ON THE TYPE(S) OF MINIMUM SIZE SUBSPACE PARTITIONS

O. HEDEN, J. LEHMANN, E. NĂSTASE, AND P. SISSOKHO

Abstract

Let $V=V(k t+r, q)$ be a vector space of dimension $k t+r$ over the finite field with q elements. Let $\sigma_{q}(k t+r, t)$ denote the minimum size of a subspace partition \mathcal{P} of V in which t is the largest dimension of a subspace. We denote by $n_{d_{i}}$ the number of subspaces of dimension d_{i} that occur in \mathcal{P} and we say $\left[d_{1}^{n_{d_{1}}}, \ldots, d_{m}^{n_{d_{m}}}\right]$ is the type of \mathcal{P}. In this paper, we show that a partition of minimum size has a unique partition type if $t+r$ is an even integer. We also consider the case when $t+r$ is an odd integer, but only give partial results since this case is indeed more intricate.

1. Introduction

Let $V=V(n, q)$ denote a vector space of dimension $n=k t+r$ over the finite field with q elements. A subspace partition \mathcal{P} of V, also known as a vector space partition, is a collection of nonzero subspaces of V such that each point, that is, 1-dimensional subspace, of V is in exactly one subspace of \mathcal{P}. We denote by $n_{d_{i}}$ the number of subspaces of dimension d_{i} that occur in \mathcal{P} and we say $\left[d_{1}^{n_{d_{1}}}, \ldots, d_{m}^{n_{d_{m}}}\right]$ is the type of \mathcal{P}, where $d_{1}<\ldots<d_{m}$ and $n_{i}>0$ for $1 \leq i \leq m$. The size of a subspace partition \mathcal{P} is the number of subspaces in \mathcal{P}. Let $\sigma_{q}(n, t)$ denote the minimum size of a subspace partition of V in which the largest subspace has dimension t.

Generalizing a theorem in [8], the following theorem was proved by the authors of the present paper in [4].

Theorem 1. Let n, k, t, and r be integers such that $1 \leq r<t, k \geq 1$, and $n=k t+r$. Then

$$
\sigma_{q}(n, t)=q^{t}+1 \text { for } n<2 t
$$

and

$$
\sigma_{q}(n, t)=q^{t+r} \sum_{i=0}^{k-2} q^{i t}+q^{\left.\frac{t+r}{2}\right\rceil}+1 \text { for } n \geq 2 t
$$

The question studied here is whether or not a subspace partition of minimum size, that is, attaining the lower bound given in Theorem 1, is of a type which just depends on n and t. We found that this is true in many cases and, in particular, when $t+r$ is an even integer. The
case when $t+r$ is odd turned out to be more intricate and we obtain just partial answers in this case.
Let $\ell=q^{r} \sum_{i=0}^{k-2} q^{i t}$. Our main results are thus the following theorems:
Theorem 2. Let n, k, t, and r be integers such that $1 \leq r<t, k \geq 2$, $t+r=2 s$ for some integer s, and $n=k t+r$. Let \mathcal{P} be a subspace partition of $V(n, q)$ of size $\sigma_{q}(n, t)$ and with maximum subspace dimension t. Then \mathcal{P} has type $\left[s^{n_{s}}, t^{n_{t}}\right]$, where

$$
n_{s}=q^{s}+1, \quad \text { and } \quad n_{t}=\ell q^{t}
$$

Theorem 3. Let n, k, t, and r be integers such that $r=t-1, k \geq$ 2 , and $n=k t+r$. Let \mathcal{P} be a subspace partition of $V(n, q)$ of size $\sigma_{q}(n, t)$ and with maximum subspace dimension t. Then \mathcal{P} has type $\left[(t-1)^{n_{t-1}}, t^{n_{t}}\right]$, where

$$
n_{t-1}=q^{t}, \quad \text { and } \quad n_{t}=\ell q^{t}+1
$$

When $r<t-1$ we obtain the following result:
Theorem 4. Let n, k, t, and r be integers such that $1 \leq r<t-1, k \geq$ 2 , and $t+r=2 s-1$ for some integer s. Let \mathcal{P} be a subspace partition of $V(n, q)$ of size $\sigma_{q}(n, t)$ and with maximum subspace dimension t. If the number of subspaces of dimension t is $n_{t}=\ell q^{t}$, then \mathcal{P} has type $\left[(s-1)^{n_{s-1}}, s^{1}, t^{n_{t}}\right]$, where

$$
n_{s-1}=q^{s}, \quad \text { and } \quad n_{t}=\ell q^{t} .
$$

It must be remarked that subspace partitions of types as indicated in the three previous theorems indeed exist and are well known, see Section 2.1 for a construction of them.

