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Abstract. Let V = V (kt + r, q) be a vector space of dimension
kt + r over the finite field with q elements. Let σq(kt + r, t) de-
note the minimum size of a subspace partition P of V in which
t is the largest dimension of a subspace. We denote by ndi

the
number of subspaces of dimension di that occur in P and we say
[d

nd1
1 , . . . , d

ndm
m ] is the type of P. In this paper, we show that a

partition of minimum size has a unique partition type if t + r is
an even integer. We also consider the case when t + r is an odd
integer, but only give partial results since this case is indeed more
intricate.

1. Introduction

Let V = V (n, q) denote a vector space of dimension n = kt + r
over the finite field with q elements. A subspace partition P of V , also
known as a vector space partition, is a collection of nonzero subspaces
of V such that each point, that is, 1-dimensional subspace, of V is in
exactly one subspace of P . We denote by ndi the number of subspaces
of dimension di that occur in P and we say [d

nd1
1 , . . . , d

ndm
m ] is the type

of P , where d1 < . . . < dm and ni > 0 for 1 ≤ i ≤ m. The size of
a subspace partition P is the number of subspaces in P . Let σq(n, t)
denote the minimum size of a subspace partition of V in which the
largest subspace has dimension t.

Generalizing a theorem in [8], the following theorem was proved by
the authors of the present paper in [4].

Theorem 1. Let n, k, t, and r be integers such that 1 ≤ r < t, k ≥ 1,
and n = kt+ r. Then

σq(n, t) = qt + 1 for n < 2t ,

and

σq(n, t) = qt+r

k−2∑
i=0

qit + qd
t+r
2
e + 1 for n ≥ 2t .

The question studied here is whether or not a subspace partition of
minimum size, that is, attaining the lower bound given in Theorem 1,
is of a type which just depends on n and t. We found that this is true
in many cases and, in particular, when t + r is an even integer. The
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case when t + r is odd turned out to be more intricate and we obtain
just partial answers in this case.

Let ` = qr
k−2∑
i=0

qit. Our main results are thus the following theorems:

Theorem 2. Let n, k, t, and r be integers such that 1 ≤ r < t, k ≥ 2,
t+ r = 2s for some integer s, and n = kt+ r. Let P be a subspace par-
tition of V (n, q) of size σq(n, t) and with maximum subspace dimension
t. Then P has type [sns , tnt ], where

ns = qs + 1, and nt = `qt.

Theorem 3. Let n, k, t, and r be integers such that r = t − 1, k ≥
2, and n = kt + r. Let P be a subspace partition of V (n, q) of size
σq(n, t) and with maximum subspace dimension t. Then P has type
[(t− 1)nt−1 , tnt ], where

nt−1 = qt, and nt = `qt + 1.

When r < t− 1 we obtain the following result:

Theorem 4. Let n, k, t, and r be integers such that 1 ≤ r < t− 1, k ≥
2, and t+ r = 2s− 1 for some integer s. Let P be a subspace partition
of V (n, q) of size σq(n, t) and with maximum subspace dimension t. If
the number of subspaces of dimension t is nt = `qt, then P has type
[(s− 1)ns−1 , s1, tnt ], where

ns−1 = qs, and nt = `qt.

It must be remarked that subspace partitions of types as indicated
in the three previous theorems indeed exist and are well known, see
Section 2.1 for a construction of them.

When t+ r is odd and nt < `qt, we were able to derive only two new
non-trivial necessary conditions:

Theorem 5. Let n, k, t, and r be integers such that 1 ≤ r < t − 1,
k ≥ 2, and t + r = 2s − 1 for some integer s. Let P be a subspace
partition of V (n, q) of size σq(n, t).

(1) If P has type [ana , tnt ], then a = t− 1,

na = qt−1 + qt−2 + 1, and nt = `qt − qt−2.

(2) If P has type [ana , bnb , tnt ], then a = s− 1, b = s,

na = qs − δq q
t−s − 1

q − 1
, nb = δ

qt−s+1 − 1

q − 1
+ 1, and nt = `qt − δ,

for some integer δ such that

0 ≤ δ ≤ (qs−2 − 1)(q − 1)

qt−s − 1
.
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In search for a reasonable conjecture when t+ r is odd, and also for
the sake of exploring new methods, we first did a computer search in
the particular case when q = 2, t = 5, k = 2 and r = 2, thereby using
the Simplex Algorithm on the known necessary linear constraints for
existence of subspace partitions. These linear constraints were found by
Lehmann and Heden in [7]. This search showed that in these cases the
type of a minimum size subspace partition is unique. This experience
led us to make the following conjecture:

Conjecture 1. Let n, k, t, and r be integers such that 1 ≤ r < t − 1,
k ≥ 2, and t + r = 2s − 1 for some integer s. Every minimum size
subspace partition P of V (n, q), with t as the highest dimension in P,
is of type

[(t− 1)q
t−1+qt−2+1, t`q

t−qt−2

] or [(s− 1)q
s

, s1, t`q
t

].

