THE MAXIMUM SIZE OF A PARTIAL SPREAD II: UPPER BOUNDS

ESMERALDA NĂSTASE
MATHEMATICS DEPARTMENT
XAVIER UNIVERSITY
CINCINNATI, OHIO 45207, USA
PAPA SISSOKHO
MATHEMATICS DEPARTMENT
ILLINOIS STATE UNIVERSITY
NORMAL, ILLINOIS 61790, USA

Abstract

Let n and t be positive integers with $t<n$, and let q be a prime power. A partial $(t-1)$-spread of $\mathrm{PG}(n-1, q)$ is a set of $(t-1)$-dimensional subspaces of $\mathrm{PG}(n-1, q)$ that are pairwise disjoint. Let $r \equiv n(\bmod t)$ with $0 \leq r<t$, and let $\Theta_{i}=\left(q^{i}-1\right) /(q-1)$. We essentially prove that if $2 \leq r<t \leq \Theta_{r}$, then the maximum size of a partial $(t-1)$-spread of $\mathrm{PG}(n-1, q)$ is bounded from above by $\left(\Theta_{n}-\Theta_{t+r}\right) / \Theta_{t}+q^{r}-(q-1)(t-3)+1$. We actually give tighter bounds when certain divisibility conditions are satisfied. These bounds improve on the previously known upper bound for the maximum size partial $(t-1)$-spreads of $\mathrm{PG}(n-1, q)$; for instance, when $\left\lceil\frac{\Theta_{r}}{2}\right\rceil+4 \leq t \leq \Theta_{r}$ and $q>2$. The exact value of the maximum size partial $(t-1)$-spread has been recently determined for $t>\Theta_{r}$ by the authors of this paper (see [21]).

Keywords: Galois geometry; partial spreads; subspace partitions; subspace codes.
Mathematics Subject Classification: 51E23; 05B25; 94B25.

1. Introduction

Let n and t be positive integers with $t<n$, and let q be a prime power. Let $\mathrm{PG}(n-1, q)$ denote the $(n-1)$-dimensional projective space over the finite field \mathbb{F}_{q}. A partial $(t-1)$-spread S of $\operatorname{PG}(n-1, q)$ is a collection of $(t-1)$-dimensional subspaces of $\operatorname{PG}(n-1, q)$ that are pairwise disjoint. If S contains all the points of $\operatorname{PG}(n-1, q)$, then it is called a $(t-1)$-spread. It is well-known that a $(t-1)$-spread of $\operatorname{PG}(n-1, q)$ exists if and only if t divides n (e.g., see [3, p. 29]). Besides their traditional relevance to Galois geometry [$6,11,13,17]$, partial $(t-1)$-spreads are used to build byte-correcting codes (e.g., see $[7,16]$), 1-perfect mixed error-correcting codes (e.g., see $[15,16]$), orthogonal arrays (e.g., see [4]), and subspace codes (e.g., see $[8,10,18]$).

Convention: For the rest of the paper, we assume that q is a prime power, and n, t, and r are integers such that $n>t>r \geq 0$ and $r \equiv n(\bmod t)$. We also use $\mu_{q}(n, t)$ to denote the maximum size of any partial $(t-1)$-spread of $\mathrm{PG}(n-1, q)$.

The problem of determining $\mu_{q}(n, t)$ is a long standing open problem. Currently, the best general upper bound for $\mu_{q}(n, t)$ is given by the following theorem of Drake and Freeman [4].
nastasee@xavier.edu, psissok@ilstu.edu.

Theorem 1. If $r>0$, then $\mu_{q}(n, t) \leq \frac{q^{n}-q^{t+r}}{q^{t}-1}+q^{r}-\lfloor\omega\rfloor-1$, where $2 \omega=\sqrt{4 q^{t}\left(q^{t}-q^{r}\right)+1}-\left(2 q^{t}-2 q^{r}+1\right)$.

The following result is attributed to André [1] and Segre [22] for $r=0$. For $r=1$, it is due to Hong and Patel [16] when $q=2$, and Beutelspacher [2] when $q>2$.

Theorem 2. If $0 \leq r<t$, then $\mu_{q}(n, t) \geq \frac{q^{n}-q^{t+r}}{q^{t}-1}+1$, and equality holds if $r \in\{0,1\}$.
In light of Theorem 2, it was later conjectured (e.g., see $[5,16])$ that the value of $\mu_{q}(n, t)$ is given by the lower bound in Theorem 2. However, this conjecture was disproved by El-Zanati, Jordon, Seelinger, Sissokho, and Spence [9] who proved the following result.

