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Abstract

Let Vn(q) denote a vector space of dimension n over the field with q
elements. A set P of subspaces of Vn(q) is a partition of Vn(q) if every
nonzero vector in Vn(q) is contained in exactly one subspace in P. A
uniformly resolvable design is a pairwise balanced design whose blocks
can be resolved in such a way that all blocks in a given parallel class
have the same size. A partition of Vn(q) containing ai subspaces of
dimension ni for 1 ≤ i ≤ k induces a uniformly resolvable design on qn

points with ai parallel classes with block size qni , 1 ≤ i ≤ k, and also
corresponds to a factorization of the complete graph Kqn into ai Kqni -
factors, 1 ≤ i ≤ k. We present some sufficient and some necessary
conditions for the existence of certain vector space partitions. For the
partitions that are shown to exist, we give the corresponding uniformly
resolvable designs. We also show that there exist uniformly resolvable
designs on qn points where corresponding partitions of Vn(q) do not
exist.

∗Part of this research was done while the author was visiting Illinois State University.
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1 Introduction

Let V = Vn(q) denote the vector space of dimension n over the field GF (q)
with q elements. We say that a set P = {Vi}k

i=1 of subspaces of V is a
partition of V if every nonzero element of V is in Vi for exactly one i. We
will say that a partition P is of type [(t1, n1), . . . , (tk, nk)] if P consists of ti
subspaces of dimension ni for 1 ≤ i ≤ k, where ni 6= nj for i 6= j.

Because an m-dimensional subspace contains exactly qm − 1 nonzero el-
ements, in order for a partition of V of type [(t1, n1), . . . , (tk, nk)] to exist,
t1, . . . , tk must satisfy the Diophantine equation

k∑
i=1

(qni − 1)ti = qn − 1. (1)

A second necessary condition comes from dimension considerations. If U
and W are subspaces of V with U ∩W = {0}, we define the direct sum of U
and W to be U ⊕W = {u + w | u ∈ U,w ∈ W}. Then the subspace U ⊕W
has dimension dim U + dim W . Therefore,

if V1, V2 ∈ P , V1 6= V2, then dim(V1) + dim(V2) ≤ dim(V ). (2)

Bu [2] gives an additional necessary condition. Suppose Vn(q) has a parti-
tion into the subspaces W1, . . . ,Wm. Let U be a subspace of dimension n−1
of Vn(q), and define n′i = dim(U ∩Wi) for 1 ≤ i ≤ m. Then n′i is dim(Wi) or
dim(Wi)− 1 according as Wi ⊆ U or not. Because {U ∩Wi}m

i=1 is a partition
of U , called the partition induced by U , the following also holds:

m∑
1

(qn′i − 1) = qn−1 − 1. (3)

Moreover, Bu presents a number of sufficient conditions for the existence
of certain partitions of Vn(q). The first of these is a well-known result.

Lemma 1.1 (Bu [2]). Let n, k be positive integers such that k divides n.
Then Vn(q) can be partitioned into qn−1

qk−1
subspaces of dimension k.

Lemma 1.2 (Bu [2]). Let n, d be integers such that 1 ≤ d ≤ n/2. Then Vn(q)
can be partitioned into one subspace of dimension n − d and qn−d subspaces
of dimension d.
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Lemma 1.3 (Bu [2]). Let k > 0 and s > 1 be integers and n = ks − 1.
Then Vn(q) can be partitioned into q(k−1)s subspaces of dimension s− 1 and
(q(k−1)s − 1)/(qs − 1) subspaces of dimension s.

Further work related to partitions was done by A. Beutelspacher and O.
Heden. Given a subset T ⊆ {1, . . . , n}, we say a partition P of Vn(q) is
a T -partition if α ∈ T if and only if there is a U ∈ P with dim U = α.
Let T = {t1, . . . , tk = t}, with t1 < · · · < tk. Beutelspacher proves in [1]
that if t1 = 2, then V2t(q) has a T -partition, and Heden in [7] reduces the
hypothesis to t1 ≥ 2. In [8], Heden proves a number of other interesting
results. In particular, he characterizes completely the partitions of Vn(2) of
type [(x1, 1), (x2, 2), (x3, 3), (1, n− 3)] for all n ≥ 9.