As we found the linear programming approach fruitful, we tried to
use it in the more general situation, when t > 3, r = t− 3, and q is any
prime power. Unfortunately, this led to rather complicated expressions
that were tedious to evaluate. However, by using that approach we
were able to prove Conjecture 1 for the special case when k = 2. The
details in that proof might be published elsewhere.

2. Some preliminary results

2.1. The ideal partition. The following lemma due to Herzog and
Schönheim [6] and independently Beutelspacher [1] and Bu [2], ensures
the existence of a partition P0 of V of minimum size.

Lemma 1. Let n and d be integers such that 1 ≤ d ≤ n/2. Then
V (n, q) admits a partition with one subspace of dimension n − d and
qn−d subspaces of dimension d.

Let n = kt+ r and s = d(t+ r)/2e, where k ≥ 2 and 1 ≤ r < t− 1.
By a recursive application of this lemma we find a subspace partition
P0 of V (n, q) that consists of

b0 = qs + 1

subspaces of dimension less than or equal to s and

a0 = `qt = qt+r + q2t+r + . . .+ q(k−1)t+r = qt+r q
(k−1)t − 1

qt − 1

spaces of dimension t. When t + r is even, we get `qt subspaces of
dimension t and qs subspaces of dimension s. When t + r is odd, we
get `qt subspaces of dimension t, one subspace of dimension s, and qs

subspaces of dimension s− 1.
The total number of subspaces in P0 is then

σq(n, t) = a0 + b0 = `qt + qs + 1.
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We refer to P0 as the ideal partition and often compare our results
to this particular partition.

2.2. Some fundamental lemmas. We will often use the packing con-
dition. It gives a set theoretic necessary condition for the existence of
a subspace partition P :

|V (n, q)| − 1 =
∑
U∈P

(|U | − 1).

Throughout this paper we will letH denote the set of all hyperplanes
of V (n, q). For any hyperplane H ∈ H, let [bH1 . . . b

H
m] be the induced

type of H with respect to the partition P , where bHi denotes the number
of subspaces of dimension di in P that are completely contained in H.
Lehmann and Heden observed in [7] that the following relation is useful
in the study of subspace partitions:

(1) |P| = 1 +
m∑
i=1

bHi q
di .

This relation is called the second packing condition and is used in the
proof of the next lemma.

Lemma 2. Let n, k, t, and r be integers such that k ≥ 2, 1 ≤ r < t−1,
and n = kt+ r. Let P be a subspace partition of V (n, q) of size σq(n, t)
and with maximum subspace dimension t. Then

nt ≤ `qt.

Note that if r = t − 1, the ideal partition contains nt = `qt + 1
subspaces of dimension t.

Proof. Suppose to the contrary that nt = `qt + δ, for some integer
δ ≥ 1. By counting pairs (H,W ), where W is a subspace of dimension
t in P that is contained in the hyperplane H, we obtain

∑
H∈H

bHt = nt
qn−t − 1

q − 1
= (`qt + δ)

qn−t − 1

q − 1
.

Since ` = (qn−t − qr)/(qt − 1), the average value of the above sum is

bave =

∑
H∈H b

H
t

|H|
=

(`qt + δ)(qn−t − 1)

qn − 1
= `+

δ(qn−t − 1)− (qn−t − qr)
qn − 1

.

As δ ≥ 1 and qr > 1, the expression above is strictly larger than `.
Hence, there exists a hyperplane H∗ that contains bH

∗
t ≥ `+1 subspaces

of dimension t. Thus, it follows from Equation (1) that

|P| ≥ 1 + bH
∗

t qt ≥ 1 + (`+ 1)qt > `qt + qs + 1,

where the last inequality holds since t > s. This is a contradiction and
thus δ < 1. �
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Lemma 3. Let n, k, t, and r be integers such that k ≥ 2, 1 ≤ r < t−1,
and n = kt + r. Assume that t + r is an odd integer and let P be a
minimum size subspace partition of V (n, q) consisting of subspaces of
dimension t, subspaces of dimension s = (t + r + 1)/2, and subspaces
of dimension less than s.