When $t+r$ is odd and $n_{t}<\ell q^{t}$, we were able to derive only two new non-trivial necessary conditions:

Theorem 5. Let n, k, t, and r be integers such that $1 \leq r<t-1$, $k \geq 2$, and $t+r=2 s-1$ for some integer s. Let \mathcal{P} be a subspace partition of $V(n, q)$ of size $\sigma_{q}(n, t)$.
(1) If \mathcal{P} has type $\left[a^{n_{a}}, t^{n_{t}}\right]$, then $a=t-1$,

$$
n_{a}=q^{t-1}+q^{t-2}+1, \quad \text { and } n_{t}=\ell q^{t}-q^{t-2} .
$$

(2) If \mathcal{P} has type $\left[a^{n_{a}}, b^{n_{b}}, t^{n_{t}}\right]$, then $a=s-1, b=s$,

$$
n_{a}=q^{s}-\delta q \frac{q^{t-s}-1}{q-1}, n_{b}=\delta \frac{q^{t-s+1}-1}{q-1}+1, \quad \text { and } n_{t}=\ell q^{t}-\delta
$$

for some integer δ such that

$$
0 \leq \delta \leq \frac{\left(q^{s-2}-1\right)(q-1)}{q^{t-s}-1}
$$

In search for a reasonable conjecture when $t+r$ is odd, and also for the sake of exploring new methods, we first did a computer search in the particular case when $q=2, t=5, k=2$ and $r=2$, thereby using the Simplex Algorithm on the known necessary linear constraints for existence of subspace partitions. These linear constraints were found by Lehmann and Heden in [7]. This search showed that in these cases the type of a minimum size subspace partition is unique. This experience led us to make the following conjecture:

Conjecture 1. Let n, k, t, and r be integers such that $1 \leq r<t-1$, $k \geq 2$, and $t+r=2 s-1$ for some integer s. Every minimum size subspace partition \mathcal{P} of $V(n, q)$, with t as the highest dimension in \mathcal{P}, is of type

$$
\left[(t-1)^{q^{t-1}+q^{t-2}+1}, t^{\ell q^{t}-q^{t-2}}\right] \text { or }\left[(s-1)^{q^{s}}, s^{1}, t^{\ell q^{t}}\right] .
$$

As we found the linear programming approach fruitful, we tried to use it in the more general situation, when $t>3, r=t-3$, and q is any prime power. Unfortunately, this led to rather complicated expressions that were tedious to evaluate. However, by using that approach we were able to prove Conjecture 1 for the special case when $k=2$. The details in that proof might be published elsewhere.

2. Some preliminary results

2.1. The ideal partition. The following lemma due to Herzog and Schönheim [6] and independently Beutelspacher [1] and Bu [2], ensures the existence of a partition \mathcal{P}_{0} of V of minimum size.

Lemma 1. Let n and d be integers such that $1 \leq d \leq n / 2$. Then $V(n, q)$ admits a partition with one subspace of dimension $n-d$ and q^{n-d} subspaces of dimension d.

Let $n=k t+r$ and $s=\lceil(t+r) / 2\rceil$, where $k \geq 2$ and $1 \leq r<t-1$. By a recursive application of this lemma we find a subspace partition \mathcal{P}_{0} of $V(n, q)$ that consists of

$$
b_{0}=q^{s}+1
$$

subspaces of dimension less than or equal to s and

$$
a_{0}=\ell q^{t}=q^{t+r}+q^{2 t+r}+\ldots+q^{(k-1) t+r}=q^{t+r} \frac{q^{(k-1) t}-1}{q^{t}-1}
$$

spaces of dimension t. When $t+r$ is even, we get ℓq^{t} subspaces of dimension t and q^{s} subspaces of dimension s. When $t+r$ is odd, we get ℓq^{t} subspaces of dimension t, one subspace of dimension s, and q^{s} subspaces of dimension $s-1$.

The total number of subspaces in \mathcal{P}_{0} is then

$$
\sigma_{q}(n, t)=a_{0}+b_{0}=\ell q^{t}+q^{s}+1 .
$$

We refer to \mathcal{P}_{0} as the ideal partition and often compare our results to this particular partition.
2.2. Some fundamental lemmas. We will often use the packing condition. It gives a set theoretic necessary condition for the existence of a subspace partition \mathcal{P} :

$$
|V(n, q)|-1=\sum_{U \in \mathcal{P}}(|U|-1) .
$$

Throughout this paper we will let \mathcal{H} denote the set of all hyperplanes of $V(n, q)$. For any hyperplane $H \in \mathcal{H}$, let $\left[b_{1}^{H} \ldots b_{m}^{H}\right]$ be the induced type of H with respect to the partition \mathcal{P}, where b_{i}^{H} denotes the number of subspaces of dimension d_{i} in \mathcal{P} that are completely contained in H. Lehmann and Heden observed in [7] that the following relation is useful in the study of subspace partitions:

$$
\begin{equation*}
|\mathcal{P}|=1+\sum_{i=1}^{m} b_{i}^{H} q^{d_{i}} \tag{1}
\end{equation*}
$$

This relation is called the second packing condition and is used in the proof of the next lemma.
Lemma 2. Let n, k, t, and r be integers such that $k \geq 2,1 \leq r<t-1$, and $n=k t+r$. Let \mathcal{P} be a subspace partition of $V(n, q)$ of size $\sigma_{q}(n, t)$ and with maximum subspace dimension t. Then

$$
n_{t} \leq \ell q^{t}
$$

Note that if $r=t-1$, the ideal partition contains $n_{t}=\ell q^{t}+1$ subspaces of dimension t.