Theorem 3. If $n \geq 8$ and $n \bmod 3=2$, then $\mu_{2}(n, 3)=\frac{2^{n}-2^{5}}{7}+2$.
Recently, Kurz [19] proved the following theorem which upholds the lower bound for $\mu_{q}(n, t)$ when $q=2, r=2$, and $t>3$.
Theorem 4. If $n>t>3$ and $n \bmod t=2$, then $\mu_{2}(n, t)=\frac{2^{n}-2^{t+2}}{2^{t}-1}+1$.
For any integer $i \geq 1$, let

$$
\begin{equation*}
\Theta_{i}=\left(q^{i}-1\right) /(q-1) \tag{1}
\end{equation*}
$$

Still recently, the authors of this paper affirmed the conjecture (e.g., see [5, 16]) on the value of $\mu_{q}(n, t)$ for $t>\Theta_{r}$ and any prime power q, by proving the following general result (see [21]).

Theorem 5. If $t>\Theta_{r}$, then $\mu_{q}(n, t)=\frac{q^{n}-q^{t+r}}{q^{t}-1}+1$.
In light of Theorem 5, it remains to determine the value of $\mu_{q}(n, t)$ for $2 \leq r<t \leq \Theta_{r}$. In this paper, we apply the hyperplane averaging method that we devised in [21] to prove the following results ${ }^{1}$. The rest of the paper is devoted to their proofs.
Theorem 6. Let $c_{1} \equiv(t-2)(\bmod q), 0 \leq c_{1}<q$, and $c_{2}=\left\{\begin{array}{ll}q & \text { if } q^{2} \mid\left((q-1)(t-2)+c_{1}\right) \\ 0 & \text { if } q^{2} \nmid\left((q-1)(t-2)+c_{1}\right)\end{array}\right.$. If $2 \leq r<t \leq \Theta_{r}$, then

$$
\mu_{q}(n, t) \leq \frac{q^{n}-q^{t+r}}{q^{t}-1}+q^{r}-(q-1)(t-2)-c_{1}+c_{2}
$$

Consequently,

$$
\mu_{q}(n, t) \leq \frac{q^{n}-q^{t+r}}{q^{t}-1}+q^{r}-(q-1)(t-3)+1
$$

Remark 7. The best possible bound in Theorem 6 is obtained when $t \equiv a q+1\left(\bmod q^{2}\right), 1 \leq$ $a \leq q-1$ (equivalently, when $t \equiv 1(\bmod q)$ but $t \not \equiv 1\left(\bmod q^{2}\right)$). In this case, we can check that $c_{1}=q-1$ and $c_{2}=0$, which implies that

$$
\mu_{q}(n, t) \leq \frac{q^{n}-q^{t+r}}{q^{t}-1}+q^{r}-(q-1)(t-1)
$$

This was already noted in [21, Lemma 10 and Remark 11] for $r \geq 2$ and $t=\Theta_{r}=\left(q^{r}-1\right) /(q-1)$.

[^0]Corollary 8. Let $f_{q}(n, t)$ denote the upper bound for $\mu_{q}(n, t)$ in Theorem 1 and let $g_{q}(n, t)$ denote the upper bound for $\mu_{q}(n, t)$ in Theorem 6. Let c_{1} and c_{2} be as defined in Theorem 6. If $r \geq 2$ and $2 r \leq t \leq \Theta_{r}$ then

$$
g_{q}(n, t)-f_{q}(n, p)=\left\lfloor\frac{q^{r}}{2}\right\rfloor-(q-1)(t-2)-c_{1}+c_{2} .
$$

Consequently, for $\left\lceil\frac{\Theta_{r}}{2}\right\rceil+4 \leq t \leq \Theta_{r}$ with $q>2$, and for $\left\lceil\frac{\Theta_{r}}{2}\right\rceil+5 \leq t \leq \Theta_{r}$ with $q=2$, we have

$$
g_{q}(n, t)-f_{q}(n, p)<0
$$

and thus the upper bound for $\mu_{q}(n, t)$ given in Theorem 6 is tighter than the Drake-Freeman bound in Theorem 1.

In Section 2, we present some auxiliary results from the area of subspace partitions, and in Section 3 we prove Theorem 6 and Corollary 8.

2. Subspace partitions

Let $V=V(n, q)$ denote the vector space of dimension n over \mathbb{F}_{q}. For any subspace U of V, let U^{*} denote the set of nonzero vectors in U. A d-subspace of $V(n, q)$ is a d-dimensional subspace of $V(n, q)$; this is equivalent to a $(d-1)$-subspace in $\mathrm{PG}(n-1, q)$.

A subspace partition \mathcal{P} of V, also known as a vector space partition, is a collection of nontrivial subspaces of V such that each vector of V^{*} is in exactly one subspace of \mathcal{P} (e.g., see Heden [13] for a survey on subspace partitions). The size of a subspace partition \mathcal{P}, denoted by $|\mathcal{P}|$, is the number of subspaces in \mathcal{P}.

Suppose that there are s distinct integers, $d_{s}>\cdots>d_{1}$, that occur as dimensions of subspaces in a subspace partition \mathcal{P}, and let n_{i} denote the number of i-subspaces in \mathcal{P}. Then the expression [$\left.d_{s}^{n_{d_{s}}}, \ldots, d_{1}^{n_{d_{1}}}\right]$ is called the type of \mathcal{P}.
Remark 9. A partial $(t-1)$-spread of $\mathrm{PG}(n-1, q)$ of size n_{t} is a partial t-spread of $V(n, q)$ of size n_{t}. This is equivalent to a subspace partition of $V(n, q)$ of type $\left[t^{n_{t}}, 1^{n_{1}}\right]$, where $n_{1}=\Theta_{n}-n_{t} \Theta_{t}$. We will use this subspace partition formulation in the proof of Lemma 14.

