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Abstract

Let ¢ and k be positive integers, and let Iy, = {i € Z : —k < i < k}. Let s;(Iy)
be the smallest positive integer £ such that every zero-sum sequence over I with
at least ¢ elements contains a zero-sum subsequence with exactly ¢ elements. If
no such ¢ exists, then let s;(I;) = co. We prove that s,(Ij) is finite if and only if
every integer in [1, D(I})] divides ¢, where D(I}) = max{2,2k—1} is the Davenport
constant of I. Moreover, we prove that if sj(Ij) is finite, then ¢t + k(k — 1) <
si(I) < t+ (2k — 2)(2k — 3). We also show that s;(I;) = ¢t + k(k — 1) holds for
k < 3 and conjecture that this equality holds for k > 1.

1. Introduction and Main Results

We shall follow the notation in [16], by Grynkiewicz. Let N be the set of positive
integers. Let Gy be a subset of an abelian group G. A sequence over Gg is an

IThis research was made possible through a course called Introduction to Undergraduate Re-
search which is sponsored by the Mathematics Department of Illinois State University. This
course was taught by P. Sissokho in Spring 2015, and the following students were enrolled in it:
C. Augspurger, M. Minter, K. Shoukry, and K. Voss.

2Corresponding author.
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unordered list of terms in Gy, where repetition is allowed. The set of all sequences
over Gy is denoted by F(Gp). A sequence with no term is called trivial or empty.
If S is a sequence with terms s;, ¢ € [1,n], we write S = s1 ... s, = [\, 8.
We say that R is a subsequence of S if any term in R is also in S. If R and T are
subsequences of S such that S = R-T, then R is the complementary sequence of
T in S, and vice versa. We also write T = S - R™! and R = S -T~'. For every
sequence S = §1-...- 8, over G,

e the opposite sequence of S'is =S = (—s1) ...  (—=$n);

e the length of S is |S| = n;

o the sum of Sis o(S) =51+ ... + Sp;

o the subsequence-sum of S is X(S) = {o(R) : R is a subsequence of S}.
For any sequence R over Gy and any integer d > 0,

R is the trivial sequence, and R = R-...- R for d > 0.
—_—
d

A sequence with sum 0 is called zero-sum. The set of all zero-sum sequences
over Gy is denoted by B(Gp). A zero-sum sequence is called minimal if it does not
contain a proper zero-sum subsequence. The Davenport constant of Gy, denoted
by D(Gy), is the maximum length of a minimal zero-sum sequence over Gy. The
research on zero-sum theory is quite extensive when G is a finite abelian group (e.g.,
see [5, 8, 10, 11] and the references therein). However, there is less activity when G is
infinite (e.g., see [3, 6] and the references therein). The study of the case G = Z" was
explicitly suggested by Baeth and Geroldinger [1] due to their relevance to direct-
sum decompositions of modules. Baeth, Geroldinger, Grynkiewicz, and Smertnig [2]
studied the Davenport constant of Gy C Z". The Davenport constant of an interval
in Z was first determined (see Theorem 1) by Lambert [17] (also see [7, 20, 21] for
related work.) Plagne and Tringali [18] considered the Davenport constant of the
Cartesian product of intervals in Z.

For z,y € Zwith x <y, let [x,y] ={t € Z: = < i < y}. Fork € N, let
I, = [—k, k]

Theorem 1 (Lambert [17]). If k € N, then D(I}) = max{2,2k — 1}.

For G finite and Gy C G, let s¢;(Gp) be the smallest integer ¢ € N such that any
sequence in F(Gp) of length at least ¢ contains a zero-sum subsequence of length
t. If t = exp(G), then s;(Gp) is called the Erdés—Ginzburg—Ziv constant, and it
is denoted by s(G). Erdds, Ginzburg, and Ziv [8] proved that s(Z,) = 2n — 1.
Reiher [19] proved that s(Z, & Z,) = 4p — 3 for any prime p. In general, if G has
rank 2, say G = Z,,, ® Z,,, with ng > ny > 1 and nq | ng, then s(G) = 2n; +2ny — 3
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(see [14, Theorem 5.8.3]). For groups of higher rank, we refer the reader to the
paper of Fan, Gao, and Zhong [9]. Recently, Gao, Han, Peng, and Sun [13] proved
that for any integer k > 2 and any finite G with exponent n = exp(G), if n — |G|/n
is large enough, then si,(G) = kn+ D(G) — 1.

