∈ [Θr − h, t− 2], then it follows
from (12) that cj = 0, and thus, mj,1 = δj 6= 0. In particular, since t ≥ Θr − h + 2, we have
ct−2 = 0 and mt−2,1 = δ2 6= 0. For the final part of the proof, we set j = t − 2, and then show
that the existence of the subspace partition Pt−2 of Ht−2 leads to a contradiction.

It follows from the above observations and Lemma 13(ii) that

(21) mt−2,1 = δ2 = q2dxq−2Θ2e − xΘ2 and 0 < δ2 < q2.

Since mt−1,2 > 0, the smallest dimension of a subspace in Pt−2 is 1. So let s ≥ 2 be the second
smallest dimension of a subspace in Pt−2. (Note that the existence of s follows from (11).) To
derive the final contradiction, we consider the following cases.

Case 1: s ≥ 3.
Then by applying Theorem 10(ii)&(iv) to the subspace partition Pt−2 with d2 = s and d1 = 1,

we obtain mt−2,1 ≥ min{(qs−1)/(q−1), 2qs−1, qs} > q2, which contradicts the fact that mt−2,1 <
q2 given by (21).

Case 2: s = 2.
Since q | x by hypothesis, it follows from (21) that q | mt−2,1. Thus, by applying Theorem 10(iv)

to Pt−2 with d2 = s = 2 and d1 = 1, we obtain mt−2,1 ≥ q2, which contradicts the fact that
mt−2,1 < q2 given by (21). �

We are now ready to prove Theorem 6 and Corollary 8.
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Proof of Theorem 6. Recall that

(22) c1 ≡ t− 2 (mod q), 0 ≤ c1 < q, and c2 =

{
q if q2 | ((q − 1)(t− 2) + c1) ,

0 if q2 - ((q − 1)(t− 2) + c1) .

Define

(23) x := qr − (q − 1)(t− 2)− c1 + c2.

Since r ≥ 2, it follows from (22) and (23) that:

(a) If q2 | ((q − 1)(t− 2) + c1), then c2 = q, and also, q2 | (qr − (q − 1)(t− 2)− c1). Thus,
x ≡ q 6≡ 0 (mod q2).

(b) If q2 - ((q − 1)(t− 2) + c1), then c2 = 0, and also, q2 - (qr − (q − 1)(t− 2)− c1). Thus,
x = qr − (q − 1)(t− 2)− c1 6≡ 0 (mod q2).

Thus, q2 - x holds in all cases.
Also, since c1 ≡ t − 2 (mod q) by (22), we have t − 2 = αq + c1 for some nonnegative integer

α. Thus, it follows from (23) that

(24) x = qr − αq(q − 1)− c1q + c2.

Since c2 ∈ {0, q} by (22), it follows from (24) that q | x.
Moreover, since 0 ≤ c1 ≤ q − 1 and c2 ∈ {0, q}, we obtain

x = qr − (q − 1)(t− 2)− c1 + c2 ≥ qr − (q − 1)(t− 2)− (q − 1)

=⇒ x

q − 1
≥ qr − 1

q − 1
+

1

q − 1
− t+ 1

=⇒
⌈

x

q − 1

⌉
≥ qr − 1

q − 1
− t+ 2

=⇒ t ≥ Θr −
⌈

x

q − 1

⌉
+ 2.(25)

Since the hypothesis holds from the above observations, Lemma 14 yields

µq(n, t) ≤ `qt + x =
qn − qt+r

qt − 1
+ qr − (q − 1)(t− 2)− c1 + c2.

Moreover, since −q + 1 ≤ −c1 + c2 ≤ q, it follows that

µq(n, t) ≤
qn − qt+r

qt − 1
+ qr − (q − 1)(t− 2)− c1 + c2

≤ qn − qt+r

qt − 1
+ qr − (q − 1)(t− 2) + q

=
qn − qt+r

qt − 1
+ qr − (q − 1)(t− 3) + 1,

which concludes the proof of Theorem 6. �

Proof of Corollary 8. Let fq(n, t) and gq(n, t) be as defined in the statement of the corollary. Then

(26) gq(n, t) =
qn − qt+r

qt − 1
+ qr − (q − 1)(t− 2)− c1 + c2,
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where c1 and c2 are as in (22), and

(27) fq(n, t) =
qn − qt+r

qt − 1
+ qr − bωc − 1,

where 2ω =
√

4qt(qt − qr) + 1− (2qt − 2qr + 1).
If r ≥ 1 and t ≥ 2r, then it is straightforward to show that (e.g.,see [19, Lemma 2])

(28) bωc =

⌊
qr − 2

2

⌋
=

⌊
qr

2

⌋
− 1.

Now it follows from (26)–(28) that if t ≥ 2r, then

(29) gq(n, t)− fq(n, p) =

⌊
qr

2

⌋
− (q − 1)(t− 2)− c1 + c2.

We now prove the second part of the corollary for q > 2. If dΘr
2 e + 4 ≤ t ≤ Θr, then by

applying (29) with 0 ≤ c1 < q and c2 ∈ {0, q}, we obtain

gq(n, t)− fq(n, p) ≤
⌊
qr

2

⌋
− (q − 1)(t− 2) + q

≤
⌊
qr

2

⌋
− (q − 1)

(⌈
Θr

2

⌉
+ 2

)
+ q

=

⌊
qr

2

⌋
− (q − 1)

⌈
qr − 1

2(q − 1)

⌉
− q + 2

≤ qr

2
− (q − 1)

(
qr − 1

2(q − 1)

)
− q + 2

= 5/2− q < 0 (since q > 2).

If q = 2, then by doing the same analysis as above with t ≥
⌈

Θr
2

⌉
+ 5 instead of t ≥

⌈
Θr
2

⌉
+ 4,

we obtain gq(n, t)− fq(n, p) < 0. This completes the proof of the corollary.

Acknowledgement: We thank the referees for their detailed comments, suggestions, and correc-
tions which have greatly improved the paper. �
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[21] E. Năstase and P. Sissokho, The maximum size of a partial spread in a finite projective space,

http://arxiv.org/pdf/1605.04824. Submitted.
[22] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. pura Appl. 64 (1964),

1–76.