Also, we will use the following theorem due to Heden [12] in the proof of Lemma 14.
Theorem 10. [12, Theorem 1] Let \mathcal{P} be a subspace partition of $V(n, q)$ of type $\left[d_{s}^{n_{d_{s}}}, \ldots, d_{1}^{n_{d_{1}}}\right]$, where $d_{s}>\ldots>d_{1}$. Then,
(i) if $q^{d_{2}-d_{1}}$ does not divide $n_{d_{1}}$ and if $d_{2}<2 d_{1}$, then $n_{d_{1}} \geq q^{d_{1}}+1$.
(ii) if $q^{d_{2}-d_{1}}$ does not divide $n_{d_{1}}$ and $d_{2} \geq 2 d_{1}$, then either $n_{d_{1}}=\left(q^{d_{2}}-1\right) /\left(q^{d_{1}}-1\right)$ or $n_{d_{1}}>2 q^{d_{2}-d_{1}}$.
(iii) if $q^{d_{2}-d_{1}}$ divides $n_{d_{1}}$ and $d_{2}<2 d_{1}$, then $n_{d_{1}} \geq q^{d_{2}}-q^{d_{1}}+q^{d_{2}-d_{1}}$.
(iv) if $q^{d_{2}-d_{1}}$ divides $n_{d_{1}}$ and $d_{2} \geq 2 d_{1}$, then $n_{d_{1}} \geq q^{d_{2}}$.

To state the next lemmas, we need the following definitions. Recall that for any integer $i \geq 1$,

$$
\Theta_{i}=\left(q^{i}-1\right) /(q-1) .
$$

Then, for $i \geq 1, \Theta_{i}$ is the number of 1 -subspaces in an i-subspace of $V(n, q)$. Let \mathcal{P} be a subspace partition of $V=V(n, q)$ of type $\left[d_{s}^{n_{d_{s}}}, \ldots, d_{1}^{n_{d_{1}}}\right]$. For any hyperplane H of V, let $b_{H, d}$ be
the number of d-subspaces in \mathcal{P} that are contained in H and set $b_{H}=\left[b_{H, d_{s}}, \ldots, b_{H, d_{1}}\right]$. Define the set \mathcal{B} of hyperplane types as follows:

$$
\mathcal{B}=\left\{b_{H}: H \text { is a hyperplane of } V\right\} .
$$

For any $b \in \mathcal{B}$, let s_{b} denote the number of hyperplanes of V of type b.
We will also use Lemma 11 and Lemma 12 by Heden and Lehmann [14] in the proof of Lemma 14.
Lemma 11. [14, Equation (1)] Let \mathcal{P} be a subspace partition of $V(n, q)$ of type $\left[d_{s}^{n_{d_{s}}}, \ldots, d_{1}^{n_{d_{1}}}\right]$. If H is a hyperplane of $V(n, q)$ and $b_{H, d}$ is as defined above, then

$$
|\mathcal{P}|=1+\sum_{i=1}^{s} b_{H, d_{i}} q^{d_{i}} .
$$

Lemma 12. [14, Equation (2) and Corollary 5] Let \mathcal{P} be a subspace partition of $V(n, q)$, and let \mathcal{B} and s_{b} be as defined above. Then

$$
\sum_{b \in \mathcal{B}} s_{b}=\Theta_{n}
$$

and for $1 \leq d \leq n-1$, we have

$$
\sum_{b \in \mathcal{B}} b_{d} s_{b}=n_{d} \Theta_{n-d} .
$$

3. Proofs of the main results

Recall that q is a prime power, and n, t, and r are integers such that $n>t>r \geq 0$, and $r \equiv n$ $(\bmod t)$. To prove our main result, we first need to prove the following two technical lemmas.
Lemma 13. Let x be an integer such that $0<x<q^{r}$. For any positive integer i, let $\delta_{i}=$ $q^{i} \cdot\left\lceil x q^{-i} \Theta_{i}\right\rceil-x \Theta_{i}$. Then the following properties hold:
(i) $\left\lceil x q^{-t} \Theta_{t}\right\rceil=\left\lceil\frac{x}{q-1}\right\rceil$.
(ii) for $1 \leq i \leq t$, we have $0 \leq \delta_{i}<q^{i}, q \mid\left(x+\delta_{i+1}\right)$, and $\delta_{i}=q^{-1}\left(x+\delta_{i+1}\right) \bmod q^{i}$.
(iii) $\delta_{i}=0$ if and only if $q^{i} \mid x$.