Proof. Suppose to the contrary that $n_{t}=\ell q^{t}+\delta$, for some integer $\delta \geq 1$. By counting pairs (H, W), where W is a subspace of dimension t in \mathcal{P} that is contained in the hyperplane H, we obtain

$$
\sum_{H \in \mathcal{H}} b_{t}^{H}=n_{t} \frac{q^{n-t}-1}{q-1}=\left(\ell q^{t}+\delta\right) \frac{q^{n-t}-1}{q-1}
$$

Since $\ell=\left(q^{n-t}-q^{r}\right) /\left(q^{t}-1\right)$, the average value of the above sum is
$b_{\mathrm{ave}}=\frac{\sum_{H \in \mathcal{H}} b_{t}^{H}}{|\mathcal{H}|}=\frac{\left(\ell q^{t}+\delta\right)\left(q^{n-t}-1\right)}{q^{n}-1}=\ell+\frac{\delta\left(q^{n-t}-1\right)-\left(q^{n-t}-q^{r}\right)}{q^{n}-1}$.
As $\delta \geq 1$ and $q^{r}>1$, the expression above is strictly larger than ℓ. Hence, there exists a hyperplane H^{*} that contains $b_{t}^{H^{*}} \geq \ell+1$ subspaces of dimension t. Thus, it follows from Equation (1) that

$$
|\mathcal{P}| \geq 1+b_{t}^{H^{*}} q^{t} \geq 1+(\ell+1) q^{t}>\ell q^{t}+q^{s}+1
$$

where the last inequality holds since $t>s$. This is a contradiction and thus $\delta<1$.

Lemma 3. Let n, k, t, and r be integers such that $k \geq 2,1 \leq r<t-1$, and $n=k t+r$. Assume that $t+r$ is an odd integer and let \mathcal{P} be a minimum size subspace partition of $V(n, q)$ consisting of subspaces of dimension t, subspaces of dimension $s=(t+r+1) / 2$, and subspaces of dimension less than s.

If the number of subspaces of dimension t is $n_{t}=\ell q^{t}-\delta$, where $\delta \geq 0$, then the number of subspaces of dimension s is at least equal to

$$
\begin{equation*}
b=1+\delta \frac{q^{t-s+1}-1}{q-1} . \tag{2}
\end{equation*}
$$

Proof. We consider the worst case scenario. By counting the number of vectors in subspaces of dimension t, that must be substituted into vectors of subspaces of dimension s when deleting δ subspaces of dimension t from a partition of the same type as the ideal partition, we get that the number of spaces of dimension s will be at least equal to

$$
1+\delta+\delta \frac{\left(q^{t}-1\right)-\left(q^{s}-1\right)}{\left(q^{s}-1\right)-\left(q^{s-1}-1\right)}=1+\delta+\delta q \frac{q^{t-s}-1}{q-1}
$$

The next result, Lemma 5, is also fundamental in our presentation. The proof of it uses Lemma 4 which was originally proved by Năstase and Sissokho [8] (also see $[4,5]$).

Lemma 4. Let n, k, t, and r be integers such that $k \geq 2,1 \leq r<t$, and $n=k t+r$. Let \mathcal{P} be a subspace partition of $V(n, q)$ with no subspace of dimension higher than t. Assume furthermore that \mathcal{P} contains a subspace of dimension t and a subspace of dimension d, with $0 \leq d<t$. Then

$$
|\mathcal{P}| \geq \ell q^{t}+q^{d}+1 .
$$

Lemma 5. Let n, k, t, and r be integers such that $k \geq 2,1 \leq r<$ $t-1$, and $n=k t+r$. Let \mathcal{P} be a subspace partition of $V(n, q)$ of size $\sigma_{q}(n, t)$ and with maximum subspace dimension t. Then the second largest dimension of a subspace in \mathcal{P} is $s=\lceil(t+r) / 2\rceil$.

