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Abstract. Let q be a prime power and n be a positive integer. A subspace partition of
V = Fn

q , the vector space of dimension n over Fq, is a collection Π of subspaces of V such
that each nonzero vector of V is contained in exactly one subspace in Π; the multiset of
dimensions of subspaces in Π is then called a Gaussian partition of V . We say that Π
contains a direct sum if there exist subspaces W1, . . . ,Wk ∈ Π such that W1⊕· · ·⊕Wk = V .
In this paper, we study the problem of classifying the subspace partitions that contain a
direct sum. In particular, given integers a1 and a2 with n > a1 > a2 ≥ 1, our main theorem
shows that if Π is a subspace partition of Fn

q with mi subspaces of dimension ai for i = 1, 2,
then Π contains a direct sum when a1x1 +a2x2 = n has a solution (x1, x2) for some integers
x1, x2 ≥ 0 and m2 belongs to the union I of two natural intervals. The lower bound of
I captures all subspace partitions with dimensions in {a1, a2} that are currently known to
exist. Moreover, we show the existence of infinite classes of subspace partitions without a
direct sum when m2 6∈ I or when the condition on the existence of a nonnegative integral
solution (x1, x2) is not satisfied. We further conjecture that this theorem can be extended
to any number of distinct dimensions, where the number of subspaces in each dimension
has appropriate bounds. These results offer further evidence of the natural combinatorial
relationship between Gaussian and integer partitions (when q → 1) as well as subspace and
set partitions.
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1. Introduction

Let Fq be the field with q elements, Fnq denote the n-dimensional vector space over Fq, and
set V = Fnq . Moreover, let E = {e1, . . . , en} be the standard ordered basis for V , identified
with the set n = {1, . . . , n}. We sometimes write m-subspace to mean a vector subspace
of dimension m. A subspace partition1 of V is a collection Π of subspaces of V such that
each nonzero vector of V is contained in exactly one subspace in Π. Given positive integers
k, a1, . . . , ak, and u1, . . . , uk, we let au11 . . . aukk denote the multiset with ui copies of ai for
1 ≤ i ≤ k. The type of a subspace partition Π of V is the multiset consisting of dimW for
all W ∈ Π. In particular, a subspace partition of type au is called an a-spread, or, simply, a
spread, and a subspace partition of type au1v for some v > 0 is called a partial a-spread, or,
a partial spread. Thus, Π has type T (Π) = au11 . . . aukk if it contains ui subspaces of dimension

akmanf@ilstu.edu, psissok@ilstu.edu.
1Also known as a “vector space partition” in the literature (see Heden [15] for a survey).
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ai for 1 ≤ i ≤ k and no other subspace. In this case, we have
k∑
i=1

ui(q
ai − 1) = |V | − 1 = qn − 1.

Because of this fact, we also call T (Π) a Gaussian partition of V .
Let P(n) denote the lattice of set partitions of n, and P(V ) be the set of all subspace

partitions of V = Fnq . We recall from [1] that P(V ) forms a lattice. Consider two subspace
partitions Π = {U1, . . . , Uk} and Γ = {W1, . . . ,Wt} of V . We say Π is a refinement of Γ in
P(V ), and write Π � Γ, if each subspace Wi is the union of a number of the subspaces Uj.
We also say Γ is coarser than Π, and write Γ � Π. The minimum element of this lattice is
the subspace partition that contains all 1-subspaces of V and the maximum element is the
subspace partition whose only subspace is V . The meet of two arbitrary partitions Π and
Γ is the collection Π ∧ Γ = {Ui ∩Wj | 1 ≤ i ≤ k, 1 ≤ j ≤ t, Ui ∩Wj 6= {0}}, which is a
subspace partition of V . The join of Π and Γ is defined to be

Π ∨ Γ =
∧

Ω�Π, Ω�Γ

Ω.

The problem of determining the size of the lattice P(V ) is currently out of reach due to the
fact that even the types of maximal partial spreads and their numbers are unknown quantities
in general. We have instead studied some large subsets of the original lattice P(V ), where
only certain common constructions were permitted and other, irregular, constructions of
subspace partitions were not. We will describe these “regular” subspace partitions in due
course (Section 5). A particular example of a regular partition is a “basic” subspace partition
(Section 4), which contains subspaces that are spanned by the subsets in a set partition of
the basis E of V , and hence can be mapped to that set partition in P(n) in a natural way.

In this paper, we introduce the following definition, which will enable us to capture a
natural subset of P(V ) that merits further study in our view (see Section 2).

Definition 1. We say that a subspace partition Π of V contains a direct sum if there exist
subspaces W1, . . . ,Wk ∈ Π such that W1 ⊕ · · · ⊕Wk = V .

Do all subspace partitions contain direct sums? And to turn the question around, does
there exist a subspace partition that cannot contain a direct sum due to the fact that no
positive linear combination of the dimensions is equal to n? As we will see shortly, the
answers are no and yes, respectively.

Our main result is as follows.

Theorem 1. Let q be a prime power, n, a, b be integers such that n > a > b > 0, and Π be a
subspace partition of V = Fnq of type aubv. Define S to be the set of all solutions (x, y) of the
Diophantine equation ax + by = n with x, y ≥ 0. Let y0 = min(x,y)∈S y, yM = max(x,y)∈S y,
x0 = (n− ay0)/b, xM = (n− ayM)/b, and consider the intervals

I1 =

[
qby0 − 1

qb − 1
,
qbyM − 1

qb − 1

]
and I2 =

[
qn − qax0
qb − 1

,
qn − qaxM
qb − 1

]
.

If S 6= ∅ and v ∈ I1 ∪ I2, then Π contains a direct sum. Conversely, if Π contains a direct
sum, then S 6= ∅.

We naturally ask whether: (i) there is an overlap between the intervals I1 and I2; (ii) re-
gardless of an overlap, there are known subspace partitions of type aubv with v 6∈ I1 ∪ I2
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that admit or do not admit direct sums; and (iii) the bounds on v are tight regarding the
existence of such subspace partitions. We will address these questions throughout the paper.

Remark 2. In Section 6, we will discuss a construction of Beutelspacher [6] that yields
subspace partitions of V of type aubv for which S = ∅. Thus, these subspace partitions do
not contain direct sums.

Now assume that S 6= ∅. Then, we have the following observations.

(1) The lower bounds of the two intervals for v, the number of b-subspaces of Π, satisfy
the inequality

qby0 − 1

qb − 1
≤ qax0(qby0 − 1)

qb − 1
=
qn − qax0
qb − 1

for all q ≥ 2. This is an equality, and the “intervals” are equal to the same integer
(qby0 − 1)/(qb − 1), when x0 = 0 (thus, xM = 0), which happens when we have the
unique solution S = {(0, n/b)}. The equality also holds in the case y0 = 0, which
means that both intervals start at 0, (and in light of the inequality below, I1 ⊆ I2).
Moreover, if the minimum values xM and y0 are both zero, then this is equivalent to
both a and b dividing n, and we have I1 = I2 = [0, (qn − 1)/(qb − 1)].