Proof. Let α and β be integers such that $x=\alpha(q-1)+\beta, \alpha \geq 0$, and $0 \leq \beta<q-1$. Since $0<x<q^{r}$ and $r<t$ hold by hypothesis, it follows that

$$
\begin{equation*}
0 \leq \alpha<x<q^{r}<q^{t} \text { and } \alpha(q-1) \leq x<q^{r}<q^{t} \tag{2}
\end{equation*}
$$

If $\beta=0$, then by (2), we obtain

$$
\begin{equation*}
\left\lceil x q^{-t} \Theta_{t}\right\rceil=\left\lceil\frac{\alpha\left(q^{t}-1\right)}{q^{t}}\right\rceil=\left\lceil\alpha-\frac{\alpha}{q^{t}}\right\rceil=\alpha=\left\lceil\frac{x}{q-1}\right\rceil . \tag{3}
\end{equation*}
$$

Now suppose $1 \leq \beta<q-1$. First, since $\beta \geq 1$, it follows from (2) that

$$
\begin{align*}
\left\lceil x q^{-t} \Theta_{t}\right\rceil=\left\lceil\frac{[\alpha(q-1)+\beta]\left(q^{t}-1\right)}{q^{t}(q-1)}\right\rceil & \geq\left\lceil\frac{[\alpha(q-1)+1]\left(q^{t}-1\right)}{q^{t}(q-1)}\right\rceil \\
& =\left\lceil\alpha+\frac{\left(q^{t}-1\right)-\alpha(q-1)}{q^{t}(q-1)}\right\rceil \\
& =\alpha+1 . \tag{4}
\end{align*}
$$

Second, since $\beta<q-1$, it follows from (2) and the properties of the ceiling function that

$$
\begin{equation*}
\left\lceil x q^{-t} \Theta_{t}\right\rceil=\left\lceil\frac{\lceil\alpha(q-1)+\beta]\left(q^{t}-1\right)}{q^{t}(q-1)}\right\rceil \leq\left\lceil\frac{(\alpha+1)\left(q^{t}-1\right)}{q^{t}}\right\rceil=\left\lceil\alpha+1-\frac{\alpha+1}{q^{t}}\right\rceil=\alpha+1 . \tag{5}
\end{equation*}
$$

Then (4) and (5) imply that for $1 \leq \beta<q-1$,

$$
\left\lceil x q^{-t} \Theta_{t}\right\rceil=\alpha+1=\left\lceil\frac{x}{q-1}\right\rceil,
$$

which completes the proof of (i).
We now prove (ii). Since $0 \leq\lceil a\rceil-a<1$ holds for any real number a, we have

$$
0 \leq\left\lceil q^{-i} x \Theta_{i}\right\rceil-q^{-i} x \Theta_{i}<1 \Longrightarrow \delta_{i}=q^{i}\left\lceil x q^{-i} \Theta_{i}\right\rceil-x \Theta_{i}<q^{i} \text { and } \delta_{i} \geq 0
$$

By the definition of δ_{i}, we have that

$$
x+\delta_{i+1}=x+q^{i+1} \cdot\left\lceil x q^{-i-1} \Theta_{i+1}\right\rceil-x \Theta_{i+1}=q\left(q^{i} \cdot\left\lceil x q^{-i-1} \Theta_{i+1}\right\rceil-x \Theta_{i}\right),
$$

and thus,

$$
\begin{align*}
q^{-1}\left(x+\delta_{i+1}\right) & \equiv q^{i} \cdot\left\lceil x q^{-i-1} \Theta_{i+1}\right\rceil-x \Theta_{i} \\
& \equiv-x \Theta_{i} \\
& \equiv q^{i} \cdot\left\lceil x q^{-i} \Theta_{i}\right\rceil-x \Theta_{i} \\
& \equiv \delta_{i}\left(\bmod q^{i}\right) . \tag{6}
\end{align*}
$$

Finally, we prove (iii). Since $\operatorname{gcd}\left(q^{i}, \Theta_{i}\right)=1$ for any positive integer i, we have

$$
\delta_{i}=q^{i} \cdot\left\lceil x q^{-i} \Theta_{i}\right\rceil-x \Theta_{i}=0 \Longleftrightarrow\left\lceil x q^{-i} \Theta_{i}\right\rceil=x q^{-i} \Theta_{i} \Longleftrightarrow q^{i} \mid x .
$$

We now prove our main lemma.
Lemma 14. Let x be a positive integer such that $q \mid x$ and $q^{2} \nmid x$. Let $\ell=\left(q^{n-t}-q^{r}\right) /\left(q^{t}-1\right)$. If $r \geq 2$ and $t \geq \Theta_{r}-\lceil x /(q-1)\rceil+2$, then $\mu_{q}(n, t) \leq \ell q^{t}+x$.
Proof. If $x \geq q^{r}$, then Theorem 1 implies the nonexistence of a partial t-spread of size $\ell q^{t}+x$. Thus, we can assume that $x<q^{r}$.