Proof. Let a denote the dimension of the second largest dimension that appear among the members in \mathcal{P}. If $a>s$, then it follows from Lemma 4 that

$$
|\mathcal{P}| \geq \ell q^{t}+q^{a}+1>\ell q^{t}+q^{s}+1=\sigma_{q}(n, t),
$$

which is a contradiction. So we may assume that $a \leq s$. We now show that $a \leq s-1$ cannot hold. Indeed suppose, $a \leq s-1$. Since $s \neq t$, it follows from Lemma 2 that $n_{t} \leq \ell q^{t}$. Since $0<a \leq s-1<t$, the integer $|\mathcal{P}|$ is minimized when $n_{t} \leq \ell q^{t}$ is as large as possible. Thus, by selecting $n_{t}=\ell q^{t}$, counting vectors, and using the fact that

$$
\begin{equation*}
\left(q^{n}-1\right)-\ell q^{t}\left(q^{t}-1\right)=q^{2 s-1}-1 . \tag{3}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
|\mathcal{P}| & \geq \ell q^{t}+\frac{\left(q^{n}-1\right)-\ell q^{t}\left(q^{t}-1\right)}{q^{a}-1} \\
& \geq \ell q^{t}+\frac{q^{2 s-1}-1}{q^{s-1}-1} \\
& >\ell q^{t}+q^{s}+1
\end{aligned}
$$

which is a contradiction. This proves the lemma.
If there are just three distinct dimensions in a subspace partition \mathcal{P} of minimum size, then we can determine the smallest dimension that is present. To prove this result, we will use the following theorem due to Heden [3].

Theorem 6 (Tail Condition). Let \mathcal{P} be a partition of $V(n, q)$ of type [$d_{1}^{n_{1}} \ldots d_{m}^{n_{m}}$, where $d_{1}<\ldots<d_{m}$ and $n_{i}>0$ are integers for all $1 \leq i \leq m$. Then
(i) if $q^{d_{2}-d_{1}}$ does not divide n_{1} and if $d_{2}<2 d_{1}$, then $n_{1} \geq q^{d_{1}}+1$.
(ii) if $q^{d_{2}-d_{1}}$ does not divide n_{1} and $d_{2} \geq 2 d_{1}$, then either $n_{1}=$ $\left(q^{d_{2}}-1\right) /\left(q^{d_{1}}-1\right)$ or $n_{1}>2 q^{d_{2}-d_{1}}$.
(iii) if $q^{d_{2}-d_{1}}$ divides n_{1} and $d_{2}<2 d_{1}$, then $n_{1} \geq q^{d_{2}}-q^{d_{1}}+q^{d_{2}-d_{1}}$.
(iv) if $q^{d_{2}-d_{1}}$ divides n_{1} and $d_{2} \geq 2 d_{1}$, then $n_{1} \geq q^{d_{2}}$.

We can now prove the following lemma.
Lemma 6. Let a, k, r, s, and t be positive integers such that $n=k t+r$, $k \geq 2,1 \leq r<t-1,1 \leq a<s$, and $t+r=2 s-1$. If \mathcal{P} is a partition of $V=V(n, q)$ of type $\left[a^{n_{a}}, s^{n_{s}}, t^{n_{t}}\right]$ and of size $\sigma_{q}(n, t)$, then $a=s-1$. Furthermore, if the number of subspaces of dimension t is $n_{t}=\ell q^{t}-\delta$, where $\delta \geq 0$, then $\delta \leq q^{r}-1$.

Proof. Let $\delta \geq 0$ be an integer and assume that \mathcal{P} has $\ell q^{t}-\delta$ members of dimension t, n_{s} members of dimension s, and n_{a} members of dimension a. By counting the number of vectors in $V(n, q)$, we obtain

$$
\begin{equation*}
\left(\ell q^{t}-\delta\right)\left(q^{t}-1\right)+n_{s}\left(q^{s}-1\right)+n_{a}\left(q^{a}-1\right)=q^{n}-1 \tag{4}
\end{equation*}
$$

Since $\ell q^{t}+q^{s}+1=|\mathcal{P}|=\left(\ell q^{t}-\delta\right)+n_{s}+n_{a}$ and $\left(q^{n}-1\right)-\ell q^{t}\left(q^{t}-1\right)=$ $q^{2 s-1}-1$, Equation (4) implies

$$
\begin{equation*}
n_{a}\left(q^{s}-q^{a}\right)+\delta\left(q^{t}-q^{s}\right)=q^{2 s}-q^{2 s-1} \tag{5}
\end{equation*}
$$

For $\delta=0$, Equation (5) implies that $q^{s-a}-1$ divides $q-1$. Thus $s-a=1$. So we assume in the following that $\delta>0$.