(2) Similarly, the upper bounds satisfy

qbyM − 1

qb − 1
≤ qaxM (qbyM − 1)

qb − 1
=
qn − qaxM
qb − 1

for all q ≥ 2. We have an equality, and the intervals themselves are equal to the same
integer, zero, if yM = 0 (thus, y0 = 0) and S = {(n/a, 0)}. The other case of equality
occurs and the intervals have the same right endpoint if xM = 0 instead. Then we
have I2 ⊆ I1.

(3) When S = {(x0, y0)} = {(xM , yM)} with x0, y0 > 0, each “interval” consists of exactly
one element, and we have

qby0 − 1

qb − 1
=
qbyM − 1

qb − 1
<
qn − qax0
qb − 1

=
qn − qaxM
qb − 1

for all q ≥ 2.
(4) The only possible instances of overlap between I1 and I2 are described in cases (1)

and (2), where at least one of a or b must divide n. In every other case, including
(3), it can be shown that I1 is strictly on the left of I2 for all q ≥ 2. Consequently,
the minimum of I1 ∪ I2 is the minimum of I1, and the maximum of I1 ∪ I2 is the
maximum of I2.

(5) If 0 < v < (qby0 − 1)/(qb − 1), then it is not known in general whether there exist
subspace partitions of V of type aubv.

As a justification of the upper bound (qn − qaxM )/(qb − 1) on v in Theorem 1, we
will exhibit in Section 8.2 an infinite class of subspace partitions of V = Fnq of type
aubv that do not contain direct sums and for which v is larger than this number.
Moreover, this upper bound is necessary and sharp for b ≥ 4.

The rest of the paper is organized as follows. In Section 2, we give some motivation for
studying subspace partitions with direct sums. In Section 3, we introduce some technical
background that will be used in subsequent sections. In Sections 4 and 5, we discuss basic
subspace partitions and regular subspace partitions, respectively, and show that they both
have direct sums. Section 6 is where we use Beutelspacher’s work to exhibit an infinite
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class of subspace partitions with no direct sum. In Section 7, we prove our main theorem
(Theorem 1) and justify our claim that the restrictions on v are natural, on both theoretical
and practical grounds. Finally, in Section 8, we discuss the sharpness of the conditions
imposed on v given in Theorem 1, and formulate a conjecture that generalizes Theorem 1.

2. Why study subspace partitions containing direct sums?

2.1. Search for a combinatorial q-analogue of set partitions. One of our main moti-
vations for this line of research is to demonstrate the natural similarity between the lattice
P(n) of set partitions of n and the lattice P(V ) of all subspace partitions of V = Fnq . Proving
general properties of the subspace and Gaussian partitions of V , with the goal of establish-
ing them as the natural combinatorial q-analogues of the set partitions of n and integer
partitions of n respectively, has been the theme of a series of papers [1, 2, 3]. In the course
of this program, we have pointed out the difficulties in describing the full sets of subspace
partitions and Gaussian partitions, but we have also been able to make some progress along
those lines.

In order to state the first and most important analogy, we let Bn = |P(n)| be the nth Bell
number and Bn(q) = |P(Fnq )| be the nth q-Bell number. Then

Theorem 2 (A. and S. [1]). |P(Fnq )| = Bn(q) ≡ Bn (mod q − 1).

We will demonstrate that the set of subspace partitions containing direct sums are even
more tractable and meaningful, and we do not lose any essential properties when working
exclusively with such partitions.

2.2. Motivation and evidence based on previous work. Let us call any subspace of
V = Fnq spanned by a nonempty subset of the fixed basis E a pure subspace; call any subspace
partition of V that consists of only pure subspaces and the remaining 1-subspaces of V a
pure subspace partition; and say that any subspace partition that contains a number of pure
subspaces whose direct sum is equal to V contains a pure direct sum (there is a mapping
of the latter set of partitions onto P(n), where ei ∈ E goes to i ∈ n). We maintain that
the set PD(V ) of subspace partitions that contain direct sums is a very good candidate for
a manageable q-analogue of P(n). First, it is easy to see why PD(V ) forms a lattice, just
like P(n): it is a poset with a maximum element that is closed under the meet operation.
Moreover, this lattice contains the pure direct sums that map to set partitions of E in a
natural way, and Theorem 3 below shows that the number of subspace partitions in the
lattice is congruent to the the size of P(n) modulo (q − 1); these are hallmarks of a very
reasonable q-analogue of P(n).

In our first paper [1] in this series, we considered the action of the diagonal subgroup G of
the general linear group GL(n, q), with respect to the ordered basis E of V = Fnq , on the set
of all subspace partitions of V . Note that the order of G is (q − 1)n. We were able to prove
that if Π is a pure subspace partition of V , then it is fixed by G, and any other partition
has a G-orbit of size divisible by q − 1; this is the basis of the proof of Theorem 2. Going
backwards from this result, we can argue that the number of subspace partitions of V that
contain direct sums is congruent to Bn modulo q − 1 as well. We recall that GL(n, q) acts
on subspace partitions of V in such a way that it preserves the type of each partition, which
we have been calling a Gaussian partition.
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Theorem 3. Every GL(n, q)-orbit of P(Fnq ) consists either entirely of subspace partitions
containing direct sums or entirely of subspace partitions not containing direct sums. More-
over, each orbit of the former kind has subspace partitions containing pure direct sums.
Finally, the number of subspace partitions of V = Fnq containing direct sums is congruent to
Bn modulo q − 1. That is, we have

|PD(Fnq )| ≡ Bn (mod q − 1).

Proof. Given any partition Π containing a direct sum W1 ⊕ · · · ⊕Wk = V , and any choice
of ordered bases B1, . . . ,Bk of the direct summands respectively, there exists an invertible
linear operator g on V that sends the ordered basis B = B1 ∪ · · · ∪ Bk of V to any desired
permutation of the ordered basis E. The same map sends Π to a partition Π′ containing a
pure direct sum, namely, g(W1) ⊕ · · · ⊕ g(Wk) = V . Now, as mentioned above, it follows
from Propositions 2, 7, and 8 in [1] that the GL(n, q)-orbits of P(V ) are uniquely subdivided
into G-orbits, with size either equal to 1 (in case of pure subspace partitions) or a multiple of
q − 1 (for all the other subspace partitions). The former types reside in PD(V ), correspond
to all set partitions of the basis E, and are directly responsible for the result |PD(V )| ≡ Bn

(mod q − 1). �

To address the practicality of working solely with PD(V ), we would like to mention that
the universally utilized regular construction we have described [2, 3] (also see Section 5)
naturally gives rise to subspace partitions with many direct sums.

