ON THE TYPE(S) OF MINIMUM SIZE SUBSPACE PARTITIONS

O. HEDEN, J. LEHMANN, E. NÅSTASE, AND P. SISSOKHO

ABSTRACT. Let V = V(kt + r, q) be a vector space of dimension kt + r over the finite field with q elements. Let $\sigma_q(kt + r, t)$ denote the minimum size of a subspace partition \mathcal{P} of V in which t is the largest dimension of a subspace. We denote by n_{d_i} the number of subspaces of dimension d_i that occur in \mathcal{P} and we say $[d_1^{n_{d_1}}, \ldots, d_m^{n_{d_m}}]$ is the type of \mathcal{P} . In this paper, we show that a partition of minimum size has a unique partition type if t + r is an even integer. We also consider the case when t + r is an odd integer, but only give partial results since this case is indeed more intricate.

1. INTRODUCTION

Let V = V(n,q) denote a vector space of dimension n = kt + rover the finite field with q elements. A subspace partition \mathcal{P} of V, also known as a vector space partition, is a collection of nonzero subspaces of V such that each point, that is, 1-dimensional subspace, of V is in exactly one subspace of \mathcal{P} . We denote by n_{d_i} the number of subspaces of dimension d_i that occur in \mathcal{P} and we say $[d_1^{n_{d_1}}, \ldots, d_m^{n_{d_m}}]$ is the type of \mathcal{P} , where $d_1 < \ldots < d_m$ and $n_i > 0$ for $1 \le i \le m$. The size of a subspace partition \mathcal{P} is the number of subspaces in \mathcal{P} . Let $\sigma_q(n,t)$ denote the minimum size of a subspace partition of V in which the largest subspace has dimension t.

Generalizing a theorem in [8], the following theorem was proved by the authors of the present paper in [4].

Theorem 1. Let n, k, t, and r be integers such that $1 \le r < t$, $k \ge 1$, and n = kt + r. Then

$$\sigma_q(n,t) = q^t + 1 \text{ for } n < 2t$$
,

and

$$\sigma_q(n,t) = q^{t+r} \sum_{i=0}^{k-2} q^{it} + q^{\lceil \frac{t+r}{2} \rceil} + 1 \text{ for } n \ge 2t$$
.

The question studied here is whether or not a subspace partition of minimum size, that is, attaining the lower bound given in Theorem 1, is of a type which just depends on n and t. We found that this is true in many cases and, in particular, when t + r is an even integer. The

case when t + r is odd turned out to be more intricate and we obtain just partial answers in this case.

Let $\ell = q^r \sum_{i=0}^{k-2} q^{it}$. Our main results are thus the following theorems:

Theorem 2. Let n, k, t, and r be integers such that $1 \le r < t$, $k \ge 2$, t+r=2s for some integer s, and n=kt+r. Let \mathcal{P} be a subspace partition of V(n,q) of size $\sigma_q(n,t)$ and with maximum subspace dimension t. Then \mathcal{P} has type $[s^{n_s}, t^{n_t}]$, where

$$n_s = q^s + 1$$
, and $n_t = \ell q^t$.

Theorem 3. Let n, k, t, and r be integers such that r = t - 1, $k \ge 2$, and n = kt + r. Let \mathcal{P} be a subspace partition of V(n,q) of size $\sigma_q(n,t)$ and with maximum subspace dimension t. Then \mathcal{P} has type $[(t-1)^{n_{t-1}}, t^{n_t}]$, where

$$n_{t-1} = q^t$$
, and $n_t = \ell q^t + 1$.

When r < t - 1 we obtain the following result:

Theorem 4. Let n, k, t, and r be integers such that $1 \le r < t-1, k \ge 2$, and t + r = 2s - 1 for some integer s. Let \mathcal{P} be a subspace partition of V(n,q) of size $\sigma_q(n,t)$ and with maximum subspace dimension t. If the number of subspaces of dimension t is $n_t = \ell q^t$, then \mathcal{P} has type $[(s-1)^{n_{s-1}}, s^1, t^{n_t}]$, where

$$n_{s-1} = q^s$$
, and $n_t = \ell q^t$.

It must be remarked that subspace partitions of types as indicated in the three previous theorems indeed exist and are well known, see Section 2.1 for a construction of them.