Recall that $\Theta_{i}=\left(q^{i}-1\right) /(q-1)$ for any integer $i \geq 1$. For an integer i, with $2 \leq i \leq t$, let

$$
\begin{equation*}
\delta_{i}=q^{i} \cdot\left\lceil x q^{-i} \Theta_{i}\right\rceil-x \Theta_{i} \tag{7}
\end{equation*}
$$

Applying Lemma 13(i), we let

$$
\begin{equation*}
h:=\left\lceil q^{-t} x \Theta_{t}\right\rceil=\left\lceil\frac{x}{q-1}\right\rceil . \tag{8}
\end{equation*}
$$

The proof is by contradiction. So assume that $\mu_{q}(n, t)>\ell q^{t}+x$. Then $\operatorname{PG}(n-1, q)$ has a $(t-1)$-partial spread of size $\ell q^{t}+1+x$. Thus, it follows from Remark 9 that there exists a subspace partition \mathcal{P}_{0} of $V(n, q)$ of type $\left[t^{n_{t}}, 1^{n_{1}}\right]$, with

$$
\begin{align*}
& n_{t}=\ell q^{t}+1+x, \text { and } \\
& n_{1}=q^{t} \Theta_{r}-x \Theta_{t}=q^{t}\left(\Theta_{r}-\left\lceil q^{-t} x \Theta_{t}\right\rceil\right)+\left(q^{t}\left\lceil q^{-t} x \Theta_{t}\right\rceil-x \Theta_{t}\right)=q^{t}\left(\Theta_{r}-h\right)+\delta_{t} \tag{9}
\end{align*}
$$

where h is given by (8) and δ_{t} is given by (7).
We will prove by induction that for each integer j with $0 \leq j \leq t-2$, there exists a subspace partition \mathcal{P}_{j} of $H_{j} \cong V(n-j, q)$ of type

$$
\begin{equation*}
\left[t^{m_{j, t}},(t-1)^{m_{j, t-1}}, \ldots,(t-j)^{m_{j, t-j}}, 1^{m_{j, 1}}\right] \tag{10}
\end{equation*}
$$

where $m_{j, t}, \ldots, m_{j, t-j}$ are nonnegative integers such that

$$
\begin{equation*}
\sum_{i=t-j}^{t} m_{j, i}=n_{t}=\ell q^{t}+1+x \tag{11}
\end{equation*}
$$

and where $m_{j, 1}$ and c_{j} are integers such that

$$
\begin{equation*}
m_{j, 1}=c_{j} q^{t-j}+\delta_{t-j}, \text { and } 0 \leq c_{j} \leq \max \left\{\Theta_{r}-h-j, 0\right\} \tag{12}
\end{equation*}
$$

The base case, $j=0$, holds since \mathcal{P}_{0} is a subspace partition of $H_{0}=V(n, q)$ with type $\left[t^{n_{t}}, 1^{n_{1}}\right]$, and letting $m_{0, t}=n_{t}$ and $m_{0,1}=n_{1}, \mathcal{P}_{0}$ is of type given in (10), and it satisfies the properties given in (11) and (12).

For the inductive step, suppose that for some j, with $0 \leq j<t-2$, we have constructed a subspace partition \mathcal{P}_{j} of $H_{j} \cong V(n-j, q)$ of the type given in (10), and with the properties given in (11) and (12). We then use Lemma 12 to determine the average, $b_{a v g, 1}$, of the values $b_{H, 1}$ over all hyperplanes H of H_{j}. We have

$$
\begin{align*}
b_{a v g, 1}:=\frac{m_{j, 1} \Theta_{n-1-j}}{\Theta_{n-j}} & =\left(c_{j} q^{t-j}+\delta_{t-j}\right)\left(\frac{q^{n-1-j}-1}{q^{n-j}-1}\right) \\
& <\left(c_{j} q^{t-j}+\delta_{t-j}\right) q^{-1} \\
& =c_{j} q^{t-j-1}+q^{-1} \delta_{t-j} \tag{13}
\end{align*}
$$

It follows from (13) that there exists a hyperplane H_{j+1} of H_{j} with

$$
\begin{equation*}
b_{H_{j+1}, 1} \leq b_{a v g, 1}<c_{j} q^{t-j-1}+q^{-1} \delta_{t-j} \tag{14}
\end{equation*}
$$

Next, we apply Lemma 11 to the subspace partition \mathcal{P}_{j} and the hyperplane H_{j+1} of H_{j} to obtain:

$$
\begin{align*}
1+b_{H_{j+1}, 1} q+\sum_{i=t-j}^{t} b_{H_{j+1}, i} q^{i} & =\left|\mathcal{P}_{j}\right| \\
& =n_{t}+m_{j, 1} \\
& =\ell q^{t}+1+x+c_{j} q^{t-j}+\delta_{t-j} \tag{15}
\end{align*}
$$

where $0 \leq c_{j} \leq \max \left\{\Theta_{r}-h-j, 0\right\}$. Simplifying (15) yields

$$
\begin{equation*}
b_{H_{j+1}, 1}+\sum_{i=t-j}^{t} b_{H_{j+1}, i} q^{i-1}=\ell q^{t-1}+c_{j} q^{t-j-1}+q^{-1}\left(x+\delta_{t-j}\right) \tag{16}
\end{equation*}
$$