2.3. Research question inspired by subspace partitions containing direct sums.
The classification problem for subspace partitions consists of finding necessary and sufficient
conditions for the existence of subspace partitions of a given type. This problem has received
considerable attention (e.g., see [6, 9, 12, 13, 14, 16]). There are only a few known necessary
conditions for the existence of subspace partitions. In particular, Heden’s Tail Theorem [14,
Theorem 1] (also see the discussion in Section 8.1) proves a lower bound on the number
of subspaces of smallest dimension in an arbitrary subspace partition of Fnq . As mentioned
earlier, the lower bound from the interval I1 in Theorem 1 is satisfied by all currently known
subspace partitions with subspaces of two different dimensions. As far as we know, this is
also the case for the known subspace partitions with more than two different dimensions.
This motivates the following question.

Question 3. Let Π be a subspace partition Π of V = Fnq with subspaces of dimensions
d1, . . . , dm, where d1 < . . . < dm. Let s be the minimum value of x1 over all nonnegative
solutions (x1, . . . , xm) of the Diophantine equation d1x1 + . . .+ dmxm = n. Is it true that the
number, N1(Π), of subspaces of dimension d1 in Π satisfies the inequality

N1(Π) ≥ qd1s − 1

qd1 − 1
?

If the answer to this question is affirmative, then for d1 ≥ 2 and s ≥ 1, it would provide
a lower bound on N1(Π) that is generally stronger than current best, which is given by
Heden’s Tail Theorem. This in turn will be a useful tool in the general classification problem
for subspace partitions, since it will give a new necessary condition for their existence. Thus,
the classification problem may benefit from the study of subspace partitions with direct
sums.
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And finally, proving or disproving Conjecture 25 that forms a stronger form of Theorem 1
and is intimately related to the question above would increase our understanding of the
classification problem.

3. Gaussian coefficients, cyclotomic polynomials, and the packing
condition

3.1. Gaussian coefficients. Let q be a variable and n, k be nonnegative integers with
n ≥ k. The Gaussian (binomial) coefficient[

n
k

]
q

is a polynomial in Z[q] that is a q-analogue of the binomial coefficient
(
n
k

)
, which counts the

number of k-dimensional subspaces of Fnq when q is a prime power. It can be defined in
terms of the q-number

[n]q
def
=

qn − 1

q − 1
= 1 + q + · · ·+ qn−2 + qn−1

and the q-factorial

[n]q!
def
= [n]q[n− 1]q · · · [2]q[1]q,

via the formula [
n
k

]
q

def
=

[n]q!

[k]q![n− k]q!
.

We note that

lim
q→1

[
n
k

]
q

=

(
n

k

)
and lim

q→1
[n]q = n.

Remark 4. We will make use of the identity

[xy]q
[y]q

= [x]qy .

3.2. Cyclotomic polynomials. The kth cyclotomic polynomial Φk(q) ∈ C[q] is defined by

Φk(q) =
∏

(q − ζm),

where ζm are the primitive kth roots of unity, that is, ζm = e2πim/k, and gcd(m, k) = 1.
It is well known that Φk(q) is irreducible with integer coefficients, and we have deg(Φk) =

ϕ(k), the Euler totient function evaluated at k. The first four cyclotomic polynomials are

Φ1(q) = q − 1, Φ2(q) = q + 1, Φ3(q) = q2 + q + 1, Φ4(q) = q2 + 1, . . . .

The polynomial qn − 1 ∈ Z[q], which is the product of (q − ζ) for all nth roots ζ of 1, is a
product of cyclotomic polynomials:

qn − 1 =
∏
k|n

Φk(q).

In particular, Φ1(q) = q − 1 is always a factor, and we have

[n]q =
∏

k|n, k>1

Φk(q)
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(the empty product is 1). Furthermore, Φi 6= Φn for i 6= n. Using these properties, we infer
that

(1) a | n in Z ⇐⇒ (qa − 1) | (qn − 1) in Z[q] ⇐⇒ [a]q | [n]q in Z[q];
(2) gcd(qa − 1, qb − 1) = qgcd(a,b) − 1 and gcd([a]q, [b]q) = [gcd(a, b)]q in Z[q];
(3) Φk(q) > 0 for q ≥ 2 and all k ≥ 1 due to irreducibility and, hence, the lack of real

roots when k ≥ 3.

3.3. More on q-numbers. The q-numbers are monic polynomials in Z[q], which is a unique
factorization domain, but not a Euclidean domain or a Bézout domain [10]. However, due
to the following property, it is possible to compute the greatest common divisor of [a]q and
[b]q for (a > b > 0 and b not dividing a) via the Euclidean algorithm, and in turn obtain a
Bézout identity with coefficients involving Z-linear combinations of polynomials of type

(1) qu[Φi1(q)]
v1 · · · [Φik(q)]vk .

Lemma 5. Let n > a > 0 be integers such that n is not divisible by a, and let m, r be the
unique quotient and remainder respectively, as dictated by the Division Algorithm when n is
divided by a:

n = am+ r, 0 < r < a.

Then we have

[n]q = qr
[am]q
[a]q

[a]q + [r]q = qr [m]qa [a]q + [r]q.

Note the use of Remark 4 in the lemma and the next proposition. We see that the
Euclidean algorithm works for q-numbers in a similar way as it does for natural numbers.
This lemma in fact follows from a more general and easily verifiable identity:

Proposition 6. Let a1, . . . , ah, x1, . . . , xh, n be positive integers, with h ≥ 2, and

(2) a1x1 + · · ·+ ahxh = n.

Then for any prime power q, we have

[a1x1]q + qa1x1 [a2x2]q + · · ·+ qa1x1+···+ah−1xh−1 [ahxh]q = [n]q,

and [n]q is the following Z[q]-linear combination of the [ai]q with coefficients of type shown
in (1):

[x1]qa1 [a1]q + qa1x1 [x2]qa2 [a2]q + · · ·+ qa1x1+···+ah−1xh−1 [xh]qah [ah]q = [n]q.

Note that the last identity in Proposition 6 is reduced to the identity in (2) when we let
q → 1.

3.4. The packing condition. Let T (Π) = au11 · · · a
uh
h , with a1 > · · · > ah and ui > 0, be

the type of a subspace partition Π of V = Fnq for a specific q, i.e., a Gaussian partition of V .
Then (u1, . . . , uh) necessarily satisfies the linear Diophantine equation

(3) (qa1 − 1)u1 + · · ·+ (qah − 1)uh = qn − 1,

known as the packing condition, because it represents the distribution of the nonzero vectors
of V into the subspaces of Π. Dividing throughout by q − 1, we obtain the identity

(4) [a1]qu1 + · · ·+ [ah]quh = [n]q.

In the literature (e.g., see the survey [15]), solutions of (4) are usually studied for specific
values of q, in order to produce examples and counterexamples for the existence of subspace
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partitions of a certain type. However, there are certain solutions (u1, . . . , uh) where all ui
are polynomials in q, which, moreover, take only positive values for q ≥ 1, and we will call
these h-tuples the positive solutions. In particular, the basic subspace partitions that we will
define in Section 4 will have types that correspond to positive polynomial solutions of the
packing conditions, each involving products and quotients of q and q-integers (or, of q and
cyclotomic polynomials). The obvious advantage of a positive solution is that every ui(q)
can be reduced modulo q − 1 (or, by substituting q = 1) to one coordinate xi of a positive
integral solution of the Diophantine equation

a1x1 + · · ·+ ahxh = n,

which represents an ordinary partition of the integer n. When generic subspace partitions
whose types are represented by positive solutions (u1(q), . . . , uh(q)) exist, we can ask the
question of whether they contain direct sums whose summands consist of xi = ui(1) sub-
spaces of dimension i for 1 ≤ i ≤ h.