When t + r is odd and $n_t < \ell q^t$, we were able to derive only two new non-trivial necessary conditions:

Theorem 5. Let n, k, t, and r be integers such that $1 \leq r < t - 1$, $k \geq 2$, and t + r = 2s - 1 for some integer s. Let \mathcal{P} be a subspace partition of V(n,q) of size $\sigma_q(n,t)$.

(1) If \mathcal{P} has type $[a^{n_a}, t^{n_t}]$, then a = t - 1,

$$n_a = q^{t-1} + q^{t-2} + 1$$
, and $n_t = \ell q^t - q^{t-2}$.

(2) If \mathcal{P} has type $[a^{n_a}, b^{n_b}, t^{n_t}]$, then a = s - 1, b = s,

$$n_a = q^s - \delta q \frac{q^{t-s} - 1}{q - 1}, \ n_b = \delta \frac{q^{t-s+1} - 1}{q - 1} + 1, \ and \ n_t = \ell q^t - \delta,$$

for some integer δ such that

$$0 \le \delta \le \frac{(q^{s-2}-1)(q-1)}{q^{t-s}-1}$$

In search for a reasonable conjecture when t + r is odd, and also for the sake of exploring new methods, we first did a computer search in the particular case when q = 2, t = 5, k = 2 and r = 2, thereby using the Simplex Algorithm on the known necessary linear constraints for existence of subspace partitions. These linear constraints were found by Lehmann and Heden in [7]. This search showed that in these cases the type of a minimum size subspace partition is unique. This experience led us to make the following conjecture:

Conjecture 1. Let n, k, t, and r be integers such that $1 \le r < t - 1$, $k \ge 2$, and t + r = 2s - 1 for some integer s. Every minimum size subspace partition \mathcal{P} of V(n,q), with t as the highest dimension in \mathcal{P} , is of type

$$[(t-1)^{q^{t-1}+q^{t-2}+1}, t^{\ell q^t-q^{t-2}}] \text{ or } [(s-1)^{q^s}, s^1, t^{\ell q^t}].$$

As we found the linear programming approach fruitful, we tried to use it in the more general situation, when t > 3, r = t - 3, and q is any prime power. Unfortunately, this led to rather complicated expressions that were tedious to evaluate. However, by using that approach we were able to prove Conjecture 1 for the special case when k = 2. The details in that proof might be published elsewhere.

2. Some preliminary results

2.1. The ideal partition. The following lemma due to Herzog and Schönheim [6] and independently Beutelspacher [1] and Bu [2], ensures the existence of a partition \mathcal{P}_0 of V of minimum size.

Lemma 1. Let n and d be integers such that $1 \leq d \leq n/2$. Then V(n,q) admits a partition with one subspace of dimension n-d and q^{n-d} subspaces of dimension d.

Let n = kt + r and $s = \lceil (t+r)/2 \rceil$, where $k \ge 2$ and $1 \le r < t - 1$. By a recursive application of this lemma we find a subspace partition \mathcal{P}_0 of V(n,q) that consists of

$$b_0 = q^s + 1$$

subspaces of dimension less than or equal to s and

$$a_0 = \ell q^t = q^{t+r} + q^{2t+r} + \ldots + q^{(k-1)t+r} = q^{t+r} \frac{q^{(k-1)t} - 1}{q^t - 1}$$

spaces of dimension t. When t + r is even, we get ℓq^t subspaces of dimension t and q^s subspaces of dimension s. When t + r is odd, we get ℓq^t subspaces of dimension t, one subspace of dimension s, and q^s subspaces of dimension s - 1.

The total number of subspaces in \mathcal{P}_0 is then

$$\sigma_q(n,t) = a_0 + b_0 = \ell q^t + q^s + 1.$$

We refer to \mathcal{P}_0 as the *ideal* partition and often compare our results to this particular partition.

2.2. Some fundamental lemmas. We will often use the *packing condition*. It gives a set theoretic necessary condition for the existence of a subspace partition \mathcal{P} :

$$|V(n,q)| - 1 = \sum_{U \in \mathcal{P}} (|U| - 1).$$

Throughout this paper we will let \mathcal{H} denote the set of all hyperplanes of V(n,q). For any hyperplane $H \in \mathcal{H}$, let $[b_1^H \dots b_m^H]$ be the *induced type* of H with respect to the partition \mathcal{P} , where b_i^H denotes the number of subspaces of dimension d_i in \mathcal{P} that are completely contained in H. Lehmann and Heden observed in [7] that the following relation is useful in the study of subspace partitions:

(1)
$$|\mathcal{P}| = 1 + \sum_{i=1}^{m} b_i^H q^{d_i}$$

This relation is called the *second packing condition* and is used in the proof of the next lemma.