Then, it follows from Lemma 13(ii) and (16) that

$$
\begin{equation*}
b_{H_{j+1}, 1} \equiv q^{-1}\left(x+\delta_{t-j}\right) \equiv \delta_{t-j-1} \quad\left(\bmod q^{t-j-1}\right) . \tag{17}
\end{equation*}
$$

Since $0 \leq q^{-1} \delta_{t-j}<q^{t-j-1}$ by Lemma 13(ii), it follows from (14) and (17) that there exists a nonnegative integer c_{j+1} such that

$$
\begin{align*}
& b_{H_{j+1}, 1}=c_{j+1} q^{t-j-1}+\delta_{t-j-1} \text { and } \\
& 0 \leq c_{j+1} \leq \max \left\{c_{j}-1,0\right\} \leq \max \left\{\Theta_{r}-h-j-1,0\right\} \tag{18}
\end{align*}
$$

Let \mathcal{P}_{j+1} be the subspace partition of H_{j+1} defined by:

$$
\mathcal{P}_{j+1}=\left\{W \cap H_{j+1}: W \in \mathcal{P}_{j}\right\},
$$

and by the definition made in (18), let $m_{j+1,1}=b_{H_{j+1}, 1}$. Since $t-j>2$ and $\operatorname{dim}\left(W \cap H_{j+1}\right) \in$ $\{\operatorname{dim} W, \operatorname{dim} W-1\}$ for each $W \in \mathcal{P}_{j}$, it follows that \mathcal{P}_{j+1} is a subspace partition of H_{j+1} of type

$$
\begin{equation*}
\left[t^{m_{j+1, t}},(t-1)^{m_{j+1, t-1}}, \ldots,(t-j-1)^{m_{j+1, t-j-1}}, 1^{m_{j+1,1}}\right] \tag{19}
\end{equation*}
$$

where $m_{j+1, t}, m_{j+1, t-1}, \ldots, m_{j+1, t-j-1}$ are nonnegative integers such that

$$
\begin{equation*}
\sum_{i=t-j-1}^{t} m_{j+1, i}=\sum_{i=t-j}^{t} m_{j, i}=n_{t} \tag{20}
\end{equation*}
$$

The inductive step follows since \mathcal{P}_{j+1} is a subspace partition of $H_{j+1} \cong V(n-j-1, q)$ of the type given in (19), which satisfies the conditions in (18) and (20).

Thus far, we have shown that the desired subspace partition \mathcal{P}_{j} of H_{j} exists for any integer j such that $0 \leq j \leq t-2$. Since $q^{2} \nmid x$ by hypothesis, Lemma 13 (iii) implies that $\delta_{t-j} \neq 0$ for $j \in[0, t-2]$. Thus, $m_{j, 1}=c_{j} q^{t-j}+\delta_{t-j} \neq 0$ for $j \in[0, t-2]$. If $j \in\left[\Theta_{r}-h, t-2\right]$, then it follows from (12) that $c_{j}=0$, and thus, $m_{j, 1}=\delta_{j} \neq 0$. In particular, since $t \geq \Theta_{r}-h+2$, we have $c_{t-2}=0$ and $m_{t-2,1}=\delta_{2} \neq 0$. For the final part of the proof, we set $j=t-2$, and then show that the existence of the subspace partition \mathcal{P}_{t-2} of H_{t-2} leads to a contradiction.

It follows from the above observations and Lemma 13(ii) that

$$
\begin{equation*}
m_{t-2,1}=\delta_{2}=q^{2}\left\lceil x q^{-2} \Theta_{2}\right\rceil-x \Theta_{2} \text { and } 0<\delta_{2}<q^{2} . \tag{21}
\end{equation*}
$$

Since $m_{t-1,2}>0$, the smallest dimension of a subspace in \mathcal{P}_{t-2} is 1 . So let $s \geq 2$ be the second smallest dimension of a subspace in \mathcal{P}_{t-2}. (Note that the existence of s follows from (11).) To derive the final contradiction, we consider the following cases.

Case 1: $s \geq 3$.
Then by applying Theorem 10(ii)\&(iv) to the subspace partition \mathcal{P}_{t-2} with $d_{2}=s$ and $d_{1}=1$, we obtain $m_{t-2,1} \geq \min \left\{\left(q^{s}-1\right) /(q-1), 2 q^{s-1}, q^{s}\right\}>q^{2}$, which contradicts the fact that $m_{t-2,1}<$ q^{2} given by (21).

Case 2: $s=2$.
Since $q \mid x$ by hypothesis, it follows from (21) that $q \mid m_{t-2,1}$. Thus, by applying Theorem 10(iv) to \mathcal{P}_{t-2} with $d_{2}=s=2$ and $d_{1}=1$, we obtain $m_{t-2,1} \geq q^{2}$, which contradicts the fact that $m_{t-2,1}<q^{2}$ given by (21).