Since Z[q] is a unique factorization domain, where we can find Bézout coefficients for
Gaussian numbers, the following is also true:

Remark 7. All solutions (u1, . . . , uh) ∈ Z[q]h of the packing condition given by (4), i.e.,

[a1]qu1 + · · ·+ [ah]quh = [n]q,

can be found by processes similar to known methods for ordinary linear Diophantine equations
(e.g., see Bond [8]), where the arbitrary parameters are also polynomials in Z[q].

4. Basic subspace partitions and direct sums

4.1. General Notions. We start with the following construction due to Beutelspacher [7].

Proposition 8 (Beutelspacher [7]). Let U and W be subspaces of V = Fnq such that V =
W ⊕ U , and d = dimU ≤ dimW = n − d. Let {w1, . . . , wn−d} be a basis of W , and
{u1, . . . , ud} be a basis of U . Moreover, we identify W with the field Fqn−d. For every
element γ ∈ W , define a subspace Uγ of V by

Uγ = span({u1 + γw1, . . . , ud + γwd}),
where U0 = U . Then dimUγ = d, Uγ ∩ Uγ′ = {0} for γ 6= γ′, and the collection

{W} ∪ {Uγ : γ ∈ W}

of subspaces forms a subspace partition of V of type (n− d)1d q
n−d

.

Definition 9. We call a subspace partition Π of V basic if it is obtained from a set partition
{E1, . . . , Ek} of the chosen basis E, subject to the following conditions:

(1) Let |Ei| = ai. Then for i < j, we have ai ≥ aj.
(2) If k = 1, then Π = {V }. Otherwise, Π is obtained by applying the construction in

Proposition 8 to V with W = 〈E1∪· · ·∪Ek−1〉 and U = 〈Ek〉, then to 〈E1∪· · ·∪Ek−1〉
with W = 〈E1 ∪ · · · ∪Ek−2〉 and U = 〈Ek−1〉, etc., down to 〈E1 ∪E2〉 with W = 〈E1〉
and U = 〈E2〉.

Clearly, Π contains the pure direct sum 〈E1〉 ⊕ · · · ⊕ 〈Ek〉.

Note that due to the different choices of identification of W with Fqs in Proposition 8, there
may be multiple basic subspace partitions associated with a set partition of E. However, all
of these basic subspace partitions are in the same orbit of GL(n, q).
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Proposition 10. (a) The basic Gaussian partition of Fnq that corresponds to the integer
partition a1 · · · ak of n, with a1 ≥ · · · ≥ ak, is given by

T = a1
1a

q a1

2 a q
a1+a2

3 · · · a q
a1+···+ak−1

k .

(b) For a Gaussian partition written as in part (a), the exponent qt of any dimension ai
reflects the sum t = a1 + · · · + ai−1 of the parts of the corresponding integer partition that
come before ai (the empty sum is zero).

(c) If we require the dimensions ai to be distinct, then the basic Gaussian partition corre-
sponding to the integer partition ax11 · · · a

xh
h of n, with a1 > · · · > ah ≥ 1, is given by

T = a1+q a1+···+q(x1−1)a1

1 a
qx1a1(1+qa2+···+q(x2−1)a2)
2 · · · a q

x1a1+···+xh−1ah−1(1+qah+···+q(xh−1)ah)
h .

Corollary 11. The packing condition corresponding to the type T described in part (c) of
Proposition 10 is

[a1]q · [x1]qa1 + [a2]q · qx1a1 [x2]qa2 + · · ·+ [ah]q · qx1a1+···+xh−1ah−1 [xh]qah = [n]q.

This is exactly the linear combination given by Proposition 6, where ordering of the
dimensions was not important.

4.2. Basic solutions of the packing condition for subspace partitions of type aubv.
Remark 7 and Corollary 11 reduce to the familiar result below when h = 2:

Theorem 4. Let (x0, y0) be a nonnegative integer solution of the Diophantine equation
ax + by = n with a > b > 0 such that x0 is maximal, d = gcd(a, b), a = a′d, b = b′d, and
c = bx0/b

′c. Then all nonnegative solutions (x, y) of the equation are given by

x = x0 − ib′ and y = y0 + ia′, with 0 ≤ i ≤ c.

The corresponding basic subspace partitions have types aui(q)bvi(q), where

u0(q) =
[ax0]q
[a]q

= [x0]qa , v0(q) = qax0
[by0]q
[b]q

= qax0 [y0]qb ,

ui(q) = [x0 − ib′]qa = u0(q)− ki(q)
[b]q
[d]q

= [x0]qa − ki(q)[b′]qd ,

vi(q) = qa(x0−ib′)[y0 + ia′]qb = v0(q) + ki(q)
[a]q
[d]q

= qax0 [y0]qb + ki(q)[a
′]qd ,

and the ki(q) are monic positive polynomials that are products of q and cyclotomic polyno-
mials:

ki(q) = qa(x0−ib′) [ia′b′]qd

[a′]qd [b′]qd
.

Moreover, we have

lim
q→1

ki(q) = i,

reducing (ui, vi) to (xi, yi) and the packing condition [a]qui + [b]qvi = [n]q to axi + byi = n as
q → 1.

Note that Remark 4 has been used to achieve brevity in Theorem 4. Also note that
xM = xc = x0 − cb′ and yM = yc = y0 + ca′ when we compare the notation of Theorem 4 to
that of Theorem 1.
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5. Regular subspace partitions and direct sums

In this section, we introduce a class of subspace partitions, which can be obtained through
a recursive process, and show that they contain direct sums in a strong sense.

Definition 12. A subspace partition of V = Fnq is called regular if it can be recursively
obtained by applying a construction of the kind described below a finite number, m, of times:
Initially, set the trivial subspace partition Π0 = {V } of V . At any stage i, where 1 ≤ i < m,
select a subspace W ∈ Πi−1 with dimW = t and a positive integer d such that t ≥ 2d, and
then replace W with a subspace partition L of type (t−d)1d q

t−d
to obtain a subspace partition

Πi = (Πi−1 \ {W}) ∪ L of V .

Remark 13. Note that Definition 12 is justified by the fact that the partitions L of type
T = (t − d)1d q

t−d
exist. For instance, one can use Proposition 8. Thus, basic subspace

partitions (see Definition 9) are regular. However, a subspace partition of type T need not
be obtained via Proposition 8, which produced very specific subspace partitions of type T .
Indeed, Bu [9, Lemma 4] gives a different construction for obtaining a subspace partition of

type T by intersecting a (t− d)-spread Γ of F2(t−d)
q with some (t− d)-subspace U that belongs

to Γ. Moreover, if t = 2d, then T = d q
d+1 and L is a d-spread, and there are several different

constructions of spreads (e.g., see [4, 19] and [11, Section 1]).