We also note from Equation (5) that q^{s-a} divides n_{a}. If $s \geq 2 a$, then it follows from Theorem 6(iv) that $n_{a} \geq q^{s}$. This would contradict the fact that $|\mathcal{P}|=\ell q^{t}+q^{s}+1$ since $\delta>0$ and by Lemma 3, we have $n_{s} \geq 1+\delta+\delta \frac{q^{t-s}-1}{q-1}>1+\delta$. Moreover, if $s<2 a$, then Theorem 6(iii)
implies that $n_{a} \geq q^{s}-q^{a}+q^{s-a}$. Thus, Equation (5) yields

$$
\begin{aligned}
& n_{a}=\frac{q^{2 s}-q^{2 s-1}-\delta\left(q^{t}-q^{s}\right)}{q^{s}-q^{a}} \geq q^{s}-q^{a}+q^{s-a} \\
\Rightarrow & q^{2 s}-q^{2 s-1}-\delta\left(q^{t}-q^{s}\right) \geq\left(q^{s}-q^{a}+q^{s-a}\right)\left(q^{s}-q^{a}\right) \\
\Rightarrow & -q^{s+a}\left(q^{s-1-a}-2\right)-\delta\left(q^{t}-q^{s}\right)-q^{s}\left(q^{s-a}-1\right)-q^{2 a} \geq 0 .
\end{aligned}
$$

If $s-1-a \geq 1$, then $q^{s-1-a}-2 \geq 0$ and the expression on the left of Inequality (6) is negative. This would yield a contradiction. Hence, $s-1-a \leq 0$ and thus $a=s-1$ since $a<s$.

By using the relations $a=s-1$ and $t+r=2 s-1$ in Inequality (6), we obtain

$$
\begin{equation*}
\delta\left(q^{t}-q^{s}\right) \leq q^{t+r}-q^{t+r-1}-q^{s+1}+q^{s} . \tag{7}
\end{equation*}
$$

The left side is a linear increasing function of δ. For $\delta=q^{r}$, the left side is strictly larger than the right side, as $s \leq t-1$. This proves the lemma.
2.3. The structure of the set of points outside subspaces of dimension t in a minimum size subspace partition. In this subsection, let \mathcal{H} denote the set of all hyperplanes in $V=V(n, q)$ and let \mathcal{A} denote the family of subspaces of dimension t in a subspace partition \mathcal{P} of V. Let x_{i} denote the number of hyperplanes in V that contain exactly i members of \mathcal{A}.

Lemma 7. Let n, k, t, and r be integers such that $k \geq 2,1 \leq r<t-1$, and $n=k t+r$. Let \mathcal{P} be a subspace partition of $V(n, q)$ of size $\sigma_{q}(n, t)$ and with maximum subspace dimension t. Assume that \mathcal{P} contains exactly $n_{t}=\ell q^{t}$ members of dimension t. If $x_{i} \neq 0$, then

$$
\begin{equation*}
\ell-q^{r} \leq i \leq \ell \tag{8}
\end{equation*}
$$

Proof. The points of a subspace U of V not belonging to a hyperplane $H \in \mathcal{H}$ are called the black points to H in U, and are denoted by $B_{H}(U)$. If U is a subspace of H then $B_{H}(U)$ is the empty set. Elementary linear algebra arguments give that if U is not a subspace of H then

$$
\left|B_{H}(U)\right|=q^{\operatorname{dim}(U)-1}
$$

Let $\mathcal{B}=\mathcal{P} \backslash \mathcal{A}$ denote the set of members of \mathcal{P} that do not have dimension t. Then, $|\mathcal{B}|=q^{s}+1$. If H is a hyperplane that contains all members of \mathcal{B} then the points of V not belonging to H are distributed among the members of \mathcal{A}. So if i members of \mathcal{A} are contained in H we get the equation

$$
\left(n_{t}-i\right) q^{t-1}=q^{k t+r-1}
$$

This proves the left inequality in Equation (8).
The other extremal situation appears when no member of \mathcal{B} is contained in the hyperplane H. Let U_{j}, for $1 \leq j \leq q^{s}+1$, denote the
members of \mathcal{B}. By counting the number of points of the subspaces in \mathcal{B}, we get

$$
\sum_{j=1}^{|\mathcal{B}|} \frac{q^{\operatorname{dim}\left(U_{j}\right)}-1}{q-1}=\frac{q^{t+r}-1}{q-1}
$$

Thus, if $W \nsubseteq H$ for all $W \in \mathcal{B}$, then the total number of black points to H in the subspaces of \mathcal{B} is equal to

$$
\sum_{j=1}^{|\mathcal{B}|} q^{\operatorname{dim}\left(U_{j}\right)-1}=\frac{1}{q}\left(q^{t+r}-1+\sum_{j=1}^{|\mathcal{B}|} 1\right)=q^{t+r-1}+q^{s-1}
$$

So if i members of \mathcal{A} are contained in H, then we obtain in this extremal case the equation

$$
\left(n_{t}-i\right) q^{t-1}+q^{t+r-1}+q^{s-1}=q^{k t+r-1}
$$

This relation can be simplified to

$$
i=\ell+q^{s-t}
$$

which is impossible since i and ℓ are integers, and $s<t$ implies that $0<q^{s-t}<1$. Hence, we conclude that H must contain at least one member of \mathcal{B} and that inequality $i \leq \ell$ in (8) holds. This concludes the proof of the lemma.