Lemma 2. Let n, k, t, and r be integers such that $k \ge 2, 1 \le r < t-1$, and n = kt + r. Let \mathcal{P} be a subspace partition of V(n,q) of size $\sigma_q(n,t)$ and with maximum subspace dimension t. Then

$$n_t \leq \ell q^t$$
.

Note that if r = t - 1, the ideal partition contains $n_t = \ell q^t + 1$ subspaces of dimension t.

Proof. Suppose to the contrary that $n_t = \ell q^t + \delta$, for some integer $\delta \geq 1$. By counting pairs (H, W), where W is a subspace of dimension t in \mathcal{P} that is contained in the hyperplane H, we obtain

$$\sum_{H \in \mathcal{H}} b_t^H = n_t \frac{q^{n-t} - 1}{q - 1} = (\ell q^t + \delta) \frac{q^{n-t} - 1}{q - 1}.$$

Since $\ell = (q^{n-t} - q^r)/(q^t - 1)$, the average value of the above sum is

$$b_{\text{ave}} = \frac{\sum_{H \in \mathcal{H}} b_t^H}{|\mathcal{H}|} = \frac{(\ell q^t + \delta)(q^{n-t} - 1)}{q^n - 1} = \ell + \frac{\delta(q^{n-t} - 1) - (q^{n-t} - q^r)}{q^n - 1}$$

As $\delta \geq 1$ and $q^r > 1$, the expression above is strictly larger than ℓ . Hence, there exists a hyperplane H^* that contains $b_t^{H^*} \geq \ell + 1$ subspaces of dimension t. Thus, it follows from Equation (1) that

$$|\mathcal{P}| \ge 1 + b_t^{H^*} q^t \ge 1 + (\ell + 1)q^t > \ell q^t + q^s + 1,$$

where the last inequality holds since t > s. This is a contradiction and thus $\delta < 1$.

Lemma 3. Let n, k, t, and r be integers such that $k \ge 2, 1 \le r < t-1$, and n = kt + r. Assume that t + r is an odd integer and let \mathcal{P} be a minimum size subspace partition of V(n,q) consisting of subspaces of dimension t, subspaces of dimension s = (t + r + 1)/2, and subspaces of dimension less than s.

If the number of subspaces of dimension t is $n_t = \ell q^t - \delta$, where $\delta \geq 0$, then the number of subspaces of dimensions is at least equal to

(2)
$$b = 1 + \delta \frac{q^{t-s+1} - 1}{q-1}.$$

Proof. We consider the worst case scenario. By counting the number of vectors in subspaces of dimension t, that must be substituted into vectors of subspaces of dimension s when deleting δ subspaces of dimension t from a partition of the same type as the ideal partition, we get that the number of spaces of dimension s will be at least equal to

$$1 + \delta + \delta \frac{(q^t - 1) - (q^s - 1)}{(q^s - 1) - (q^{s-1} - 1)} = 1 + \delta + \delta q \frac{q^{t-s} - 1}{q - 1}.$$

The next result, Lemma 5, is also fundamental in our presentation. The proof of it uses Lemma 4 which was originally proved by Năstase and Sissokho [8] (also see [4, 5]).

Lemma 4. Let n, k, t, and r be integers such that $k \ge 2, 1 \le r < t$, and n = kt + r. Let \mathcal{P} be a subspace partition of V(n, q) with no subspace of dimension higher than t. Assume furthermore that \mathcal{P} contains a subspace of dimension t and a subspace of dimension d, with $0 \le d < t$. Then

$$|\mathcal{P}| \ge \ell q^t + q^d + 1.$$

Lemma 5. Let n, k, t, and r be integers such that $k \ge 2, 1 \le r < t-1$, and n = kt + r. Let \mathcal{P} be a subspace partition of V(n,q) of size $\sigma_q(n,t)$ and with maximum subspace dimension t. Then the second largest dimension of a subspace in \mathcal{P} is $s = \lceil (t+r)/2 \rceil$.