If the number of subspaces of dimension t is nt = `qt − δ, where
δ ≥ 0, then the number of subspaces of dimension s is at least equal to

(2) b = 1 + δ
qt−s+1 − 1

q − 1
.

Proof. We consider the worst case scenario. By counting the number
of vectors in subspaces of dimension t, that must be substituted into
vectors of subspaces of dimension s when deleting δ subspaces of di-
mension t from a partition of the same type as the ideal partition, we
get that the number of spaces of dimension s will be at least equal to

1 + δ + δ
(qt − 1)− (qs − 1)

(qs − 1)− (qs−1 − 1)
= 1 + δ + δq

qt−s − 1

q − 1
.

�

The next result, Lemma 5, is also fundamental in our presentation.
The proof of it uses Lemma 4 which was originally proved by Năstase
and Sissokho [8] (also see [4, 5]).

Lemma 4. Let n, k, t, and r be integers such that k ≥ 2, 1 ≤ r < t, and
n = kt + r. Let P be a subspace partition of V (n, q) with no subspace
of dimension higher than t. Assume furthermore that P contains a
subspace of dimension t and a subspace of dimension d, with 0 ≤ d < t.
Then

|P| ≥ `qt + qd + 1.

Lemma 5. Let n, k, t, and r be integers such that k ≥ 2, 1 ≤ r <
t− 1, and n = kt+ r. Let P be a subspace partition of V (n, q) of size
σq(n, t) and with maximum subspace dimension t. Then the second
largest dimension of a subspace in P is s = d(t+ r)/2e.

Proof. Let a denote the dimension of the second largest dimension
that appear among the members in P . If a > s, then it follows from
Lemma 4 that

|P| ≥ `qt + qa + 1 > `qt + qs + 1 = σq(n, t),

which is a contradiction. So we may assume that a ≤ s. We now show
that a ≤ s − 1 cannot hold. Indeed suppose, a ≤ s − 1. Since s 6= t,
it follows from Lemma 2 that nt ≤ `qt. Since 0 < a ≤ s − 1 < t, the
integer |P| is minimized when nt ≤ `qt is as large as possible. Thus,
by selecting nt = `qt, counting vectors, and using the fact that

(3) (qn − 1)− `qt(qt − 1) = q2s−1 − 1.
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we obtain

|P| ≥ `qt +
(qn − 1)− `qt(qt − 1)

qa − 1

≥ `qt +
q2s−1 − 1

qs−1 − 1
> `qt + qs + 1,

which is a contradiction. This proves the lemma. �

If there are just three distinct dimensions in a subspace partition P
of minimum size, then we can determine the smallest dimension that
is present. To prove this result, we will use the following theorem due
to Heden [3].

Theorem 6 (Tail Condition). Let P be a partition of V (n, q) of type
[dn1

1 . . . dnm
m ], where d1 < . . . < dm and ni > 0 are integers for all

1 ≤ i ≤ m. Then

(i) if qd2−d1 does not divide n1 and if d2 < 2d1, then n1 ≥ qd1 + 1.
(ii) if qd2−d1 does not divide n1 and d2 ≥ 2d1, then either n1 =

(qd2 − 1)/(qd1 − 1) or n1 > 2qd2−d1.
(iii) if qd2−d1 divides n1 and d2 < 2d1, then n1 ≥ qd2 − qd1 + qd2−d1.
(iv) if qd2−d1 divides n1 and d2 ≥ 2d1, then n1 ≥ qd2.

We can now prove the following lemma.

Lemma 6. Let a, k, r, s, and t be positive integers such that n = kt+r,
k ≥ 2, 1 ≤ r < t− 1, 1 ≤ a < s, and t+ r = 2s− 1. If P is a partition
of V = V (n, q) of type [ana , sns , tnt ] and of size σq(n, t), then a = s−1.
Furthermore, if the number of subspaces of dimension t is nt = `qt− δ,
where δ ≥ 0, then δ ≤ qr − 1.

Proof. Let δ ≥ 0 be an integer and assume that P has `qt−δ members of
dimension t, ns members of dimension s, and na members of dimension
a. By counting the number of vectors in V (n, q), we obtain

(4) (`qt − δ)(qt − 1) + ns(q
s − 1) + na(q

a − 1) = qn − 1.