Proposition 14. For positive integers t and d with t ≥ 2d, let Π be an arbitrary subspace
partition of W = Ftq of type (t − d)1d q

t−d
. Then for any subspace X ∈ Π, there exists a

subspace Y ∈ Π such that W = X ⊕ Y .

Proof. If dimX = t−d, then let Y be any other subspace in Π. Since Π has type (t−d)1d q
t−d

,
we must have dimY = d. Also, as X ∩ Y = {0} and dimX + dimY = dimW , we have
W = X ⊕ Y . On the other hand, if dimX = d, then let Y be the only subspace in Π such
that dimY = t− d. Thus, W = X ⊕ Y as argued above. �

Note that the Gaussian partition corresponding to the subspace partition in Proposition 14
satisfies the packing condition

[t− d]q · 1 + [d]q · qt−d = [t]q.

Theorem 5. Every regular subspace partition Π of V = Fnq contains a direct sum. Moreover,
every subspace of Π occurs as a summand in some direct sum contained in Π.

Proof. By Definition 12, we may proceed by induction on the number, m, of applications
of the construction that is used to arrive at Π. For m = 1, starting with Π0 = {V } and
applying the construction to W = V , we obtain a subspace partition Π1 that contains a
direct sum with summand X1 for any X1 ∈ Π1 by Proposition 14.

Now let Πk denote a subspace partition of V obtained after m = k applications of the
construction in Definition 12 for some k ≥ 1. Furthermore, assume that we can always
find a direct sum contained in Πk with summand Xk for any Xk ∈ Πk. Consider another
application of the construction to some arbitrary subspace W ∈ Πk, yielding a subspace
partition Lk+1 of W . Thus, Πk+1 = (Πk \ {W}) ∪ Lk+1 is the resulting subspace partition
of V . It remains to show that Πk+1 contains a direct sum with summand Xk+1 for any
Xk+1 ∈ Πk+1. There are two possibilities for a given subspace Xk+1. (a) If Xk+1 belongs to
Πk+1\Lk+1 = Πk\{W}, then it sits inside a direct sum Dk equal to V contained within Πk by
the induction hypothesis, so we consider the remaining summands of Dk. If these summands
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are also in (Πk \ {W}) ⊂ Πk+1, then Πk+1 contains the direct sum Dk, and we are done.
The only other possibility is that Dk also contains the summand W . Then, we use the base
case of the induction hypothesis to write W = X ⊕ Y , for some subspaces X, Y ∈ Lk+1,
and replace W with these two summands in Dk. This gives us a direct sum Dk+1 in Πk+1,
which includes the summand Xk+1. (b) Suppose that Xk+1 ∈ Lk+1. There exists a direct
sum Dk contained in Πk that has W as a summand by the induction hypothesis, and W can
be written as W = Xk+1 ⊕ Y for some Y ∈ Lk+1 by the base case (m = 1). Once again, we
replace the summand W in Dk with Xk+1 ⊕ Y and obtain a direct sum Dk+1 in Πk+1 with
summand Xk+1. This proves the induction step and completes the proof of the theorem. �

6. Subspace Partitions that do not contain a direct sum

In this section only we are using Beutelspacher’s convention: the type of a subspace par-
tition Π is the set of distinct dimensions of the subspaces in Π.

By Theorem 1, we know that direct sums exist in a subspace partition of Fnq with two
distinct dimensions a and b when there exists an integer partition of n with distinct parts
a and b, subject to some natural constraints on v, the number of subspaces of dimension
b. Let S once again denote the set of all nonnegative integer solutions of ax + by = n. In
this section, we will use the work of Beutelspacher [6] to show that even when S = ∅, there
may still exist a subspace partition of Fnq , which necessarily excludes a direct sum due to the
impossibility of finding dimensions that add up to n.

In his work on the necessary and sufficient conditions for the existence of certain sub-
space partitions, Beutelspacher [6] constructed subspace partitions that contain exactly two
distinct dimensions, which can be obtained by “regular construction” and “intersection by
a hyperplane” operations. He used the notion of the Frobenius number g(A) of a set A of
positive integers with gcd(A) = 1, which is the largest integer that cannot be written as a
linear combination of elements of A with nonnegative integer coefficients. For example, if
gcd(a, b) = 1, then g(a, b) = ab − a − b. Thus, g(a, a− 1) = a2 − 3a + 1, meaning that any

subspace partition Πa of Fa2−3a+1
q of type {a, a − 1} cannot possibly contain a direct sum.

The existence of the subspace partitions Πa follows from Lemma 15 and Lemma 17, both of
which are due to Beutelspacher [6].

Lemma 15 (Beutelspacher [6, Lemma 4]). Let k, r, a be integers with 0 ≤ k ≤ r ≤ a − 1
and a ≥ 3. Suppose that there exists a subspace partition Π in V = F2a+2r−k−1

q of type

{a+ r − k, a+ r − k − 1}
with |Π| = qa+r + 1. Then there is a hyperplane V ′ = F2a+2r−k−2

q of V , in which Π induces
a partition Π′ of type

{a+ r − k − 1, a+ r − k − 2}.

Remark 16. (1) The induced partition Π′ must have the same total number of subspaces
as Π, since the smallest dimension of a subspace in Π is at least 2.

(2) Solving the packing condition

[a+ r − k]qu+ [a+ r − k − 1]q (qa+r + 1− u)︸ ︷︷ ︸
v

= [2a+ 2r − k − 1]q,

we obtain
u = [k + 1]q and v = qa+r + 1− [k + 1]q.
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(3) Replacing k by k + 1, we determine the solution of the induced packing condition

[a+ r − k − 1]qu+ [a+ r − k − 2]q (qa+r + 1− u)︸ ︷︷ ︸
v

= [2a+ 2r − k − 2]q

to be

u = [k + 2]q and v = qa+r + 1− [k + 2]q.

The next lemma is also due to Beutelspacher [6], and it follows from Lemma 15.

Lemma 17 (Beutelspacher [6, Example 1]). Let a and r be integers such that a ≥ 3 and
0 ≤ r ≤ a− 1. Then,
(i) F2a−1+r

q admits a subspace partition into u = [r + 1]q subspaces of dimension a and
qa+r + 1− [r + 1]q subspaces of dimension a− 1.
(ii) Fnq admits a subspace partition of type {a, a−1} if and only if n ≥ 2a−1 (this is trivially
true for a = 2 as well).

Example 18. Let a ≥ 5 be an integer and n = a2 − 3a + 1. Then Fnq admits a subspace
partition of type {a, a− 1} that does not contain a direct sum.