Proof. Let a denote the dimension of the second largest dimension that appear among the members in \mathcal{P} . If a > s, then it follows from Lemma 4 that

$$\mathcal{P}| \ge \ell q^t + q^a + 1 > \ell q^t + q^s + 1 = \sigma_q(n, t),$$

which is a contradiction. So we may assume that $a \leq s$. We now show that $a \leq s - 1$ cannot hold. Indeed suppose, $a \leq s - 1$. Since $s \neq t$, it follows from Lemma 2 that $n_t \leq \ell q^t$. Since $0 < a \leq s - 1 < t$, the integer $|\mathcal{P}|$ is minimized when $n_t \leq \ell q^t$ is as large as possible. Thus, by selecting $n_t = \ell q^t$, counting vectors, and using the fact that

(3)
$$(q^n - 1) - \ell q^t (q^t - 1) = q^{2s-1} - 1.$$

we obtain

$$\begin{aligned} |\mathcal{P}| &\geq \ell q^t + \frac{(q^n - 1) - \ell q^t (q^t - 1)}{q^a - 1} \\ &\geq \ell q^t + \frac{q^{2s - 1} - 1}{q^{s - 1} - 1} \\ &> \ell q^t + q^s + 1, \end{aligned}$$

which is a contradiction. This proves the lemma.

If there are just three distinct dimensions in a subspace partition \mathcal{P} of minimum size, then we can determine the smallest dimension that is present. To prove this result, we will use the following theorem due to Heden [3].

Theorem 6 (Tail Condition). Let \mathcal{P} be a partition of V(n,q) of type $[d_1^{n_1}\ldots d_m^{n_m}]$, where $d_1 < \ldots < d_m$ and $n_i > 0$ are integers for all $1 \leq i \leq m$. Then

- (i) if $q^{d_2-d_1}$ does not divide n_1 and if $d_2 < 2d_1$, then $n_1 \ge q^{d_1} + 1$. (ii) if $q^{d_2-d_1}$ does not divide n_1 and $d_2 \ge 2d_1$, then either $n_1 =$ $(q^{d_2}-1)/(q^{d_1}-1)$ or $n_1 > 2q^{d_2-d_1}$.
- (iii) if $q^{d_2-d_1}$ divides n_1 and $d_2 < 2d_1$, then $n_1 \ge q^{d_2} q^{d_1} + q^{d_2-d_1}$. (iv) if $q^{d_2-d_1}$ divides n_1 and $d_2 \ge 2d_1$, then $n_1 \ge q^{d_2}$.

We can now prove the following lemma.

Lemma 6. Let a, k, r, s, and t be positive integers such that n = kt + r, $k \geq 2, 1 \leq r < t-1, 1 \leq a < s$, and t+r = 2s-1. If \mathcal{P} is a partition of V = V(n,q) of type $[a^{n_a}, s^{n_s}, t^{n_t}]$ and of size $\sigma_q(n,t)$, then a = s - 1. Furthermore, if the number of subspaces of dimension t is $n_t = \ell q^t - \delta$, where $\delta \geq 0$, then $\delta \leq q^r - 1$.

Proof. Let $\delta \geq 0$ be an integer and assume that \mathcal{P} has $\ell q^t - \delta$ members of dimension t, n_s members of dimension s, and n_a members of dimension a. By counting the number of vectors in V(n,q), we obtain

(4)
$$(\ell q^t - \delta)(q^t - 1) + n_s(q^s - 1) + n_a(q^a - 1) = q^n - 1.$$

Since $\ell q^t + q^s + 1 = |\mathcal{P}| = (\ell q^t - \delta) + n_s + n_a$ and $(q^n - 1) - \ell q^t (q^t - 1) = 0$ $q^{2s-1}-1$, Equation (4) implies

(5)
$$n_a(q^s - q^a) + \delta(q^t - q^s) = q^{2s} - q^{2s-1}.$$

For $\delta = 0$, Equation (5) implies that $q^{s-a} - 1$ divides q - 1. Thus s-a=1. So we assume in the following that $\delta > 0$.