Observe that if G is torsion-free and Gy C G, then for any nonzero element
g € G and for any d € N, the sequence gl¥ € F(Gy) does not contain a zero-sum
subsequence. Thus, we will work with the following analogue of s;(Gyp).

Definition 1. 3 For any subset Gy C G, let s,(Gp) be the smallest integer ¢ € N
such that any sequence in B(Gy) of length at least ¢ contains a zero-sum subsequence
of length ¢. If no such ¢ exists, then let sj(Gg) = 0.

If t = exp(@G) is finite, then we denote s;(Gp) by s(G). Let r € N and assume that
G > 7Z7. We say that G has Property D if, for every sequence S € F(G) of length
s(G) — 1 that does not admit a zero-sum subsequence of length n, there exists some
sequence T € F(G) such that S = T("~1. Zhong found the following interesting
connections between s(G) and s'(G). (See the Appendix for their proofs.)
Lemma 1 (Zhong [22]). Let G be a finite abelian group.
(7) If ged(s(G@) — 1,exp(G)) = 1, then s'(G) = s(G).
(13) Let G 2 ZI, where n > 3 and r > 2. Suppose that c € N, s(G) = c(n—1) + 1,
and G has Property D. If ged(s(G) — 1,n) = ¢, then s'(G) < s(G).
Remark 1 (Zhong [22]).
(i) If G =2 Z2 with n odd, then s'(G) = s(G).
(i1) If G = Z2,, with h > 2, then s'(G) = s(G) — 1.

In this paper, we prove the following results about s}(Ij), where I}, = [—k, k].

Theorem 2. Let k,t € N.
(1) sy(Ix) is finite, then every integer in [1, D(I})] divides t.
(it) If every integer in [1, D(Iy)] divides t, then
t+k(k—1) <s;(I) <t+ (2k —2)(2k — 3).
Corollary 1. Lett € N and k € {1,2,3}. Thens,(I;) =t+k(k—1) if and only if
every integer in [1, D(I},)] divides t.
Conjecture 1. Corollary 1 holds for any k € N.

2. Proofs of the Main Results

For the rest of this paper, we assume that k,¢t € N. For any integers a and b, we
denote ged(a,b) by (a,b). We use the abbreviations z.s.s and z.s.s» for zero-sum
sequence(s) and zero-sum subsequence(s), respectively.

3This formulation was suggested to us by Geroldinger and Zhong [15].
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The following lemma gives a lower bound for sj ().

Lemma 2. IfU=Fk- (=)™ and V = (k—1)- (=1)*=1, then § = Ulez 1. vk
and R = UF-1 . VE-Y gre z.5.s that do not contain a z.s.s of length t. Thus,
si(I) > t+ k(k—1).

Proof. We prove the lemma for S only since the proof for R is similar. By contra-
diction, assume that S contains a z.s.s» of length ¢. Since o(S) = 0, it follows that
S also contains a z.s.sv S’ of length |S| — ¢t = k(k — 1) — 1. Moreover, S’ can be
written as S’ = kl@ . (k — 1) . (=1)[9 for some nonnegative integers a, b, and c.
Hence o(S") = ak +b(k—1)—c=0and a+b+c=|S'| = k? — k — 1. Thus,

(a+1)(k+1) = k(k — b).

Since a,b,k > 0, we have 0 < k — b < k. Since (k,k + 1) = 1, we obtain that k& + 1
divides k — b, which is a contradiction. Thus, sj(I) > |S|+1=t+k(k—1). O
)

Example 1. If k = 3, then S = (3--1--1--1 (4], (2--1- —1)[3] is a z.s.s of
length 65 over [—3, 3] which does not contain a z.s.s» of length ¢ = 60.

Lemma 3. Let a,b,x € N. If S = al@nl . (—b)[ﬁ} is a z.s.8, then the length of
any z.s.5 of SI* is a multiple of |S|.