Proof. Since a ≥ 5, we have n = a2− 3a+ 1 ≥ 2a− 1. Thus, it follows from Lemma 17 that
Fnq has a subspace partition Πa of type {a, a − 1}. Also, as n = a2 − 3a + 1 = g(a, a − 1),
n cannot be written as a linear combination of a and a − 1 with nonnegative coefficients.
Therefore, the subspace partition Πa of Fnq cannot contain a direct sum. �

Even with no direct sum contained in Πa, there is a connection to our main result. We
write

n = a2 − 3a+ 1 = 2a− 1 + (a− 5)︸ ︷︷ ︸
k

(a− 1) + (a− 3)︸ ︷︷ ︸
r

,

so Remark 16 and the proof of Lemma 17 show that initially we have [r + 1]q = [a − 2]q
a-subspaces, which may be multiplied by a power of q during the last stage. As q → 1, we
have u→ x = a− 2, so that we can solve for the limit y of v as q → 1 from

a(a− 2) + (a− 1)y = a2 − 3a+ 1 =⇒ y = −1.

That is, the packing condition

[a]qu+ [a− 1]qv = [n]q

is reduced to the signed integer partition (see Andrews [5])

aa−2(a− 1)−1

of n = a2 − 3a+ 1.

7. Proof of Theorem 1

In this section, we prove our main theorem, Theorem 1. To that end, we will prove
Lemma 19 (see Section 7.1) and Lemma 21 (see Section 7.2).
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7.1. Subspace partitions of type aubv between two extreme basic solutions. Our
goal is to show that if the Diophantine equation ax + by = n has a nonempty set S of
nonnegative solutions for given a > b > 0, then any subspace partition of Fnq of type aubv

must contain a direct sum, provided that v is in the second interval (given in Theorem 1)

I2 =

[
qn − qax0
qb − 1

,
qn − qaxM
qb − 1

]
=
[
qax0 [y0]qb , q

axM [yM ]qb
]
,

where y0 = min(x,y)∈S y, yM = max(x,y)∈S y, x0 = (n− ay0)/b, and xM = (n− ayM)/b. Note
that there is also a corresponding interval J2 that contains u, which is the counterpart of
v in the partition type aubv. Let us use the notation of Theorem 4, which is where the
intervals I2 and J2 originate from. Given basic Gaussian partitions aui(q)bvi(q), we will let the
expressions ui(q) and vi(q) act as endpoints of subintervals of J2 and I2, respectively. More
precisely, we will consider those (u, v) for which ui(q) ≤ u ≤ ui−1(q) and vi−1(q) ≤ v ≤ vi(q).
If there exists a subspace partition Π of type aubv where u and v fall into one of these pairs
of subintervals, then we will show that Π must contain a direct sum. Since (i) the endpoints
are polynomials in Z[q] with nonnegative coefficients, (ii) r, s ∈ Z with 0 ≤ r ≤ s implies
that 0 ≤ [r]q ≤ [s]q for all q ≥ 1 in Z, and (iii) expansions in base q ≥ 2 are unique, we are
justified in using these inequalities.

Lemma 19. Let a, b, n, d, a′, b′, c, x0, y0 be as in Theorem 4, and assume that Π is a subspace
partition of V = Fnq of type aubv. For a fixed integer i, 1 ≤ i ≤ c, let u and v satisfy the
conditions

[x0 − ib′]qa = ui(q) ≤ u ≤ ui−1(q) = [x0 − (i− 1)b′]qa

and

qa(x0−(i−1)b′)[y0 + (i− 1)a′]qb = vi−1(q) ≤ v ≤ vi(q) = qa(x0−ib′)[y0 + ia′]qb .

Then Π contains a direct sum of the form

U1 ⊕ · · · ⊕ Uy0+ia′ ⊕W1 ⊕ · · · ⊕Wx0−ib′ ,

where the Uj’s and Wj’s are b-subspaces and a-subspaces of Π respectively.

Proof. Let W1, . . . ,Wu be the list of all a-subspaces of the subspace partition Π. By reorder-
ing the Wi’s if necessary, we may assume that

Ŵ = W1 ⊕ · · · ⊕Wt

is a maximal direct sum by a-subspaces of Π for some t. This implies that dim(Wi∩ Ŵ ) ≥ 1
for t < i ≤ u. Since each 1-subspace of V belongs to exactly one subspace in Π, the number

N of 1-subspaces X of V such that X ⊆ Ŵ and X 6⊆ W1 ∪ · · · ∪Wt must satisfy

N = [at]q − t[a]q ≥ (u− t)[1]q = u− t ⇐⇒ [at]q + t ≥ u+ t[a]q.(5)

Now, we claim that the number t of the direct summands of dimension a satisfies t ≥ x0−ib′.
Suppose not; that is, t ≤ x0 − ib′ − 1. Then by uniqueness of base-q expansions, we have

at ≤ a(x0 − ib′ − 1) ⇐⇒ 1 + q + · · ·+ qat−1 < 1 + qa + · · ·+ qa(x0−ib′−1)

=⇒ [at]q < [x0 − ib′]qa .(6)

Since t < t[a]q and u ≥ ui(q) = [x0 − ib′]qa , it follows from (6) that

(7) [at]q + t < u+ t[a]q.



14 FUSUN AKMAN AND PAPA SISSOKHO

Since (5) contradicts (7), we must have t ≥ x0 − ib′. Next, fix a direct sum with x0 − ib′
summands Wi, say W1 ⊕ · · · ⊕Wx0−ib′ , and maximize the direct sum

W1 ⊕ · · · ⊕Wx0−ib′ ⊕ U1 ⊕ · · · ⊕ Us
by adding as many b-subspaces Uj of Π as possible. We claim that s = y0 + ia′. Suppose

not; then s ≤ y0 + ia′− 1, and by arguing as for the direct sum Ŵ above, it suffices to show
that

[a(x0 − ib′) + bs]q − (x0 − ib′)[a]q − s[b]q < v − s,
or simply,

[a(x0 − ib′) + bs]q < vi−1(q) = qa(x0−(i−1)b′)[y0 + (i− 1)a′]qb

⇐⇒ 1 + q + · · ·+ qa(x0−ib′)+bs−1 < qa(x0−(i−1)b′)(1 + qb + · · ·+ qb(y0+(i−1)a′−1)).

This last statement will be true if

a(x0 − ib′) + bs− 1 < b(y0 + (i− 1)a′ − 1) + a(x0 − (i− 1)b′)

⇐⇒ ax0 − iab′ + bs ≤ by0 + ia′b− a′b− b+ ax0 − iab′ + ab′

(where ab′ = a′db′ = a′b)

⇐⇒ bs ≤ by0 + bia′ − b
⇐⇒ bs ≤ b(y0 + ia′ − 1)

⇐⇒ s ≤ y0 + ia′ − 1. �

Corollary 20 (Spreads). Every a-spread of Fnq contains a direct sum.