Since `qt +qs +1 = |P| = (`qt−δ)+ns +na and (qn−1)−`qt(qt−1) =
q2s−1 − 1, Equation (4) implies

(5) na(q
s − qa) + δ(qt − qs) = q2s − q2s−1.

For δ = 0, Equation (5) implies that qs−a − 1 divides q − 1. Thus
s− a = 1. So we assume in the following that δ > 0.

We also note from Equation (5) that qs−a divides na. If s ≥ 2a, then
it follows from Theorem 6(iv) that na ≥ qs. This would contradict the
fact that |P| = `qt + qs + 1 since δ > 0 and by Lemma 3, we have

ns ≥ 1 + δ + δ q
t−s−1
q−1 > 1 + δ. Moreover, if s < 2a, then Theorem 6(iii)
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implies that na ≥ qs − qa + qs−a. Thus, Equation (5) yields

na =
q2s − q2s−1 − δ(qt − qs)

qs − qa
≥ qs − qa + qs−a

⇒ q2s − q2s−1 − δ(qt − qs) ≥ (qs − qa + qs−a)(qs − qa)
⇒ −qs+a(qs−1−a − 2)− δ(qt − qs)− qs(qs−a − 1)− q2a ≥ 0.(6)

If s − 1 − a ≥ 1, then qs−1−a − 2 ≥ 0 and the expression on the left
of Inequality (6) is negative. This would yield a contradiction. Hence,
s− 1− a ≤ 0 and thus a = s− 1 since a < s.

By using the relations a = s− 1 and t+ r = 2s− 1 in Inequality (6),
we obtain

(7) δ(qt − qs) ≤ qt+r − qt+r−1 − qs+1 + qs.

The left side is a linear increasing function of δ. For δ = qr, the left
side is strictly larger than the right side, as s ≤ t− 1. This proves the
lemma. �

2.3. The structure of the set of points outside subspaces of
dimension t in a minimum size subspace partition. In this sub-
section, let H denote the set of all hyperplanes in V = V (n, q) and let
A denote the family of subspaces of dimension t in a subspace partition
P of V . Let xi denote the number of hyperplanes in V that contain
exactly i members of A.

Lemma 7. Let n, k, t, and r be integers such that k ≥ 2, 1 ≤ r < t−1,
and n = kt+ r. Let P be a subspace partition of V (n, q) of size σq(n, t)
and with maximum subspace dimension t. Assume that P contains
exactly nt = `qt members of dimension t. If xi 6= 0, then

(8) `− qr ≤ i ≤ `.

Proof. The points of a subspace U of V not belonging to a hyperplane
H ∈ H are called the black points to H in U , and are denoted by
BH(U). If U is a subspace of H then BH(U) is the empty set. Ele-
mentary linear algebra arguments give that if U is not a subspace of
H then

|BH(U)| = qdim(U)−1.

Let B = P \ A denote the set of members of P that do not have
dimension t. Then, |B| = qs + 1. If H is a hyperplane that contains all
members of B then the points of V not belonging to H are distributed
among the members of A. So if i members of A are contained in H we
get the equation

(nt − i)qt−1 = qkt+r−1.

This proves the left inequality in Equation (8).
The other extremal situation appears when no member of B is con-

tained in the hyperplane H. Let Uj, for 1 ≤ j ≤ qs + 1, denote the
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members of B. By counting the number of points of the subspaces in
B, we get

|B|∑
j=1

qdim(Uj) − 1

q − 1
=
qt+r − 1

q − 1
.

Thus, if W 6⊆ H for all W ∈ B, then the total number of black points
to H in the subspaces of B is equal to

|B|∑
j=1

qdim(Uj)−1 =
1

q

(
qt+r − 1 +

|B|∑
j=1

1
)

= qt+r−1 + qs−1.

So if imembers ofA are contained inH, then we obtain in this extremal
case the equation

(nt − i)qt−1 + qt+r−1 + qs−1 = qkt+r−1.

This relation can be simplified to

i = `+ qs−t,

which is impossible since i and ` are integers, and s < t implies that
0 < qs−t < 1. Hence, we conclude that H must contain at least one
member of B and that inequality i ≤ ` in (8) holds. This concludes the
proof of the lemma. �

Proposition 1. Let n, k, t, and r be integers such that k ≥ 2, 1 ≤ r <
t− 1, and n = kt+ r. Let P be a subspace partition of V (n, q) of size
σq(n, t) and with maximum subspace dimension t and with nt = `qt.
Then the set of points in V that do not belong to members in P of
dimension t constitutes a subspace W ⊆ V of dimension t+ r.