We also note from Equation (5) that q^{s-a} divides n_a . If $s \ge 2a$, then it follows from Theorem 6(iv) that $n_a \ge q^s$. This would contradict the fact that $|\mathcal{P}| = \ell q^t + q^s + 1$ since $\delta > 0$ and by Lemma 3, we have $n_s \ge 1 + \delta + \delta \frac{q^{t-s}-1}{q-1} > 1 + \delta$. Moreover, if s < 2a, then Theorem 6(iii)

 $\mathbf{6}$

implies that $n_a \ge q^s - q^a + q^{s-a}$. Thus, Equation (5) yields

$$n_{a} = \frac{q^{2s} - q^{2s-1} - \delta(q^{t} - q^{s})}{q^{s} - q^{a}} \ge q^{s} - q^{a} + q^{s-a}$$

$$\Rightarrow q^{2s} - q^{2s-1} - \delta(q^{t} - q^{s}) \ge (q^{s} - q^{a} + q^{s-a})(q^{s} - q^{a})$$

(6)
$$\Rightarrow -q^{s+a}(q^{s-1-a} - 2) - \delta(q^{t} - q^{s}) - q^{s}(q^{s-a} - 1) - q^{2a} \ge 0.$$

If $s - 1 - a \ge 1$, then $q^{s-1-a} - 2 \ge 0$ and the expression on the left of Inequality (6) is negative. This would yield a contradiction. Hence, $s - 1 - a \le 0$ and thus a = s - 1 since a < s.

By using the relations a = s - 1 and t + r = 2s - 1 in Inequality (6), we obtain

(7)
$$\delta(q^t - q^s) \le q^{t+r} - q^{t+r-1} - q^{s+1} + q^s.$$

The left side is a linear increasing function of δ . For $\delta = q^r$, the left side is strictly larger than the right side, as $s \leq t - 1$. This proves the lemma.

2.3. The structure of the set of points outside subspaces of dimension t in a minimum size subspace partition. In this subsection, let \mathcal{H} denote the set of all hyperplanes in V = V(n, q) and let \mathcal{A} denote the family of subspaces of dimension t in a subspace partition \mathcal{P} of V. Let x_i denote the number of hyperplanes in V that contain exactly i members of \mathcal{A} .

Lemma 7. Let n, k, t, and r be integers such that $k \ge 2, 1 \le r < t-1$, and n = kt + r. Let \mathcal{P} be a subspace partition of V(n, q) of size $\sigma_q(n, t)$ and with maximum subspace dimension t. Assume that \mathcal{P} contains exactly $n_t = \ell q^t$ members of dimension t. If $x_i \ne 0$, then

(8)
$$\ell - q^r \le i \le \ell.$$

Proof. The points of a subspace U of V not belonging to a hyperplane $H \in \mathcal{H}$ are called the *black points to* H *in* U, and are denoted by $B_H(U)$. If U is a subspace of H then $B_H(U)$ is the empty set. Elementary linear algebra arguments give that if U is not a subspace of H then

$$|B_H(U)| = q^{\dim(U)-1}.$$

Let $\mathcal{B} = \mathcal{P} \setminus \mathcal{A}$ denote the set of members of \mathcal{P} that do not have dimension t. Then, $|\mathcal{B}| = q^s + 1$. If H is a hyperplane that contains all members of \mathcal{B} then the points of V not belonging to H are distributed among the members of \mathcal{A} . So if *i* members of \mathcal{A} are contained in H we get the equation

$$(n_t - i)q^{t-1} = q^{kt+r-1}.$$

This proves the left inequality in Equation (8).

The other extremal situation appears when no member of \mathcal{B} is contained in the hyperplane H. Let U_j , for $1 \leq j \leq q^s + 1$, denote the

members of \mathcal{B} . By counting the number of points of the subspaces in \mathcal{B} , we get

$$\sum_{j=1}^{|\mathcal{B}|} \frac{q^{\dim(U_j)} - 1}{q - 1} = \frac{q^{t+r} - 1}{q - 1}.$$

Thus, if $W \not\subseteq H$ for all $W \in \mathcal{B}$, then the total number of black points to H in the subspaces of \mathcal{B} is equal to

$$\sum_{j=1}^{|\mathcal{B}|} q^{\dim(U_j)-1} = \frac{1}{q} \left(q^{t+r} - 1 + \sum_{j=1}^{|\mathcal{B}|} 1 \right) = q^{t+r-1} + q^{s-1}.$$

So if i members of \mathcal{A} are contained in H, then we obtain in this extremal case the equation

$$(n_t - i)q^{t-1} + q^{t+r-1} + q^{s-1} = q^{kt+r-1}.$$

This relation can be simplified to

$$i = \ell + q^{s-t},$$

which is impossible since i and ℓ are integers, and s < t implies that $0 < q^{s-t} < 1$. Hence, we conclude that H must contain at least one member of \mathcal{B} and that inequality $i \leq \ell$ in (8) holds. This concludes the proof of the lemma.