Proposition 1. Let n, k, t, and r be integers such that $k \geq 2,1 \leq r<$ $t-1$, and $n=k t+r$. Let \mathcal{P} be a subspace partition of $V(n, q)$ of size $\sigma_{q}(n, t)$ and with maximum subspace dimension t and with $n_{t}=\ell q^{t}$. Then the set of points in V that do not belong to members in \mathcal{P} of dimension t constitutes a subspace $W \subseteq V$ of dimension $t+r$.

Proof. Trivially, but what will be used below, $x_{i} \geq 0$ for all i.
From Lemma 7, we know that

$$
x_{i} \neq 0 \quad \Longrightarrow \quad c=\ell-q^{r} \leq i \leq \ell
$$

As each member of \mathcal{A} is contained in exactly $\left(q^{(k-1) t+r}-1\right) /(q-1)$ hyperplanes, we get by double counting incidences (H, U), for $H \in \mathcal{H}$ with $U \subseteq H$, that

$$
\begin{equation*}
\sum_{i=c}^{\ell} i x_{i}=n_{t} \cdot \frac{q^{(k-1) t+r}-1}{q-1}=C \tag{9}
\end{equation*}
$$

Any two members of \mathcal{A} are contained in $\left(q^{(k-2) t+r}-1\right) /(q-1)$ hyperplanes. Thus, by double counting incidences, we get

$$
\begin{equation*}
\sum_{i=c}^{\ell}\binom{i}{2} x_{i}=\binom{n_{t}}{2} \frac{q^{(k-2) t+r}-1}{q-1}=D \tag{10}
\end{equation*}
$$

Furthermore, by counting the number of hyperplanes in V we get that

$$
\begin{equation*}
\sum_{i=c}^{\ell} x_{i}=\frac{q^{k t+r}-1}{q-1}=E \tag{11}
\end{equation*}
$$

Observe that the constants C, D and E are independent of the particular choice of subspace partition of minimum size that contains a set \mathcal{A} as assumed in the proposition. This is especially true for the ideal partition \mathcal{P}_{0}, a fact that will soon be used.
We obtain from the Equations (9), (10) and (11) that

$$
\begin{equation*}
\sum_{i=c}^{\ell} x_{i}(i-c)(i-\ell)=2 D+C-(c+\ell) C+c \ell E \tag{12}
\end{equation*}
$$

We will soon use the following most trivial facts

$$
(i-c)(i-\ell) \begin{cases}=0 & \text { if } i=c \tag{13}\\ <0 & \text { if } c<i<\ell \\ =0 & \text { if } i=\ell\end{cases}
$$

In order to show that the right side of Equation (12) is equal to zero we consider the ideal partition \mathcal{P}_{0}. From the construction of the ideal partition \mathcal{P}_{0}, it follows that the points in the $q^{s}+1$ subspaces of dimension less than or equal to $s=\lceil(t+r) / 2\rceil$ in \mathcal{P}_{0} constitute a subspace W of dimension $t+r$. Any hyperplane $H \in \mathcal{H}$ either contains W or intersects W in $\left(q^{\operatorname{dim}(W)-1}-1\right) /(q-1)$ points. These are the two extremal cases in the proof of Lemma 7. So for the ideal partition $x_{i}=0$ for $c<i<\ell$. Then, it follows from Equation (13) that the left side of Equation (12) is equal to zero.

Thus, we obtain from Equation (13) that for any partition \mathcal{P},

$$
\sum_{i=c+1}^{\ell-1} x_{i}(i-c)(i-\ell)=0
$$

As $x_{i} \geq 0$, we may thus conclude from the equation above and Equation (13) that

$$
c<i<\ell \quad \Longrightarrow \quad x_{i}=0
$$

Hence, we can now use Equation (9) and Equation (11) (or refer to the ideal subspace partition, which must have the same solution x_{c} and x_{ℓ} to these two equations) to calculate x_{c} (and $\left.x_{\ell}\right)$. We then get that

$$
\begin{equation*}
x_{c}=\frac{q^{(k-1) t}-1}{q-1} . \tag{14}
\end{equation*}
$$

Let \mathcal{H}_{0} denote the set of all hyperplanes that intersect $q^{(k-1) t+r}$ members of \mathcal{A} so $x_{c}=\left|\mathcal{H}_{0}\right|$. Let W denote the intersection of all these hyperplanes and let S denote the set of points not contained in any member of \mathcal{A}.