Proof. Trivially, but what will be used below, xi ≥ 0 for all i.
From Lemma 7, we know that

xi 6= 0 =⇒ c = `− qr ≤ i ≤ `.

As each member of A is contained in exactly (q(k−1)t+r − 1)/(q − 1)
hyperplanes, we get by double counting incidences (H,U), for H ∈ H
with U ⊆ H, that

(9)
∑̀
i=c

ixi = nt ·
q(k−1)t+r − 1

q − 1
= C.

Any two members of A are contained in (q(k−2)t+r − 1)/(q − 1) hyper-
planes. Thus, by double counting incidences, we get

(10)
∑̀
i=c

(
i

2

)
xi =

(
nt

2

)
q(k−2)t+r − 1

q − 1
= D.
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Furthermore, by counting the number of hyperplanes in V we get that

(11)
∑̀
i=c

xi =
qkt+r − 1

q − 1
= E.

Observe that the constants C, D and E are independent of the partic-
ular choice of subspace partition of minimum size that contains a set
A as assumed in the proposition. This is especially true for the ideal
partition P0, a fact that will soon be used.

We obtain from the Equations (9), (10) and (11) that

(12)
∑̀
i=c

xi(i− c)(i− `) = 2D + C − (c+ `)C + c`E.

We will soon use the following most trivial facts

(13) (i− c)(i− `)


= 0 if i = c,

< 0 if c < i < `,

= 0 if i = `.

In order to show that the right side of Equation (12) is equal to
zero we consider the ideal partition P0. From the construction of the
ideal partition P0, it follows that the points in the qs + 1 subspaces
of dimension less than or equal to s = d(t + r)/2e in P0 constitute a
subspace W of dimension t+r. Any hyperplane H ∈ H either contains
W or intersects W in (qdim(W )−1 − 1)/(q − 1) points. These are the
two extremal cases in the proof of Lemma 7. So for the ideal partition
xi = 0 for c < i < `. Then, it follows from Equation (13) that the left
side of Equation (12) is equal to zero.

Thus, we obtain from Equation (13) that for any partition P ,

`−1∑
i=c+1

xi(i− c)(i− `) = 0.

As xi ≥ 0, we may thus conclude from the equation above and Equa-
tion (13) that

c < i < ` =⇒ xi = 0.

Hence, we can now use Equation (9) and Equation (11) (or refer to the
ideal subspace partition, which must have the same solution xc and x`
to these two equations) to calculate xc (and x`). We then get that

(14) xc =
q(k−1)t − 1

q − 1
.

LetH0 denote the set of all hyperplanes that intersect q(k−1)t+r mem-
bers of A so xc = |H0|. Let W denote the intersection of all these
hyperplanes and let S denote the set of points not contained in any
member of A.
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From the argument used in the proof of Lemma 7, we deduce that

(15) S ⊆
⋂

H∈H0

H = W,

and from Equation (14), we obtain

dim(W ) = n− (k − 1)t = t+ r.

Moreover, the number of points of S is equal to

|S| = qn − 1

q − 1
− `qt q

t − 1

q − 1
=
qt+r − 1

q − 1
= |PW |.

Thus, it follows from Equation (15) that the set of points in S will
constitute the subspace W . �

3. Proofs of the results

3.1. The case t+ r is even. In this case the following lemma is true:

Lemma 8. Let n, k, t, and r be integers such that k ≥ 2, 1 ≤ r < t−1,
and n = kt + r. Let P be a subspace partition of V (n, q) of minimum
size σq(n, t) and having the largest subspace dimension t. If t+ r = 2s
is even, then

nt ≥ `qt.

Proof. From Lemma 5 we know that s = (t+ r)/2 denotes the second
largest dimension among the dimensions that appear in P . Assume
that P has nt = `qt − δ subspaces of dimension t, with δ ≥ 1. Then
the number, N , of points covered by the subspaces in P satisfies

N ≤ (`qt − δ)q
t − 1

q − 1
+ (qs + 1 + δ)

qs − 1

q − 1

=
qkt+r − 1

q − 1
− δ q

t − qs

q − 1
= N − δ q

t − qs

q − 1
.(16)

Since we assumed δ ≥ 1, we have a contradiction. Thus δ ≤ 0, and the
proof is complete. �

We now prove Theorem 2.