Proposition 1. Let n, k, t, and r be integers such that $k \ge 2, 1 \le r < t-1$, and n = kt + r. Let \mathcal{P} be a subspace partition of V(n,q) of size $\sigma_q(n,t)$ and with maximum subspace dimension t and with $n_t = \ell q^t$. Then the set of points in V that do not belong to members in \mathcal{P} of dimension t constitutes a subspace $W \subseteq V$ of dimension t + r.

Proof. Trivially, but what will be used below, $x_i \ge 0$ for all *i*. From Lemma 7, we know that

$$x_i \neq 0 \qquad \Longrightarrow \qquad c = \ell - q^r \le i \le \ell$$

As each member of \mathcal{A} is contained in exactly $(q^{(k-1)t+r}-1)/(q-1)$ hyperplanes, we get by double counting incidences (H, U), for $H \in \mathcal{H}$ with $U \subseteq H$, that

(9)
$$\sum_{i=c}^{\ell} ix_i = n_t \cdot \frac{q^{(k-1)t+r} - 1}{q-1} = C.$$

Any two members of \mathcal{A} are contained in $(q^{(k-2)t+r}-1)/(q-1)$ hyperplanes. Thus, by double counting incidences, we get

(10)
$$\sum_{i=c}^{\ell} {\binom{i}{2}} x_i = {\binom{n_t}{2}} \frac{q^{(k-2)t+r} - 1}{q-1} = D.$$

Furthermore, by counting the number of hyperplanes in V we get that

(11)
$$\sum_{i=c}^{\ell} x_i = \frac{q^{kt+r} - 1}{q-1} = E.$$

Observe that the constants C, D and E are independent of the particular choice of subspace partition of minimum size that contains a set \mathcal{A} as assumed in the proposition. This is especially true for the ideal partition \mathcal{P}_0 , a fact that will soon be used.

We obtain from the Equations (9), (10) and (11) that

(12)
$$\sum_{i=c}^{c} x_i(i-c)(i-\ell) = 2D + C - (c+\ell)C + c\ell E.$$

We will soon use the following most trivial facts

(13)
$$(i-c)(i-\ell) \begin{cases} = 0 & \text{if } i = c, \\ < 0 & \text{if } c < i < \ell, \\ = 0 & \text{if } i = \ell. \end{cases}$$

In order to show that the right side of Equation (12) is equal to zero we consider the ideal partition \mathcal{P}_0 . From the construction of the ideal partition \mathcal{P}_0 , it follows that the points in the $q^s + 1$ subspaces of dimension less than or equal to $s = \lceil (t+r)/2 \rceil$ in \mathcal{P}_0 constitute a subspace W of dimension t+r. Any hyperplane $H \in \mathcal{H}$ either contains W or intersects W in $(q^{\dim(W)-1} - 1)/(q - 1)$ points. These are the two extremal cases in the proof of Lemma 7. So for the ideal partition $x_i = 0$ for $c < i < \ell$. Then, it follows from Equation (13) that the left side of Equation (12) is equal to zero.

Thus, we obtain from Equation (13) that for any partition \mathcal{P} ,

$$\sum_{i=c+1}^{\ell-1} x_i(i-c)(i-\ell) = 0.$$

As $x_i \ge 0$, we may thus conclude from the equation above and Equation (13) that

$$c < i < \ell \implies x_i = 0.$$

Hence, we can now use Equation (9) and Equation (11) (or refer to the ideal subspace partition, which must have the same solution x_c and x_ℓ to these two equations) to calculate x_c (and x_ℓ). We then get that

(14)
$$x_c = \frac{q^{(k-1)t} - 1}{q - 1}$$

Let \mathcal{H}_0 denote the set of all hyperplanes that intersect $q^{(k-1)t+r}$ members of \mathcal{A} so $x_c = |\mathcal{H}_0|$. Let W denote the intersection of all these hyperplanes and let S denote the set of points not contained in any member of \mathcal{A} . From the argument used in the proof of Lemma 7, we deduce that

(15)
$$S \subseteq \bigcap_{H \in \mathcal{H}_0} H = W,$$

and from Equation (14), we obtain

$$\dim(W) = n - (k - 1)t = t + r.$$

Moreover, the number of points of S is equal to

$$|S| = \frac{q^n - 1}{q - 1} - \ell q^t \frac{q^t - 1}{q - 1} = \frac{q^{t + r} - 1}{q - 1} = |P_W|.$$

Thus, it follows from Equation (15) that the set of points in S will constitute the subspace W.