7.2. The other kind of subspace partitions of type aubv. We now consider the case
when v is in the first interval (see Theorem 1)

(8) I1 =

[
qby0 − 1

qb − 1
,
qbyM − 1

qb − 1

]
=
[
[y0]qb , [yM ]qb

]
,

where x0 = max(x,y)∈S x, xM = min(x,y)∈S x, y0 = (n− ax0)/b, and yM = (n− axM)/b (once
again, there is an interval J1 for the matching values of u). Then, by the identity by0+ax0 = n
and Proposition 6, the solution (u0, v0) of the packing condition [a]qu + [b]qv = [n]q can be
obtained as follows (note the reversal of order):

[y0]qb [b]q + qby0 [x0]qa [a]q = [n]q.

We will consider a sequence of intervals where v increases from v0 = [y0]qb to [y0 + a′]qb , then
from [y0 + a′]qb to [y0 + 2a′]qb , etc., until we reach vc = [y0 + ca′]qb = [yM ]qb for c = bx0/b

′c,
to prove that subspace partitions of type aubv in each interval contain direct sums.

Table 1

(xi, yi) ui(q) vi(q) ki(q)

(x0 − ib′, y0 + ia′) qb(y0+ia′)[x0 − ib′]qa [y0 + ia′]qb qby0
[ia′b′]

qd

[a′]
qd

[b′]
qd

Table 1 displays the endpoints of the intervals corresponding to the integer partitions
of n into at most two distinct parts of sizes a and b: all of the solutions (ui(q), vi(q)) are
obtained directly from Proposition 6, where the order in which we construct the solution is
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exactly the opposite of that for basic subspace partitions. Note that, unlike the situation
in Section 4, these solutions do not necessarily correspond to actual subspace partitions of
type aui(q)bvi(q). However, there might exist subspace partitions of type aubv with ui+1(q) ≤
u ≤ ui(q) and vi(q) ≤ v ≤ vi+1(q). While basic subspace partitions have the advantage of
regular constructibility, the reverse-ordering stretches the solutions of the packing condition
to their extremal values, which are, in some cases, known to be existing Gaussian partitions.
We have also included in the table the polynomial ki(q) that serves as the link between the
particular solution (u0, v0) and the ith solution (ui, vi) for 0 ≤ i ≤ c:

ui(q) = u0 − ki(q)
[b]q
[d]q

and vi(q) = v0 + ki(q)
[a]q
[d]q

.

As in the basic case, we find that (ui, vi) → (xi, yi), and ki(q) → i as q → 1. The proof of
Lemma 21 is essentially the same as the proof of Lemma 19, except that we are dealing with
slightly different endpoints for the intervals. Thus, we only give a sketch of this proof and
refer to the proof of Lemma 19 for the omitted parts.

Lemma 21. Let n, a, b be positive integers such that the Diophantine equation ax+ by = n
has nonnegative solutions, and (x0, y0) be the solution where x0 is maximal and y0 is minimal;
set d = gcd(a, b), so that there exist positive integers a′, b′, n′ satisfying a = a′d, b = b′d, and
n = n′d. Moreover, let c = bx0/b

′c and fix an integer i, 0 ≤ i ≤ c − 1. If Π is a subspace
partition of V = Fnq of type aubv, with

qb(y0+(i+1)a′)[x0 − (i+ 1)b′]qa = ui+1(q) ≤ u ≤ ui(q) = qb(y0+ia′)[x0 − ib′]qa

and

[y0 + ia′]qb = vi(q) ≤ v ≤ vi+1(q) = [y0 + (i+ 1)a′]qb ,

then Π contains a direct sum of the form

V = U1 ⊕ · · · ⊕ Uy0+ia′ ⊕W1 ⊕ · · · ⊕Wx0−ib′ ,

where the Uj’s and Wj’s are b-subspaces and a-subspaces of Π respectively.

Proof. Let U1, . . . , Uv be the list of all b-subspaces of the subspace partition Π. By reordering
the Ui’s if necessary, we may assume that

Û = U1 ⊕ · · · ⊕ Us
is a maximal direct sum by b-subspaces of Π. By arguing as in the first part of the proof of
Lemma 19, we infer that s ≥ y0 + ia′. Now fix a direct sum with y0 + ia′ summands Ui, say
U1 ⊕ · · · ⊕ Uy0+ia′ , and maximize the direct sum

U1 ⊕ · · · ⊕ Uy0+ia′ ⊕W1 ⊕ · · · ⊕Wt

by adding as many a-subspaces Wj of Π as possible. We claim that t = x0 − ib′. Suppose
not; that is, t ≤ x0−ib′−1. Then by arguing as in the second part of the proof of Lemma 19,
we infer that t = x0 − ib′. �

Proof of Theorem 1. Since its converse direction is trivial, Theorem 1 follows from Lem-
mas 19 and 21. �

We conclude this section with the following corollary, which follows from Theorem 1 by
setting b = 1.
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Corollary 22 (Partial spreads). Any subspace partition of Fnq of type au1v contains a direct
sum.

Proof. Write n = am+ r, where m and r are integers such that m ≥ 1 and 0 ≤ r < a. Since
b = 1, it follows that y0 = min(x,y)∈S y = r and yM = max(x,y)∈S y = n. Let Π be an arbitrary
subspace partition of Fnq of type au1v. Since v ≥ [a]q > [r]q = [y0]qb by Heden’s theorem [14,
Theorem 1], it follows that

[y0]qb ≤ v ≤ [n]q = [yM ]qb .

Thus, Π contains a direct sum by Theorem 1. �

8. Why these special bounds on v?

In this section, we give some justification of our choices for the lower and upper bounds
on the number v of subspaces of dimension b in our main theorem (Theorem 1).

First and foremost, the bounds for v in Theorem 1 are combinatorially natural, in that
they showcase the intimate relationship between integer and Gaussian partitions: for every
(nonnegative) integer partition of n with parts a and b, there is a range of Gaussian partitions
containing a direct sum whose summands have dimensions matching multiplicities of the
integer partition, which can be accomplished in two different ways! The boundaries are
polynomials in Z[q] and are positive for all q ≥ 1 (or identically zero in case of a spread),
and each pair (ui, vi) of q-polynomial values for 1 ≤ i ≤ c is related to the minimal solution
(u0, v0) via a positive polynomial ki(q) that goes to i as q → 1, which mimics the relationship
of the corresponding solution (xi, yi) of ax+ by = n to (x0, y0). Note that although we only
need prime-power values of q in an actual partition, the fact that we have positive polynomial
(or identically zero) endpoint solutions (ui(q), vi(q)), as well connecting polynomials ki(q),
makes it possible for us to substitute q = 1 and realize the connection to a –nonnegative–
integer partition.