A related question is whether the nonzero elements of a finite abelian
group G can be partitioned into disjoint subsets Si such that the sum of the
elements in each Si is zero. In [11], Tannenbaum settles this question for
G = Zn

2 and n > 1.
We note that the partition problem relates to the study of translation

planes and to the problem of finding optimal partial spreads and has appli-
cations to byte error control codes. For further information, we direct the
interested reader to the article by Clark and Dunning [3] and the references
therein.

In this article we generalize Lemma 1.1 to construct all possible partitions
of Vn(q) of type [(x, r), (y, t)], where rt divides n. For each positive integer
n and each prime power q, we construct one partition of V2n(q) of type
[(x, n), (y, n− 1)].

We present some previously unknown necessary conditions for a solution
of the Diophantine equation (1) to correspond to a partition. We show that
a partition P of Vn(q) of type [(t1, n1), . . . , (tk, nk)] naturally induces a fac-
torization of the complete graph Kqn into ti Kqni -factors for 1 ≤ i ≤ k, i.e.,
a (qn, {qn1 , . . . , qnk}, {t1, . . . , tk})-uniformly resolvable design. We also show
that there exist uniformly resolvable designs on qn points where correspond-
ing partitions of Vn(q) do not exist.

In two previous articles we exhibited additional results on the partition
problem. In [5], when q = 2 and n = dim(V ) ≤ 7, we found all solutions
to the Diophantine equation (1) with n1 > · · · > nk for which there exists
a partition of V (Heden [8] had settled the n = 6 case in 1986). In [6],
we showed that if n > 2, and x and y are nonnegative integers satisfying
x(23 − 1) + y(22 − 1) = 2n − 1, then there exists a partition of Vn(2) of type
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[(x, 3), (y, 2)] if and only if y 6= 1.

2 Some New Partitions

By generalizing the construction in Bu’s Lemma 1.1 we can construct all
possible partitions of type [(x, r), (y, t)] when rt = n. Note that if d and e
are positive integers, then qd−1 divides qe−1 if and only if d divides e. Also
gcd(qd − 1, qe − 1) = qgcd(d,e) − 1.

Lemma 2.1. Let r and t be positive integers with rt = n, and let x and y be
nonnegative integers such that

x(qr − 1) + y(qt − 1) = qn − 1. (4)

Then there exists a partition of Vn(q) into x subspaces of dimension r and y
subspaces of dimension t.

Proof. We can identify Vi(q) with the field of order qi. Let V ∗
i (q) denote the

cyclic multiplicative group of nonzero elements of Vi(q). Note that V ∗
n (q)

has a unique cyclic subgroup of each order dividing qn − 1. Consider the
subgroup H = V ∗

r (q)V ∗
t (q) of G = V ∗

n (q). Let the coset decomposition of G
relative to H be h1H ∪ . . . ∪ hkH, where k = |G|/|H|. Then we have

|H| = |V ∗
r (q)| · |V ∗

t (q)|
|V ∗

d (q)|
=

(qr − 1)(qt − 1)

qd − 1
,

where d = gcd(r, t).
Set a = |H|/(qr − 1) = (qt − 1)/(qd − 1) and b = |H|/(qt − 1) = (qr −

1)/(qd − 1). Since gcd(qr − 1, qt − 1) = qd − 1, a and b are relatively prime.
Dividing (4) by |H| yields

x
qr − 1

|H|
+ y

qt − 1

|H|
=

x

a
+

y

b
=
|G|
|H|

= k.

Then bx + ay = abk, from which it follows that a divides x and b divides y.
Consequently, x′ = x/a and y′ = y/b are integers and x′ + y′ = k.

Now V ∗
r (q) and V ∗

t (q) are subgroups of H, hence we can decompose
h1H, . . . , hx′H into cosets relative to GF∗(qr) and hx′+1H, . . . , hkH into cosets
relative to GF∗(qt). Moreover, there are x′a = x (respectively y′b = y) cosets
relative to V ∗

r (q) (respectively V ∗
t (q)), and, as is noted in [2], each of them

induces a subspace of Vn(q) of dimension r (respectively t). This concludes
the proof of the lemma.
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Theorem 2.2. Let n, r, and t be positive integers such that rt divides n.
Then for all pairs of nonnegative integers x, y such that x(qr−1)+y(qt−1) =
qn − 1, there exists a partition of Vn(q) into x subspaces of dimension r and
y subspaces of dimension t.

Proof. From Lemma 1.1, Vn(q) has a partition P into subspaces of dimension
rt. By Lemma 2.1, each of the rt-dimensional subspaces of P can be further
partitioned into any possible combination of subspaces of dimension r and t.
This in turn implies (e.g., using induction) the existence of all partitions of
Vn(q) into subspaces of dimension r and t.