From the argument used in the proof of Lemma 7, we deduce that

$$
\begin{equation*}
S \subseteq \bigcap_{H \in \mathcal{H}_{0}} H=W \tag{15}
\end{equation*}
$$

and from Equation (14), we obtain

$$
\operatorname{dim}(W)=n-(k-1) t=t+r .
$$

Moreover, the number of points of S is equal to

$$
|S|=\frac{q^{n}-1}{q-1}-\ell q^{t} \frac{q^{t}-1}{q-1}=\frac{q^{t+r}-1}{q-1}=\left|P_{W}\right| .
$$

Thus, it follows from Equation (15) that the set of points in S will constitute the subspace W.

3. Proofs of the results

3.1. The case $t+r$ is even. In this case the following lemma is true:

Lemma 8. Let n, k, t, and r be integers such that $k \geq 2,1 \leq r<t-1$, and $n=k t+r$. Let \mathcal{P} be a subspace partition of $V(n, q)$ of minimum size $\sigma_{q}(n, t)$ and having the largest subspace dimension t. If $t+r=2 s$ is even, then

$$
n_{t} \geq \ell q^{t}
$$

Proof. From Lemma 5 we know that $s=(t+r) / 2$ denotes the second largest dimension among the dimensions that appear in \mathcal{P}. Assume that \mathcal{P} has $n_{t}=\ell q^{t}-\delta$ subspaces of dimension t, with $\delta \geq 1$. Then the number, N, of points covered by the subspaces in \mathcal{P} satisfies

$$
\begin{align*}
N & \leq\left(\ell q^{t}-\delta\right) \frac{q^{t}-1}{q-1}+\left(q^{s}+1+\delta\right) \frac{q^{s}-1}{q-1} \\
& =\frac{q^{k t+r}-1}{q-1}-\delta \frac{q^{t}-q^{s}}{q-1}=N-\delta \frac{q^{t}-q^{s}}{q-1} \tag{16}
\end{align*}
$$

Since we assumed $\delta \geq 1$, we have a contradiction. Thus $\delta \leq 0$, and the proof is complete.

We now prove Theorem 2.
Proof. From Lemma 8 and Lemma 2 we deduce that a minimum size subspace partition \mathcal{P} of V in the case $t+r$ is even has a subfamily \mathcal{A} consisting of

$$
n_{t}=\ell q^{t}=q^{t+r} \frac{q^{(k-1) t}-1}{q^{t}-1}
$$

spaces of dimension t. By Proposition 1, the set of points in the subspaces in the complement family $\mathcal{A}^{\prime}=\mathcal{P} \backslash \mathcal{A}$ constitute a $(t+r)$ dimensional subspace W of V.

There is just one type of subspace partition of W into $q^{(t+r) / 2}+1$ subspaces, namely, a subspace partition that solely consists of subspaces of dimension $(t+r) / 2$.
3.2. The case $r=t-1$. In this case, we show that a subspace partition \mathcal{P} of V of minimum size is unique.

When $r=t-1$, the ideal subspace partition consists of $n_{t}=\ell q^{t}+1$ subspaces of dimension t and q^{t} subspaces of dimension $t-1$. Assume there is another subspace partition of size $\sigma_{q}(n, t)$ consisting of subspaces of dimension t and $a<t-1$. Let n_{a} denote the number of subspaces of dimension a and $n_{t}=\ell q^{t}+1+x$ be the number of subspaces of dimension t. Thus

$$
\begin{equation*}
n_{a}+x=q^{s}=q^{t} \tag{17}
\end{equation*}
$$

From the packing condition we can conclude that $x \geq 0$. If we enumerate vectors, thereby comparing with the ideal partition, we get that

$$
q^{t}\left(q^{t-1}-1\right)=x\left(q^{t}-1\right)+n_{a}\left(q^{a}-1\right)
$$

Combining these two equations we obtain

$$
n_{a}\left(q^{t}-q^{a}\right)=(q-1) q^{2 t-1} .
$$

There is just one solution to this equation, $a=t-1$ and $n_{a}=q^{t}$. This proves Theorem 3.
3.3. The case $t+r$ odd and $t+r \leq 2 t-3$. By Lemma 2 , we know that $n_{t} \leq \ell q^{t}$. Let s be as above, that is $s=(t+r+1) / 2$.

If $n_{t}=\ell q^{t}$, we can argue as in Proposition 1. Specifically, let W be defined as in Proposition 1. No subspace partition of W can contain two subspaces of dimension s, as $\operatorname{dim}(W)=2 s-1$. Hence a minimum size subspace partition of W consists of one subspace of dimension s and the remaining subspaces of dimension $s-1$. This proves Theorem 4.