Proof. Let S’ be a z.s.sv of S[*). Since the terms of S are a and —b, there exist
nonnegative integers h and r such that S’ = a" - (—b)" and

o(S') = ha rbfoéh(ab) (abw (1)

Since <(a—bb), ﬁ) = 1, we obtain W divides h and d1v1des r. Thus, h =

pﬁ and r = q(a,b) for some integers p and q. Substltutlng h and r back into (1)
yields p = q. Thus,

+4q

b
|S/|:h+r:p( = p|S]. O

a
a,b) (a,b)
Lemma 4. Ifsj(I}) is finite, then every odd integer in [1, D(I})] divides t.

Proof. The lemma is trivial for ¥ = 1. If £ > 2, then Theorem 1 implies that
D(I;) = 2k — 1. Let £ = 2¢ — 1 be an odd integer in [3, D(I})], and consider the
minimal z.s.s S = cl°~!. (—¢ + D)9, If z € N, then Lemma 3 implies that for any
z.s.50 R of Sl |R| divides |S| = 2c — 1 = £. Thus, if £ { ¢, then there is no z.s.s»
of S whose length is equal to t. Since x is arbitrary, it follows that s}(I;) can be
arbitrarily large. This proves the lemma by contrapositive. O
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To prove the upper bound in Theorem 2(ii), we will use Lemma 5 which is a
direct application of a well-known fact: “Any sequence of n integers contains a
nonempty subsequence whose sum is divisible by n”.

Lemma 5. Let f € N and X € F(Z). If | X| > B, then there exists a factorization
X=Xy -X1-...- X, such that:

(i) | Xo| < B —1 and Bt o(R) for any nonempty subsequence R of Xo;
(ii) | X;| < B and 8| o(X;) for all j € [1,7].
We will also use the following lemmas.

Lemma 6. Assume that k > 2 and that every integer in [1, D(Iy)] divides t. Let
S be a z.s.s over I, = [—k, k] that does not contain a z.s.s» of length t. Let S =
Sy ...+ Sk be a factorization into minimal z.5.8 S;, i € [1,h]. If |S| > t+k(k—1),
then there exists some length B such that:

ng = [{Si: [Si| = B, i € [LA}| > (2k —2)(2k = 3).
Proof. Recall that (a,b) denotes ged(a,b). It is easy to see that
(2k — 3,2k —2) = (2k — 2,2k — 1) = (2k — 3,2k — 1) = 1. (2)

Since k > 2 and every integer in [1, D(I})] = [1,2k — 1] is a factor of ¢, it follows
from (2) that t = p(2k — 1)(2k — 2)(2k — 3), for some p € N. By definition, we have
max;e(1p] |Si| < D(Iy) = 2k —1. Thus, it follows from the pigeonhole principle that
there exists some length § such that:

trh(k—1) _ t+k(k-1)
T omaxieny [Si| T 2k—1

> p(2k — 2)(2k — 3). O

Lemma 7. Assume that k > 2 and that every integer in [1, D(Iy)] divides t. Let
S be a z.s.s over I, = [—k,k| of length |S| > ¢t + k(k — 1) such that S does not
contain a z.s.sv of length t. Let S = Sy -...- Sy be a factorization into minimal
z.8.8 Si, 1 € [1,h]. Let L ={|S;|: i € [1,h]}, ne =|{S:: |Si| =4, i € [1,h]}], and
o = maxyeyr £. If there exists § € L such that ng > o — 1, then

S|<t—pB+ (-1 max £.
S|<t=5+(3-1), max
Remark 2. By Lemma 6, there exists 3 € L such that ng > (2k — 2)(2k — 3).
Moreover, o = maxeer, £ < D(I) < (2k — 2)(2k — 3) + 1 for k > 2. Thus, ng > «a,
i.e., the hypothesis of Lemma 7 always holds.
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Proof of Lemma 6. By hypothesis, there exists 5 € L such that ng > a—1. Given a
factorization S = Sy -...- S, into minimal z.s.sv S;, ¢ € [1, k], consider the following
sequence of lengths in L\ {}:

h

x= II sl= I ¢

i=1,18:|#8 LeL\{B}
By Lemma 5, there exists a factorization X = X - X; ... X, such that:

|Xo| <8 —1and §10(R) for any nonempty subsequence R of Xo; (3)

| X;| < B and g | o(X;) for all j €[1,r]. (4)
Thus,
o(X;)= > x<|X;| -maxz < faforallje[l,r]. (5)
zeX; zE€X;