3. Proofs of the results

3.1. The case t + r is even. In this case the following lemma is true:

Lemma 8. Let n, k, t, and r be integers such that $k \ge 2, 1 \le r < t-1$, and n = kt + r. Let \mathcal{P} be a subspace partition of V(n,q) of minimum size $\sigma_q(n,t)$ and having the largest subspace dimension t. If t + r = 2sis even, then

$$n_t \ge \ell q^t.$$

Proof. From Lemma 5 we know that s = (t + r)/2 denotes the second largest dimension among the dimensions that appear in \mathcal{P} . Assume that \mathcal{P} has $n_t = \ell q^t - \delta$ subspaces of dimension t, with $\delta \geq 1$. Then the number, N, of points covered by the subspaces in \mathcal{P} satisfies

(16)
$$N \leq (\ell q^{t} - \delta) \frac{q^{t} - 1}{q - 1} + (q^{s} + 1 + \delta) \frac{q^{s} - 1}{q - 1} = \frac{q^{kt + r} - 1}{q - 1} - \delta \frac{q^{t} - q^{s}}{q - 1} = N - \delta \frac{q^{t} - q^{s}}{q - 1}.$$

Since we assumed $\delta \geq 1$, we have a contradiction. Thus $\delta \leq 0$, and the proof is complete.

We now prove Theorem 2.

Proof. From Lemma 8 and Lemma 2 we deduce that a minimum size subspace partition \mathcal{P} of V in the case t + r is even has a subfamily \mathcal{A} consisting of

$$n_t = \ell q^t = q^{t+r} \frac{q^{(k-1)t} - 1}{q^t - 1}$$

spaces of dimension t. By Proposition 1, the set of points in the subspaces in the complement family $\mathcal{A}' = \mathcal{P} \setminus \mathcal{A}$ constitute a (t + r)dimensional subspace W of V.

There is just one type of subspace partition of W into $q^{(t+r)/2}+1$ subspaces, namely, a subspace partition that solely consists of subspaces of dimension (t+r)/2.

3.2. The case r = t-1. In this case, we show that a subspace partition \mathcal{P} of V of minimum size is unique.

When r = t - 1, the ideal subspace partition consists of $n_t = \ell q^t + 1$ subspaces of dimension t and q^t subspaces of dimension t - 1. Assume there is another subspace partition of size $\sigma_q(n,t)$ consisting of subspaces of dimension t and a < t - 1. Let n_a denote the number of subspaces of dimension a and $n_t = \ell q^t + 1 + x$ be the number of subspaces of dimension t. Thus

(17)
$$n_a + x = q^s = q^t.$$

From the packing condition we can conclude that $x \ge 0$. If we enumerate vectors, thereby comparing with the ideal partition, we get that

$$q^{t}(q^{t-1}-1) = x(q^{t}-1) + n_{a}(q^{a}-1).$$

Combining these two equations we obtain

$$n_a(q^t - q^a) = (q - 1)q^{2t-1}.$$

There is just one solution to this equation, a = t - 1 and $n_a = q^t$. This proves Theorem 3.

3.3. The case t + r odd and $t + r \le 2t - 3$. By Lemma 2, we know that $n_t \le \ell q^t$. Let s be as above, that is s = (t + r + 1)/2.

If $n_t = \ell q^t$, we can argue as in Proposition 1. Specifically, let W be defined as in Proposition 1. No subspace partition of W can contain two subspaces of dimension s, as $\dim(W) = 2s - 1$. Hence a minimum size subspace partition of W consists of one subspace of dimension s and the remaining subspaces of dimension s - 1. This proves Theorem 4.

Now we consider two distinct cases, when either two or three distinct dimensions occur in \mathcal{P} , and we derive some new necessary conditions. When there are just two distinct dimensions appearing in \mathcal{P} , then by Lemma 5 these dimensions must be t and s. Thus, by the packing condition and the assumption that the subspace partition \mathcal{P} has the minimum size $\sigma_q(n, t)$, we get the following system of equations:

(18)
$$\begin{cases} n_s + n_t = \sigma_q(n,t) \\ n_s(q^s-1) + n_t(q^t-1) = q^n - 1 \end{cases}$$

This system has only one integer solution, which is the one given in Theorem 5.