8.1. The lower bound. As mentioned in Remark 2, there are currently no known subspace
partitions of V = Fnq of type aubv for which v < [y0]qb . Hence, the lower bound v ≥ [y0]qb ,
where [y0]qb is the minimum of the endpoints of the intervals I1 and I2 in Theorem 1, is a
reasonable one in practice as well. For b = 1, this lower bound becomes v ≥ [y0]q, where y0

is the remainder of n on division by a, and x0 is the quotient. Thus, the “next” solution
(u, v) of the packing condition [a]qu+ [1]qv = [n]q for smaller v satisfies

v = v0 − [a]q = [y0]q − [a]q < 0

for all q ≥ 1, since 0 ≤ y0 < a. (Also see Eisfeld and Storme [11] for this b = 1 case.) Even
when b > 1, the next solution

v = [y0]qb − [a′]qd

(where d = gcd(a, b), a = a′d, and b′ = bd) is a polynomial function of q that is negative for
some values of the parameters q, n, a, and b, where a > b and q ≥ 1. More precisely, we
have

v = [y0]qb − [a′]qd < 0 ⇐⇒ qy0b − 1

qb − 1
− qa − 1

qd − 1
< 0

⇐⇒ −qa+b + qy0b+d − qy0b + qa + qb − qd

(qb − 1)(qd − 1)
< 0,



SUBSPACE PARTITIONS OF Fn
q CONTAINING DIRECT SUMS 17

which holds if y0 = 1 or if a > b(y0 − 1) + d and q ≥ 2. Moreover, a theorem of Heden [14,
Theorem 1] shows that for any partition of V type aubv with a > b, we have v ≥ qb + 1
if a < 2b and v ≥ (qa − 1)/(qb − 1) if a ≥ 2b. These bounds are tight in some cases
(see Heden [14]).

Using a recent result of Năstase et al. [17], it is also possible to show that if b = 2, then
the condition v ≥ [y0]qb of Theorem 1 can be dropped whenever a > [r]q, where r ≡ n
(mod a) and 0 ≤ r < a. For more details, see [18], which studies the problem of finding the
maximum/minimum number of a-subspaces (equivalently, the minimum/maximum number
of b-subspaces) in a subspace partition of Fnq of type aubv, where a > b > 1.

8.2. The upper bound. In this subsection, we shall use Lemma 17 in Section 6 to construct
an infinite class of subspace partitions of V = Fnq of type aubv such that v > max(I1 ∪ I2)
and which do not contain direct sums.

Lemma 23. Let q be a prime power, n, a, t, d be integers such that t ≥ 0, b = a− 1 > d > 2,
and n = da + tb2. Let S be the set of all solutions (x, y) of the Diophantine equation
ax+ by = n with x, y ≥ 0. Then, for c as in Theorem 4, the following properties hold:

(1)

S =

{
(d+ ib, tb− ia) : i ∈ Z and 0 ≤ i ≤

⌊
tb

a

⌋}
.

x0 = max
(x,y)∈S

x = d+

⌊
tb

a

⌋
b and y0 = min

(x,y)∈S
y = tb−

⌊
tb

a

⌋
a.

xM = min
(x,y)∈S

x = d and yM = max
(x,y)∈S

y = tb.

c =
⌊x0

b

⌋
=

⌊
tb

a

⌋
.

(2) There exists a subspace partition Πt,d of V = Fnq of type aubv, where b = a − 1,

u = [d]q, and v = qb+d[tb+ d− 1]qb + 1− [d]q. Moreover, Πt,d does not admit a direct
sum.

Remark 24. Note that the parameter c that appears in Lemma 23 can be arbitrarily large.
In particular, c = 0 if 0 ≤ t ≤ 1 and c > 0 if t > 1.

Proof of Lemma 23. For the proof of (1), note that (x, y) = (d, tb) ∈ S, and all solutions of
ax+ by = n are of the form

(d+ ib, tb− ia), i ∈ Z,
since gcd(a, b) = gcd(a, a − 1) = 1. Moreover, xM = d, as d − b < 0, which makes yM =
tb. These values correspond to the smallest value 0 of i. Then the largest value c (as in
Theorem 4) of i must be the one that satisfies

tb− ca ≥ 0 and tb− (c+ 1)a < 0

⇐⇒ c ≤ tb

a
and c+ 1 >

tb

a

⇐⇒ c =

⌊
tb

a

⌋
=
⌊x0

b

⌋
(by Theorem 4).

Hence, we have x0 = d+ cb and y0 = tb− ca.
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For the proof of (2), we set m = 2a+ d− 2 = 2b+ d, and write

n = d(b+ 1) + tb2 = (2b+ d)︸ ︷︷ ︸
m

+(tb+ d− 2)b.

Since m = 2b+ d > b, we can apply Proposition 8 recursively to obtain a subspace partition
of V = Fnq of type m1b(qn−qm)/(qb−1). On the other hand, it follows from part (i) of Lemma 17

(applied with r = d − 1) that Fmq = F2a−1+(d−1)
q admits a subspace partition into u = [d]q

subspaces of dimension a and qb+d + 1− [d]q subspaces of dimension b. Thus, V = Fnq admits
a subspace partition Πt,d of type aubv, where u = [d]q, and

v =
qn − qm

qb − 1
+ qb+d + 1− u = qb+d[tb+ d− 1]qb + 1− [d]q.

Moreover, the above construction guarantees that the a-subspaces of Πt,d belong to a sub-
space of V of dimension m = 2b+ d.

Now assume that Πt,d admits a direct sum. Since x ≥ xM = d for any (x, y) ∈ S, the
number of a-subspaces in the direct sum must span a subspace of dimension xa ≥ da. When
d > 2, this is impossible, as the a-subspaces of Πt,d belong to a subspace of V of dimension
2b+ d (as observed in the preceding paragraph) and 2b+ d < da ≤ xa. �

Unlike the case with the lower bound, we have seen that subspace partitions of type aubv

may exist when S 6= ∅ and v is greater than the larger of the two upper bounds (we shall
verify the position of v shortly). Since we have b ≥ 4 and

[xM ]qb = [d]qb > [d]q = u,

it follows that

v > qaxM [yM ]qb ,

which is the maximum of I1 ∪ I2 in Theorem 1 by Remark 2. Hence, the subspace partitions
Πt,d of Fnq (see Lemma 23) fall outside the region of Theorem 1, and they do not have direct
sums, either. Since the basic subspace partitions given by Theorem 4 satisfy v ≤ qaxM [yM ]qb ,
it follows from Lemma 23 and the above discussion that for each b ≥ 4, the upper bound
qaxM [yM ]qb is necessary and sharp. If b = 1, then it follows from Corollary 22 that the bounds
on v in Theorem 1 can be dropped. For b ∈ {2, 3}, we do not know whether those bounds
can be dropped or not.

8.3. Generalization. Considering the availability of exact formulas for the solutions of
linear Diophantine equations in many variables that generalize the two-variable case (again,
see Bond [8]), and in light of Remark 2, we make the following conjecture.

Conjecture 25. Let q be a prime power, n, h, a1, . . . , ah be positive integers with h ≥ 2,
and Π be a subspace partition of V = Fnq of type au11 · · · a

uh
h . Define S to be the set of all

solutions (x1, . . . , xh) of the Diophantine equation a1x1 + · · · + ahxh = n with xi ≥ 0 for
1 ≤ i ≤ h. If S 6= ∅ and u1, . . . , uh−1 have positive q-polynomial bounds determined by the
unions of intervals arising from different applications of Proposition 6, then Π contains a
direct sum.
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