To summarize, it follows from the hypothesis of the lemma, (4), and (5) that
Blt,ng>a—1,03]|0(X;), and 0(X;) < af for all j € [1,r].
Thus, if

Bng+ > o(X;) >t
j=1

then there exists a nonnegative integer nj; < ng and a subset @ C [1,7] such that
Bnj + Z o(X,
q€Q

Then S would contain a z.s.s» of length ¢ obtained by concatenating nfg z.s.sb of §

of length 8 and all the z.s.s» of S whose lengths form the subsequence HZGQ X, of
X. This contradicts the hypothesis of the theorem. Thus, the following inequality
holds:

Bng+ > o(X;) <t (6)
j=1
Since ( divides both ¢ and Z;:1 o(Xj), it follows from (6) that
Bng + Z y<t— (7)
=1
Thus, it follows from (7) and the definitions of X and X; (0 < j < r) that

|S|:Z€ng:ﬁng+a ﬁnﬁ—l-z )+0(Xo) <t—pB+0(Xo) (8)

leL
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Next, it follows from (3) and (8) that

IS|<t—B+0(Xo) <t—p+ \X0|Z€11Ll%{>§3}£ <t-p+ (B 1)@6121%}6. O
Proof of Theorem 2. We first prove part (i). Suppose that s}(Ij) is finite. Then
it follows from Lemma 4 that every odd integer in [1, D(I})] divides ¢t. Thus, it
remains to show that if a is an even integer in [1, D(I})], then a | t.

Case 1: a = 2° for some e € N.

Lemma 3 implies that for any p € N, the sequence S = (1 - —1)[p] is a z.s.s whose
z.s.s» have lengths that are divisible by 2. Therefore, if 2 { ¢, then s;(I) > |S| = 2p,
where p can be chosen to be arbitrarily large. Thus, 2 | ¢ if s} (1) is finite.

Now assume that e > 1. Since the ged of two numbers divides their difference,
(a/2—1,a/2+1) < 2. Since a/2—1 and a/2+1 are both odd, (a/2—1,a/2+1) = 1.
Lemma 4 implies that for any p € N, the sequence S with S = (a/2 — 1)l¢/2+1] .
(—a/2 —1)1¢/271 is a z.5.s whose z.s.s» have lengths that are divisible by |S| = a.
Thus, if a 1 ¢, we can construct arbitrarily long z.s.s over I = [—k, k| that do not
contain z.s.s» of length ¢, because p can be chosen to be arbitrarily large. Thus, a | ¢
if s} (I}) is finite.

Case 2: a is not a power of 2.

Thus, a = 2¢j, where e and j are nonnegative integers and j is odd. By Lemma 4,
J | t, and if follows from Case 1 that 2¢ | ¢. Since j is odd, (2¢,7) = 1. Since 2° and
Jj are factors of ¢, it follows that 2¢75 | ¢.

The above cases and Lemma 4 imply that every integer in [1, D(I})] divides ¢.

Since the lower bound of s}(I;) in Theorem 2(ii) follows from Lemma 2, it remains
to prove its upper bound. Recall that every integer in [1, D(Iy)] divides ¢t. Let S
be an arbitrary z.s.s over I, = [—k, k] that does not contain a z.s.s» of length ¢.

If k = 1, then it follows from Theorem 1 that D(Ix) = 2. Thus, 2 | ¢ and
|S| = x1 + 225 for some nonnegative integers 1 and xo. If |S| > ¢, then ;1 > 2 or
x9 > t/2 (because 2 | t). This implies that there exist nonnegative integers x| < zy
and x5, < x5 such that 2} 4+ 25 = t. Thus, ' = 0#1) . (1. —1)l%2] is a z.s.s» of S
of length ¢, which is a contradiction since S does not contain a z.s.s» of length t.
Hence |S| <t —1, and s;(Ix) < |S|+1=t.