If there are three distinct dimensions t, s, and a appearing in \mathcal{P} , then the packing condition gives the following system of equations:

$$\begin{cases} n_a + n_s + n_t = \sigma_q(n,t), \\ n_a(q^a - 1) + n_s(q^s - 1) + n_t(q^t - 1) = q^n - 1. \end{cases}$$

By Lemma 6, we know that a = s - 1. Let $n_t = \ell q^t - \delta$, $n_s = 1 + \delta + x$, and $n_{s-1} = q^s - x$. From the system of equations above, or Equation (7) in the proof of Lemma 6, we have that

$$x(q^s - q^{s-1}) = \delta(q^t - q^s),$$

which we transform into

$$x(q-1) = \delta(q^{t-s+1} - q).$$

Solving for x in this equation gives the remaining part of Theorem 5.

4. Remarks

Corollary 1. Let n, k, r, t be integers such that $k \ge 2$, n = kt + rand $1 \le r < t$. Let \mathcal{P} be a partition of V(n,q) containing a partial t-spread of maximum size and let a be the second largest dimension of a subspace in \mathcal{P} . Then $|\mathcal{P}| > \sigma_q(n, t)$, in the following cases:

- (1) t + r is even
- (2) t + r is odd and $r \neq t 1$.

In other words, \mathcal{P} does not have minimum size unless possibly n = (k+1)t - 1.

Proof. Let \mathcal{P} be a partition of V(n,q) of size $|\mathcal{P}| = \sigma_q(n,t) = \ell q^t + q^s + 1$. First, if t + r is even, then by Theorem 2, $n_t = \ell q^t$. Next, assume that t + r is odd and $r \neq t - 1$. Then $s \neq t$, where t + r = 2s - 1. Now, it follows from Lemma 2 that $n_t \leq \ell q^t$. Hence, the result holds. \Box

The methods used in the proof of Theorem 5 cannot be extended to rule out the existence of a subspace partition \mathcal{P}_x of type $[3^{13}4^{28}]$ in V(9,2). This subspace partition has size 41 which is equal to the minimum size of a subspace partition in V(9,2) with subspaces of maximum subspace dimension 4. The ideal partition of V(9,2) has type $[2^{8}3^{1}4^{32}]$ and is of size 41. Although we tried very hard (using a computer search) to construct such a partition, we have not succeeded yet. However, we still believe that the subspace partition \mathcal{P}_x exists.

References

- A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Zeit. 145 (1975), 211–229.
- [2] T. Bu, Partitions of a vector space, *Disc. Math.* 31 (1980), 79–83.
- [3] O. Heden, On the length of the tail of a vector space partition, *Discrete Math.* 309 (2009), 6169–6180.
- [4] O. Heden, J. Lehmann, E. Năstase, and P. Sissokho, Extremal sizes of subspace partitions, *Des. Codes and Cryptogr.* 64(3)(2012), 265–274.
- [5] O. Heden, J. Lehmann, E. Năstase, and P. Sissokho, The supertail of a subspace partition, *To appear in Des. Codes and Cryptogr.*
- [6] M. Herzog and J. Schönheim, Group partition, factorization and the vector covering problem, *Canad. Math. Bull.* 15(2) (1972), 207–214.
- [7] J. Lehmann and O. Heden, Some necessary conditions for vector space partitions, *Discrete Math.* 312(2012), 351–361.
- [8] E. Năstase and P. Sissokho, The minimum size of a finite subspace partition, Lin. Alg. and its Appl. 435 (2011), 1213–1221.

O. Heden (olohed@math.kth.se), Department of Mathematics, KTH, S-100 44 Stockholm, Sweden.

13

J. Lehmann (jlehmann@math.uni-bremen.de), Department of Mathematics, Bremen University, Bibliothekstrasse 1 - MZH, 28359 Bremen, Germany.

E. Năstase (nastasee@xavier.edu): Department of Mathematics and Computer Science, Xavier University, 3800 Victory Parkway, Cincinnati, Ohio 45207.

P. Sissokho (psissok@ilstu.edu): Mathematics Department, Illinois State University, Normal, Illinois 61790.