Proof. From Lemma 8 and Lemma 2 we deduce that a minimum size
subspace partition P of V in the case t + r is even has a subfamily A
consisting of

nt = `qt = qt+r q
(k−1)t − 1

qt − 1
spaces of dimension t. By Proposition 1, the set of points in the sub-
spaces in the complement family A′ = P \ A constitute a (t + r)-
dimensional subspace W of V .

There is just one type of subspace partition of W into q(t+r)/2+1 sub-
spaces, namely, a subspace partition that solely consists of subspaces
of dimension (t+ r)/2. �
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3.2. The case r = t−1. In this case, we show that a subspace partition
P of V of minimum size is unique.

When r = t− 1, the ideal subspace partition consists of nt = `qt + 1
subspaces of dimension t and qt subspaces of dimension t − 1. As-
sume there is another subspace partition of size σq(n, t) consisting of
subspaces of dimension t and a < t − 1. Let na denote the number
of subspaces of dimension a and nt = `qt + 1 + x be the number of
subspaces of dimension t. Thus

(17) na + x = qs = qt.

From the packing condition we can conclude that x ≥ 0. If we enumer-
ate vectors, thereby comparing with the ideal partition, we get that

qt(qt−1 − 1) = x(qt − 1) + na(q
a − 1).

Combining these two equations we obtain

na(q
t − qa) = (q − 1)q2t−1.

There is just one solution to this equation, a = t− 1 and na = qt. This
proves Theorem 3.

3.3. The case t+ r odd and t+ r ≤ 2t− 3. By Lemma 2, we know
that nt ≤ `qt. Let s be as above, that is s = (t+ r + 1)/2.

If nt = `qt, we can argue as in Proposition 1. Specifically, let W be
defined as in Proposition 1. No subspace partition of W can contain
two subspaces of dimension s, as dim(W ) = 2s− 1. Hence a minimum
size subspace partition ofW consists of one subspace of dimension s and
the remaining subspaces of dimension s− 1. This proves Theorem 4.

Now we consider two distinct cases, when either two or three distinct
dimensions occur in P , and we derive some new necessary conditions.
When there are just two distinct dimensions appearing in P , then by
Lemma 5 these dimensions must be t and s. Thus, by the packing
condition and the assumption that the subspace partition P has the
minimum size σq(n, t), we get the following system of equations:

(18)

{
ns + nt = σq(n, t)
ns(q

s − 1) + nt(q
t − 1) = qn − 1

This system has only one integer solution, which is the one given in
Theorem 5.

If there are three distinct dimensions t, s, and a appearing in P ,
then the packing condition gives the following system of equations:{

na + ns + nt = σq(n, t),
na(q

a − 1) + ns(q
s − 1) + nt(q

t − 1) = qn − 1.

By Lemma 6, we know that a = s− 1. Let nt = `qt− δ, ns = 1 + δ+x,
and ns−1 = qs − x. From the system of equations above, or Equation
(7) in the proof of Lemma 6, we have that

x(qs − qs−1) = δ(qt − qs),
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which we transform into

x(q − 1) = δ(qt−s+1 − q).
Solving for x in this equation gives the remaining part of Theorem 5.

4. Remarks

Corollary 1. Let n, k, r, t be integers such that k ≥ 2, n = kt + r
and 1 ≤ r < t. Let P be a partition of V (n, q) containing a partial
t-spread of maximum size and let a be the second largest dimension of
a subspace in P. Then |P| > σq(n, t), in the following cases:

(1) t+ r is even
(2) t+ r is odd and r 6= t− 1.

In other words, P does not have minimum size unless possibly n =
(k + 1)t− 1.

Proof. Let P be a partition of V (n, q) of size |P| = σq(n, t) = `qt+qs+1.
First, if t+ r is even, then by Theorem 2, nt = `qt. Next, assume that
t + r is odd and r 6= t− 1. Then s 6= t, where t + r = 2s− 1. Now, it
follows from Lemma 2 that nt ≤ `qt. Hence, the result holds. �

The methods used in the proof of Theorem 5 cannot be extended
to rule out the existence of a subspace partition Px of type [313428]
in V (9, 2). This subspace partition has size 41 which is equal to the
minimum size of a subspace partition in V (9, 2) with subspaces of max-
imum subspace dimension 4. The ideal partition of V (9, 2) has type
[2831432] and is of size 41. Although we tried very hard (using a com-
puter search) to construct such a partition, we have not succeeded yet.
However, we still believe that the subspace partition Px exists.
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