Now we consider two distinct cases, when either two or three distinct dimensions occur in \mathcal{P}, and we derive some new necessary conditions. When there are just two distinct dimensions appearing in \mathcal{P}, then by Lemma 5 these dimensions must be t and s. Thus, by the packing condition and the assumption that the subspace partition \mathcal{P} has the minimum size $\sigma_{q}(n, t)$, we get the following system of equations:

$$
\begin{cases}n_{s} & +n_{t} \tag{18}\\ n_{s}\left(q^{s}-1\right) & =n_{t}(n, t) \\ \left.q^{t}-1\right) & =q^{n}-1\end{cases}
$$

This system has only one integer solution, which is the one given in Theorem 5.

If there are three distinct dimensions t, s, and a appearing in \mathcal{P}, then the packing condition gives the following system of equations:

$$
\left\{\begin{array}{ll}
n_{a} & +n_{s} \\
n_{a}\left(q^{a}-1\right) & +n_{t}
\end{array}=\sigma_{q}\left(q^{s}-1\right)+n_{t}\left(q^{t}-1\right)=q^{n}-1 .\right.
$$

By Lemma 6 , we know that $a=s-1$. Let $n_{t}=\ell q^{t}-\delta, n_{s}=1+\delta+x$, and $n_{s-1}=q^{s}-x$. From the system of equations above, or Equation (7) in the proof of Lemma 6, we have that

$$
x\left(q^{s}-q^{s-1}\right)=\delta\left(q^{t}-q^{s}\right),
$$

which we transform into

$$
x(q-1)=\delta\left(q^{t-s+1}-q\right) .
$$

Solving for x in this equation gives the remaining part of Theorem 5.

4. Remarks

Corollary 1. Let n, k, r, t be integers such that $k \geq 2, n=k t+r$ and $1 \leq r<t$. Let \mathcal{P} be a partition of $V(n, q)$ containing a partial t-spread of maximum size and let a be the second largest dimension of a subspace in \mathcal{P}. Then $|\mathcal{P}|>\sigma_{q}(n, t)$, in the following cases:
(1) $t+r$ is even
(2) $t+r$ is odd and $r \neq t-1$.

In other words, \mathcal{P} does not have minimum size unless possibly $n=$ $(k+1) t-1$.
Proof. Let \mathcal{P} be a partition of $V(n, q)$ of size $|\mathcal{P}|=\sigma_{q}(n, t)=\ell q^{t}+q^{s}+1$. First, if $t+r$ is even, then by Theorem $2, n_{t}=\ell q^{t}$. Next, assume that $t+r$ is odd and $r \neq t-1$. Then $s \neq t$, where $t+r=2 s-1$. Now, it follows from Lemma 2 that $n_{t} \leq \ell q^{t}$. Hence, the result holds.

The methods used in the proof of Theorem 5 cannot be extended to rule out the existence of a subspace partition \mathcal{P}_{x} of type $\left[3^{13} 4^{28}\right]$ in $V(9,2)$. This subspace partition has size 41 which is equal to the minimum size of a subspace partition in $V(9,2)$ with subspaces of maximum subspace dimension 4. The ideal partition of $V(9,2)$ has type $\left[2^{8} 3^{1} 4^{32}\right]$ and is of size 41. Although we tried very hard (using a computer search) to construct such a partition, we have not succeeded yet. However, we still believe that the subspace partition \mathcal{P}_{x} exists.

References

[1] A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Zeit. 145 (1975), 211-229.
[2] T. Bu, Partitions of a vector space, Disc. Math. 31 (1980), 79-83.
[3] O. Heden, On the length of the tail of a vector space partition, Discrete Math. 309 (2009), 6169-6180.
[4] O. Heden, J. Lehmann, E. Năstase, and P. Sissokho, Extremal sizes of subspace partitions, Des. Codes and Cryptogr. 64(3)(2012), 265-274.
[5] O. Heden, J. Lehmann, E. Năstase, and P. Sissokho, The supertail of a subspace partition, To appear in Des. Codes and Cryptogr.
[6] M. Herzog and J. Schönheim, Group partition, factorization and the vector covering problem, Canad. Math. Bull. 15(2) (1972), 207-214.
[7] J. Lehmann and O. Heden, Some necessary conditions for vector space partitions, Discrete Math. 312(2012), 351-361.
[8] E. Năstase and P. Sissokho, The minimum size of a finite subspace partition, Lin. Alg. and its Appl. 435 (2011), 1213-1221.
O. Heden (olohed@math.kth.se), Department of Mathematics, KTH, S-100 44 Stockholm, Sweden.
J. Lehmann (jlehmann@math.uni-bremen.de), Department of Mathematics, Bremen University, Bibliothekstrasse 1 - MZH, 28359 Bremen, Germany.
E. Năstase (nastasee@xavier.edu): Department of Mathematics and Computer Science, Xavier University, 3800 Victory Parkway, Cincinnati, Ohio 45207.
P. Sissokho (psissok@ilstu.edu): Mathematics Department, Illinois State University, Normal, Illinois 61790.