2.1 Partitions of V2n(q) into subspaces of dimensions n

and n− 1

In this section, we prove results about partitions of V2n(q) into subspaces of
dimensions n and k, 1 ≤ k < n.

Lemma 2.3. V2n(q) can be partitioned into q + 1 subspaces of dimension n
and qn+1 − q subspaces of dimension n− 1.

Proof. Let V ′ = V2n+1(q). By Lemma 1.2, substituting 2n+1 for n and n for
d, there exists a partition of V ′ into subspaces W1, . . . ,Wr, where r = qn+1+1,
dim W1 = n + 1, and dim Wj = n for j > 1.

Let V be a subspace of V ′ of dimension 2n such that W1 6⊆ V , and let
Vj = Wj ∩ V , 1 ≤ j ≤ r. Then each Vj has dimension n− 1 or n. Let x and
y of the subspaces Vj have dimension n− 1 and n, respectively. Then

x + y = qn+1 + 1,
(qn−1 − 1)x + (qn − 1)y = q2n − 1,

which implies that x = qn+1 − q and y = q + 1.

For the rest of this section we restrict ourselves to the case q = 2. We
will show that if 1 ≤ k < n, then V2n(2) can be partitioned into 2n − 2k + 2
subspaces of dimension n and 2n − 1 subspaces of dimension k. This allows
us to completely settle the problem of partitioning V2n(2) into subspaces of
dimensions n and n−1. However, the general problem of partitioning V2n(q)
into subspaces of dimensions n and n− 1 remains open for q > 2.
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If K is a field we denote by K× the nonzero elements of K. It is easy to
check that if K has 2n elements, then the map σ : a → a2 is an automorphism
of K fixing exactly the elements 0 and 1 of K.

Lemma 2.4. Let K be the field with 2n elements, and suppose σ is an au-
tomorphism of K fixing exactly the elements 0 and 1. Let r, s, t, u ∈ K× be
such that (σ(r)s, rs) = (σ(t)u, tu). Then (r, s) = (t, u).

Proof. Let (σ(r)s, rs) = (σ(t)u, tu). Then we have rt−1 = s−1u = σ(r)σ(t−1) =
σ(rt−1). Then by assumption rt−1 = 1, so r = t, and s = u.

Note that Vn(2) can be considered to be the field K with 2n elements.
This is done in the following theorem.

Theorem 2.5. Let V = V2n(2). Since V is the direct sum of two subspaces
of dimension n, we can identify V with {(a, b) : a, b ∈ K}, where K is the
field with 2n elements. Suppose σ is an automorphism of K fixing exactly
the elements 0 and 1. Let U0 = W0 = {(a, 0) : a ∈ K} and U∞ = W∞ =
{(0, b) : b ∈ K}. For every c ∈ K× let Uc = {(σ(c)b, cb) : b ∈ K} and
Wc = {(σ(a)c, ac) : a ∈ K}. Then the sets P = {Uc : c ∈ K×} ∪ {U0, U∞}
and Q = {Wb : b ∈ K×} ∪ {W0, W∞} form partitions of V such that for any
c, b ∈ K×, we have Uc ∩Wb = {(0, 0), (σ(c)b, cb)}.

Proof. To prove P is a partition, we first note that U0 ∩ U∞ = U0 ∩ Uc =
U∞ ∩Uc = {(0, 0)} for all c ∈ K×. Next, we note that it is clear that Uc is a
subspace for all c ∈ K×. Now let c, d ∈ K×. Then if (x, y) ∈ Uc ∩ Ud, there
exist a, b ∈ K such that (σ(c)a, ca) = (x, y) = (σ(d)b, db). By Lemma 2.4
if a and b are nonzero we have c = d. Hence for c 6= d, Uc ∩ Ud = {(0, 0)}.
Finally, we get that |

⋃
c∈K× Uc∪U0∪U∞| = (2n +1)(2n−1)+1 = 22n = |V |,

hence every vector in V is in a subspace in P .
Similarly, to prove Q is a partition, note that W0 ∩ W∞ = W0 ∩ Wc =