Now assume k > 2. Since S was arbitrarily chosen, if |S| < ¢+ k(k—1) — 1, then

Si(Ig) < |S|+1<t+k(k—1) <t+ (2k —2)(2k — 3),

which yields the upper bound in Theorem 2(i7). Thus, we may assume that |S| >
t+k(k—1). Let S = S;-...-S), be a factorization into minimal z.s.su S;, i € [1, h]. Let
L={Si]:ie[L,h},ne=1|{S:i: |S:i|=¢ i€l,h]},and o = maxeer . Iif o =1,
then any term of S is equal to 0, which is a contradiction since |S| > ¢ + k(k — 1)
and S does not contain a z.s.s» of length ¢. So, we may assume that o > 2. Then
Remark 2 implies that there exists § € L such that ng > a — 1. If 8 = a, then
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Lemma 7 yields

IS|<t—a+(a—1) max £<t—a+ (a—1)>2
LeL\{a}

If 1 < g <a-1, then Lemma 7 also yields

< - -1
si<ee e (<0500 e o)

<t+ 13%?3(—1 (—B+(B—1)a)

=t+ (—(a—1)+ (a —2)a)
=t—a+(a—1)>~%

So in all cases, we obtain
S| <t—a+(a—1)><t—(2k—1)+ (2k —2)?, (9)

where we used the fact « < D(I) = 2k — 1. Since S was chosen to be an arbitrary
z.8.s over I = [—k, k] which does not contain a z.s.s» of length ¢,

Si(I) <|S|+1<t—(2k—1)+ 2k -2 +1=t+(2k-2)2k—3). O

Proof of Corollary 1. For k € {1,2}, the corollary holds since the upper and lower
bounds of s;(I) given by Theorem 2 are both equal to ¢t + k(k — 1).

For k = 3, it also follows from Theorem 2 that ¢ + 6 < s;(I3) < t + 12. Thus,
it remains to show that if S is an arbitrary z.s.s over I3 which does not contain a
z.8.8v of length ¢, then |S| # ¢ + d for all d € [6, 11].

Consider a factorization S = Sy - ... - S}, into minimal z.s.sv S;, ¢ € [1,h]. Let
L=A{|S;|: i €[1,h]}, me=|{Si: |Si| =4, i € [1,h]}], and o = maxger ¢. Thus,
a < D(I3) =5. If o < 4, then Lemma 7 yields

< C1\2 _ 12 4 .
\S|_t+1r§n§§4((a 1)?—a)=t+@—-1)>-4=t+5

Thus, we may assume that o = r?aLxZ =5 for any factorization of S.
€

If 8 € {1,2} and ng > 4, then Lemma 7 yields

S| <t+ max (B—1a—pB)=t+(2-1)5-2=t+3.
pe{1,2}

Next, suppose that R is a z.s.s» of S with length at least 4. Then R - —R can be
trivially factorized into |W/| z.s.sv of length 2, where |W| > 4. This yields a new
factorization S = S -...- S}, with ny > 4, which implies that |S| < t 4+ 5 by the
above analysis upon setting g = 2.

Also note that if ny > t/¢ for some ¢ € L, then we obtain a z.s.s» of S of length
t by concatenating t/¢ z.s.sv of length £ in S. This would contradict the definition
of S. Thus, we can assume that n, <t¢/¢ — 1 for all £ € L, where L C [1,5].
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To recapitulate, we may assume that for any factorization S =Sy -...- Sy, with
Sp = H?zl |S;| and ng = |{S; : |Si| = ¢, i € [1, h]}|, the following properties hold:

(i) Sp = 5lnsl.glnal . glnsl . 9ln2] Il where 0 < np < t/0—1for £ € [1,5], ns > 1,
and ny,ny < 3;

(ii) there is a one-to-one correspondence between the subsequences S7 of Sy, and
the z.s.sv S’ of S with length |S'| = o(S%);

(iii) if R is z.s.s over I3 such that |R| > 4, then R and —R cannot both be
subsequences of S

(iv) if R is a minimal z.s.s» of S such that |R| = 5, then R = 32 . (—=2)B). (This
follows from (i77) and the fact A = 321 . (—2)13l and — A are the only minimal
z.8.s of length 5 over Is = [—3,3]. Thus, if —A is the only z.s.s» of S, then we
can analyze —S instead of S.)