We are now ready to prove Theorem 6 and Corollary 8 .

Proof of Theorem 6. Recall that

$$
c_{1} \equiv t-2 \quad(\bmod q), 0 \leq c_{1}<q, \text { and } c_{2}= \begin{cases}q & \text { if } q^{2} \mid\left((q-1)(t-2)+c_{1}\right) \tag{22}\\ 0 & \text { if } q^{2} \nmid\left((q-1)(t-2)+c_{1}\right)\end{cases}
$$

Define

$$
\begin{equation*}
x:=q^{r}-(q-1)(t-2)-c_{1}+c_{2} . \tag{23}
\end{equation*}
$$

Since $r \geq 2$, it follows from (22) and (23) that:
(a) If $q^{2} \mid\left((q-1)(t-2)+c_{1}\right)$, then $c_{2}=q$, and also, $q^{2} \mid\left(q^{r}-(q-1)(t-2)-c_{1}\right)$. Thus, $x \equiv q \not \equiv 0\left(\bmod q^{2}\right)$.
(b) If $q^{2} \nmid\left((q-1)(t-2)+c_{1}\right)$, then $c_{2}=0$, and also, $q^{2} \nmid\left(q^{r}-(q-1)(t-2)-c_{1}\right)$. Thus, $x=q^{r}-(q-1)(t-2)-c_{1} \not \equiv 0\left(\bmod q^{2}\right)$.
Thus, $q^{2} \nmid x$ holds in all cases.
Also, since $c_{1} \equiv t-2(\bmod q)$ by (22), we have $t-2=\alpha q+c_{1}$ for some nonnegative integer α. Thus, it follows from (23) that

$$
\begin{equation*}
x=q^{r}-\alpha q(q-1)-c_{1} q+c_{2} \tag{24}
\end{equation*}
$$

Since $c_{2} \in\{0, q\}$ by (22), it follows from (24) that $q \mid x$.
Moreover, since $0 \leq c_{1} \leq q-1$ and $c_{2} \in\{0, q\}$, we obtain

$$
\begin{align*}
x & =q^{r}-(q-1)(t-2)-c_{1}+c_{2} \geq q^{r}-(q-1)(t-2)-(q-1) \\
& \Longrightarrow \frac{x}{q-1} \geq \frac{q^{r}-1}{q-1}+\frac{1}{q-1}-t+1 \\
& \Longrightarrow\left\lceil\frac{x}{q-1}\right\rceil \geq \frac{q^{r}-1}{q-1}-t+2 \\
& \Longrightarrow t \geq \Theta_{r}-\left\lceil\frac{x}{q-1}\right]+2 \tag{25}
\end{align*}
$$

Since the hypothesis holds from the above observations, Lemma 14 yields

$$
\mu_{q}(n, t) \leq \ell q^{t}+x=\frac{q^{n}-q^{t+r}}{q^{t}-1}+q^{r}-(q-1)(t-2)-c_{1}+c_{2}
$$

Moreover, since $-q+1 \leq-c_{1}+c_{2} \leq q$, it follows that

$$
\begin{aligned}
\mu_{q}(n, t) & \leq \frac{q^{n}-q^{t+r}}{q^{t}-1}+q^{r}-(q-1)(t-2)-c_{1}+c_{2} \\
& \leq \frac{q^{n}-q^{t+r}}{q^{t}-1}+q^{r}-(q-1)(t-2)+q \\
& =\frac{q^{n}-q^{t+r}}{q^{t}-1}+q^{r}-(q-1)(t-3)+1
\end{aligned}
$$

which concludes the proof of Theorem 6.
Proof of Corollary 8. Let $f_{q}(n, t)$ and $g_{q}(n, t)$ be as defined in the statement of the corollary. Then

$$
\begin{equation*}
g_{q}(n, t)=\frac{q^{n}-q^{t+r}}{q^{t}-1}+q^{r}-(q-1)(t-2)-c_{1}+c_{2} \tag{26}
\end{equation*}
$$

where c_{1} and c_{2} are as in (22), and

$$
\begin{equation*}
f_{q}(n, t)=\frac{q^{n}-q^{t+r}}{q^{t}-1}+q^{r}-\lfloor\omega\rfloor-1 \tag{27}
\end{equation*}
$$

where $2 \omega=\sqrt{4 q^{t}\left(q^{t}-q^{r}\right)+1}-\left(2 q^{t}-2 q^{r}+1\right)$.
If $r \geq 1$ and $t \geq 2 r$, then it is straightforward to show that (e.g.,see [19, Lemma 2])

$$
\begin{equation*}
\lfloor\omega\rfloor=\left\lfloor\frac{q^{r}-2}{2}\right\rfloor=\left\lfloor\frac{q^{r}}{2}\right\rfloor-1 . \tag{28}
\end{equation*}
$$