Claim 1: If 5 - 314 is a subsequence of Sy, then |S| # t +d for all d € [6,11].

If ny +no+ny > 1, then either 5-4-3[4 or 5-34.2, or 5-3l4.1 is a subsequence
of Sr, which implies that ¥(Sr) contains all the integers in [6,11]. In this case,
|S| # t+d for d € [6,11], since S does not contain a z.s.8» of length ¢ by hypothesis.
Thus, we may assume that ng = ny = nq = 0, which implies that Sy, = 5[] . 3lnsl,
If ns < 1, then |S| = o(SL) = 5ns + 3ng <5+ 3(t/3 — 1) < t + 5. Thus, we may
assume that S;, = 5! .3[n3]’ where ns > 2 and ng > 4.

Then X(Sp) contain all the integers in [6,11] \ {7}; and so |S| # ¢ + d for
d € [6,11]\ {7}. It remains to show that |S| # ¢t + 7. Note that the only minimal
z.s.s of length 3 over [—3, 3] are (up to sign) By = 2-(—1) and By = 3-—2-—1. Since
5-314 is a subsequence of Sr,, the assumptions (i)-(iv) imply that S’ = A-X-Y-Z-W
is a subsequence of S, where A = 311.(=2)Bl and XY, Z,W € {-By, By, —Bs, Ba}.
By inspecting the sequence S’ for all possible choices of X, Y, Z, and W, we see
that S admits a z.s.s» of length 7. For instance, if X =Y = Z = B,, then

S'zA-Bg’]-W:A[21.3.(_1)[3].W

contains the subsequence 3 - (—1)B . W, which is a z.s.sv of length 4 + [W| = 7.
Hence, |S| # ¢t + 7. Thus, |S| # t+ d for all d € [6,11].

Claim 2: If 5- 4121 . 3 is a subsequence of Sy, then |S| # t +d for all d € [6,11].

If ng > 2 or nq +ne > 1, then either 5-421. 321 or 5.421.3.2 or5.421.3.1 is
a subsequence of Sp,, which implies that ¥(S) contains all the integers in [6, 11].
In this case, |S| # t+ d for d € [6,11], since S does not contain a z.s.s» of length ¢
by hypothesis. Thus, we may assume that ng = 1 and n; = ny = 0, which implies
that Sp, = 5] . 4lnal 3. If ng < 1, then

S| = 0(SL) = 5ns +4dng +3 <5+ 4(t/4— 1) +3 < t+5.
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Thus, we may assume that S; = 5l . 4lnal 3 where ns > 2 and ny > 2.

Thus, 5 - 412 . 3 is a subsequence of Sy, which implies that X(Sy) contain all
the integers in [7,11]. Thus, |S| # t + d for d € [7,11]. It remains to show that
|S| # t + 6. Note that the only minimal z.s.s of length 4 over [—3,3] are (up to
sign) O = 3- (=)l and Cy = 3-1-(=2)P. Since 5 -4 - 3 is a subsequence of
Sp,, the assumptions (i)—(iv) imply that S’ = A- X -Y - Z is a subsequence of S,
where A = 312 . (=2)Bl, XY € {~C},Cy, —Cy,Cs}, and Z € {—By, By, —By, B}
By inspecting the sequence S’ for all possible choices of X, Y, and Z, we see that
S’ admits a z.s.s» of length 6. For instance, if X = C; and Y = (5, then

S/:A.Cl.CZ.Z:A.(?,.fl.fQ)m.(1.f1).Z

contains the subsequence (3 - —1 - —2) which is a z.s.s» of length 6. Hence,
|S] #t+6. Thus, |S|#t+dforall de[6,11].

Claim 3: If 5 - 45 is a subsequence of Sy, then |S| # t +d for all d € [6,11].

If ng > 1, then 5 - 4! . 3 is a subsequence of Sy, and we are back in Claim 2.
Thus, we may assume that ng = 0. If nog > 1 or ny > 2, then either 5 - 4Bl 2 or
5-401.1P] is a subsequence of Sy, which implies that (S ) contains all the integers
in [6,11]. In this case, |S| # t + d for d € [6,11], since S does not contain a z.s.s»
of length t by hypothesis. Thus, we may further assume that no = 0 and ny; < 1.
Thus, S;, = 57s] . 4lnal . 1] Moreover, if ns < 1, then

S| = 0(Sp) = 5ns +dng +ny <5+4(E/4—1)+1<t+5.

Thus, we may assume that Sy, = 5lnsl. glnal. 1[”1], where ng > 2, ngy > 3, and ny < 1.
Since 512 - 48] is a subsequence of Sy, it follows that X(S1) contain all the integers
n [8,10]. Thus, S contains a z.s.s» of length £ for each ¢ € [8,10]. Hence, |S| # t+d
for all d € [8,10]. Moreover, the assumptions (i)—(iv) imply that S’=A-X-Y - Z
is a subsequence of S, where A = 301 . (=2)Bl and XY, Z € {~C1,C1, —Cy, Co}.
By inspecting the sequence S’ for all possible choices of X, Y, and Z, we see that
S’ admits a z.s.sv of length 7. Hence, |S| # t + 7. Overall, we obtain |S| # ¢+ d for
any d € [7,10].

If 5 - 414 is a subsequence of Sy, it again follows from the assumptions (i)—(iv)
that S’ = A- X -Y - Z-W is a subsequence of S, where A = 3. (-2)B and
X, Y, Z, W € {-Cy,Cy,—C5,C5}. By inspecting the sequence S’ for all possible
choices of X, Y, Z, and W, we see that S’ admits z.s.sv of lengths 6 and 11. In this
case, |S| # t +d for all d € [6,11]. Thus, we may assume that Sy, = 5! . 4[] 1]
where ns > 2 and ny < 1.

Now, it remains to show that |S| # ¢ + a for a € {6,11}. If |S| = ¢ + a, then

5ns +4(3) + n1 = o(SL) = |S| =t + a, which implies that 5ns =t +a — 12 — n;.

This is a contradiction since 5 | ¢ (by hypothesis) and 5 1 (a—12—n4) for a € {6,11}
and n; € {0,1}. Thus, |S| #t+d for all d € [6, 11].
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By Claim 1-Claim 3, we may assume S also satisfies the following property:

(v) Sp = 5lnsl . glnal . 3nal . olna] . 10l swhere 0 < my < t/€ — 1 for all £ € [1,5];
ni,ng,ng < 35 ng < 25 (ng,n3) # (2,1); and ns > 1.

We will use this assumption in the remaining claims.

Claim 4: The statement |S| # t + 6 holds.

Assume that [S| =t + 6. If ny > 1, then 51 is a subsequence of Sy, which
implies that S contains a z.s.s» of length 5+ 1 = 6 whose complementary sequence
in S is a z.s.sv of length t. Thus, n; = 0. By a similar reasoning, we infer that
na < 2, ng < 1, and nyns = 0. Moreover, the condition (v) implies that ny < 2 and
(n4,n3) # (2,1). Thus, |S| =0(SL) < 5ns+4-2 <5(t/5—1)+8 < t+6, which is
a contradiction. Thus, |S| # ¢ + 6.

Claim 5: The statement |S| # t + 7 holds.

Assume that [S| =t + 7. If ng > 1, then 52 is a subsequence of Sy, which
implies that S contains a z.s.s» of length 5+ 2 = 7 whose complementary sequence
in S is a z.s.s» of length ¢. Thus, no = 0. By a similar reasoning, we infer that
ny <1, ngng = 0, and ny = 0 if n3 > 2. Moreover, the condition (v) implies that
ns < 3 and ng < 2. Thus, |S| =0(SL) <5ns+3-3 <5(t/5—1)+9 < t+ 7, which
is a contradiction. Thus, |S| #t+ 7.

Claim 6: The statement |S| # t + 8 holds.

Assume that |S| =t + 8. If ng > 1, then 53 is a subsequence of Sy, which
implies that S contains a z.s.s» of length 5 + 3 = 8 whose complementary sequence
in S is a z.s.sp of length ¢. Thus, ng = 0. By a similar reasoning, we infer that
ng <1, n9 <3, np <2, n1ne =0, and ng > 1 implies that ny < 1. Thus,

S| = o(SL) <Bns +2-3<5(t/5—1)+6 <t+8,

which is a contradiction. Thus, |S| # ¢+ 8.