Now it follows from (26)-(28) that if $t \geq 2 r$, then

$$
\begin{equation*}
g_{q}(n, t)-f_{q}(n, p)=\left\lfloor\frac{q^{r}}{2}\right\rfloor-(q-1)(t-2)-c_{1}+c_{2} \tag{29}
\end{equation*}
$$

We now prove the second part of the corollary for $q>2$. If $\left\lceil\frac{\Theta_{r}}{2}\right\rceil+4 \leq t \leq \Theta_{r}$, then by applying (29) with $0 \leq c_{1}<q$ and $c_{2} \in\{0, q\}$, we obtain

$$
\begin{aligned}
g_{q}(n, t)-f_{q}(n, p) & \leq\left\lfloor\frac{q^{r}}{2}\right\rfloor-(q-1)(t-2)+q \\
& \leq\left\lfloor\frac{q^{r}}{2}\right\rfloor-(q-1)\left(\left\lceil\frac{\Theta_{r}}{2}\right\rceil+2\right)+q \\
& =\left\lfloor\frac{q^{r}}{2}\right\rfloor-(q-1)\left[\frac{q^{r}-1}{2(q-1)}\right\rceil-q+2 \\
& \leq \frac{q^{r}}{2}-(q-1)\left(\frac{q^{r}-1}{2(q-1)}\right)-q+2 \\
& =5 / 2-q<0 \quad(\text { since } q>2)
\end{aligned}
$$

If $q=2$, then by doing the same analysis as above with $t \geq\left\lceil\frac{\Theta_{r}}{2}\right\rceil+5$ instead of $t \geq\left\lceil\frac{\Theta_{r}}{2}\right\rceil+4$, we obtain $g_{q}(n, t)-f_{q}(n, p)<0$. This completes the proof of the corollary.

Acknowledgement: We thank the referees for their detailed comments, suggestions, and corrections which have greatly improved the paper.

References

[1] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math Zeit. 60 (1954), 156-186.
[2] A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Zeit. 145 (1975), 211229.
[3] P. Dembowski, Finite Geometries, Springer Classics in Mathematics, 1997.
[4] D. Drake and J. Freeman, Partial t-spreads and group constructible (s, r, μ)-nets, J. Geom. 13 (1979), 211-216.
[5] J. Eisfeld and L. Storme, (Partial) t-spreads and minimal t-covers in finite spaces, Lecture notes from the Socrates Intensive Course in Finite Geometry and its Applications, Ghent, April 2000, Published electronically at http://www.maths.qmul.ac.uk/~leonard/partialspreads/eisfeldstorme.ps.
[6] J. Eisfeld, L. Storme, and P. Sziklai, On the spectrum of the sizes of maximal partial line spreads in $P G(2 n, q)$, $n \geq 3$, Des. Codes Cryptogr. 36 (2005), 101-110.
[7] T. Etzion, Perfect byte-correcting codes, IEEE Trans. Inf. Theory 44 (1998), 3140-3146.
[8] T. Etzion A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inf. Theory 57 (1998), 1165-1173.
[9] S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho, and L. Spence, The maximum size of a partial 3-spread in a finite vector space over GF(2), Des. Codes Cryptogr. 54 (2010), 101-107.
[10] E. Gorla and A. Ravagnani, Partial spreads in random network coding, Fin. Fields Appl. 26 (2014), 104-115.
[11] A. Gács and T. Szönyi, On maximal partial spreads in $P G(n, q)$, Des. Codes Cryptogr. 29 (2003), 123-129.
[12] O. Heden, On the length of the tail of a vector space partition, Discrete Math. 309 (2009), 6169-6180.
[13] O. Heden, A survey of the different types of vector space partitions, Disc. Math. Algo. Appl. 4 (2012), 1-14.
[14] O. Heden and J. Lehmann, Some necessary conditions for vector space partitions, Discrete Math. 312 (2012), 351-361.
[15] M. Herzog and J. Schönheim, Group partition, factorization and the vector covering problem, Canad. Math. Bull. 15(2) (1972), 207-214.
[16] S. Hong and A. Patel, A general class of maximal codes for computer applications, IEEE Trans. Comput. C-21 (1972), 1322-1331.
[17] D. Jungnickel and L. Storme, A note on maximal partial spreads with deficiency $q+1, q$ even, J. Combin. Theory Ser. A 102 (2003), 443-446.
[18] R. Köetter and F. Kschischang, A general class of maximal codes for computer applications, IEEE Trans. Inf. Theory 54 (2008), 3575-3591.
[19] S. Kurz, Improved upper bounds for partial spreads, Des. Codes Cryptogr. DOI:10.1007/s10623-016-0290-8 (2016).
[20] S. Kurz, Upper bounds for partial spreads, https://arxiv.org/pdf/1606.08581.pdf.
[21] E. Năstase and P. Sissokho, The maximum size of a partial spread in a finite projective space, http://arxiv.org/pdf/1605.04824. Submitted.
[22] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. pura Appl. 64 (1964), 1-76.

[^0]: ${ }^{1}$ Also see [20] for a recent preprint in this area.