Claim 7: The statement |S| # t + 9 holds.

Assume that |S| =t +9. If ng > 1, then S contain a z.s.sv T of length 3. Thus,
S§"=8-T7!is a zs.s of length |S| — 3 =t + 6 which does not contain a z.s.s» of
length ¢t. This contradicts Claim 4. Thus, ng = 0. Similarly, no = 0 (by Claim 5)
and n; = 0 (by Claim 6). Moreover, the condition (v) implies that ny < 2. Thus,

1S] = 0(Sp) = 5ms +4ng <5(t/5—1) +4-2<t+09,

which is a contradiction. Thus, |S| # ¢+ 9.

Claim 8: The statement |S| # t + d holds for d € {10,11}.
Assume that |S| =t + 10. If ny > 1 for some ¢ € [1,4], then S contain a z.s.so T
of length £. Thus, S’ = S-T~!is a z.s.s of length |S|— ¢ = ¢+ 10 — £ which does not
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contain a z.s.s» of length t. Since (|S| —¥¢) € [t+6,t+ 9], this contradicts one of the
four previous claims (Claim 4-Claim 7). So we may assume that ny = 0 for every
¢ € [1,4]. Thus, |S| = 0(SL) = 5ns < 5(t/5 — 1) < ¢t + 10, which is a contradiction.
Thus, |S| # t + 10.

Finally, assume that |S| = ¢ 4+ 11. Since ns > 1, S contains a z.s.s» T of length
5. Thus, S’ = S - T~ 1! is a z.s.s of length |S| — 5 = ¢ + 6 which does not contain a
z.8.sv of length ¢. This contradicts Claim 1. Thus, |S| # ¢+ 11.

In conclusion, we have shown that if S is an arbitrary z.s.s over I3 = [—3, 3]
which does not contain a z.s.s» of length ¢, then |S| # t + d for d € [6,11]. Thus,
Sé (13) =t+6. U
3. Appendix

In this section, we include Zhong’s proofs of Lemma 1 and Remark 1.

Proof of Lemma 1. (i) Since s(G) < §'(QG), it suffices to prove that s'(G) > s(G).
Let S = Hz(ﬁ)*lgi be a sequence in F(G) of length |S| = s(G) — 1 such that S
has no z.s.sv of length exp(G). Assume that o(S) = h is in G, and let t € N be
such that (s(G) — 1)t = 1 (mod exp(G)). Thus, (s(G) — 1)th = h in G. Define
S = 9" (g; — th). Since o(S") = o(S) — (S(G) — 1)th = 0 and S’ does not
contain a z.s.sv of length exp(G), it follows that s'(G) > s(G).

(74) Let S € B(G) be such that |S| = s(G) — 1. We want to prove that S contains
a z.8.sv of length n = exp(G). If we assume to the contrary that S does not contain
a z.s.s of length n, then Property D (defined on page 3) implies that there exists
T € F(G) such that S = T"~ 1. Thus, |T| = ¢ and ¢(T) = 0. Therefore T"/ is a
z.s.s of length n, a contradiction. O

Proof of Remark 1. (i) Let n be odd and G = Z2. Since s(G) = 4n — 3, then
ged(s(G) — 1,n) = 1. Thus, s(G) = s'(G) by Lemma 1(7).

(ii) Let h > 2 be an integer and G = Z2,. Thus, exp(G) = 2", s(G) = 4(2" —
1)+ 1, ged(s(G) — 1,exp(@)) = 4, and G has Property D (by [12, Theorem 3.2]).
Thus, Lemma 1(i%) yields s'(G) < s(G). Since ged(s(G) — 2,exp(G)) = 1, the proof
of Lemma 1(¢) yields s'(G) > s(G) — 2. Thus, s'(G) =s(G) — 1. O
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thank Qinghai Zhong for allowing us to include Lemma 1 and Remark 1. Finally,
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Note added to the paper: Aaron Berger [4] has recently announced a proof of
Conjecture 1.
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