W∞ ∩Wc = {(0, 0)} for all c ∈ K×. To show Wc is a subspace (c ∈ K×), we
note that if (σ(a)c, ac), (σ(a′)c, a′c) ∈ Wc, then (σ(a)c, ac) + (σ(a′)c, a′c) =
((σ(a) + σ(a′))c, (a + a′)c) = (σ(a + a′)c, (a + a′)c) ∈ Wc. Therefore, Wc

is a subspace. Now let a, b ∈ K×. Then if (x, y) ∈ Wa ∩ Wb, there exist
c, d ∈ K× such that (σ(c)a, ca) = (x, y) = (σ(d)b, db). By Lemma 2.4, we
have a = b. Hence for a 6= b, Wa ∩ Wb = {(0, 0)}. Finally, we get that
|
⋃

c∈K× Wc ∪ W0 ∪ W∞| = (2n + 1)(2n − 1) + 1 = 22n = |V |, hence every
vector in V is in a subspace in Q.
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Finally, let (0, 0) 6= (x, y) ∈ Uc ∩Wb for some b, c ∈ K×. Then there exist
b′, c′ ∈ K× such that (σ(c)b′, cb′) = (σ(c′)b, c′b). Now, by Lemma 2.4, we have
b′ = b and c′ = c. Therefore, Uc ∩Wb = {(0, 0), (σ(c)b, cb)} as claimed.

We now use the above theorem to reconfigure subspaces in a partition.
Let k ≤ n and let Y ⊆ K be a subspace of dimension k. Then we can
consider the set of subspaces

R = {U0, U∞} ∪ {Uc : c ∈ K \ Y } ∪ {WY,b : b ∈ K×}

where WY,b = {(σ(a)b, ab) : a ∈ Y } for every b ∈ K× and σ is as in Theorem
2.5. As in its proof, it follows that WY,b is a subspace since Y is a subspace
and σ is an automorphism of K. Thus we get the following proposition.

Proposition 2.6. For any positive integer n and for 1 ≤ k ≤ n, the set
R of subspaces given above forms a partition of V2n(2) of type [(2n − 2k +
2, n), (2n − 1, k)].

Proof. We have already shown that the elements of R are subspaces of V
and that U0 ∩ U∞ = U0 ∩ Uc = U∞ ∩ Uc = Uc ∩ Uc′ = {(0, 0)} whenever
c 6= c′. Also, it follows from the fact that Q is a partition that U0 ∩WY,b =
U∞ ∩WY,b = WY,b ∩WY,b′ = {(0, 0)} whenever b 6= b′. Furthermore, since for
each b ∈ K× we have WY,b ⊆ ∪0 6=y∈Y Uy, we have WY,b∩Uc = {(0, 0)} for each
c 6∈ Y . Therefore the subspaces have trivial pairwise intersections. Finally,
in the union of these subspaces are (2n−2k+2)(2n−1)+(2n−1)(2k−1)+1 =
22n = |V | elements. Hence R is a partition, as claimed.

The above result is proved by Heden (Theorem 2 in [8]) when gcd(k, n) =
1. Our next result is also covered by Theorem 2 in [8]. For completeness, we
include our own short proof here.

Theorem 2.7. Let n ≥ 2, x, and y be nonnegative integers. Then V2n(2) can
be partitioned into x subspaces of dimension n and y subspaces of dimension
n− 1 if and only if x(2n − 1) + y(2n−1 − 1) = 22n − 1.

Proof. The cases n = 2 and n = 3 are treated in [5]. For n > 3 there are three
nonnegative solutions to the Diophantine equation x(2n− 1)+ y(2n−1− 1) =
22n − 1, namely, S1 := {x = 2n + 1, y = 0}, S2 := {x = 2n − 2n−1 + 2, y =
2n − 1}, and S3 := {x = 3, y = 2n+1 − 2}. By Lemma 1.1, there exists
a partition of V = V2n(2) of type [(2n + 1, n)], which corresponds to the
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solution S1. Similarly, using Proposition 2.6 with k = n−1 yields a partition
of V of type [(2n − 2n−1 + 2, n), (2n − 1, n − 1)], which corresponds to the
solution S2. Finally, applying Lemma 2.3 with q = 2 yields a partition of V
of type [(3, n), (2n+1 − 2, n− 1)], which corresponds to the solution S3. This
concludes the proof.

3 Some nonexistence results

Here we show that not all solutions t1, . . . , tk of the Diophantine equation∑k
i=1 ti(q

ni − 1) = qn − 1 that satisfy condition (2) correspond to partitions
of Vn(q). Although this fact was already shown by Bu [2] and Heden [8], our
approach here is different and yields a new necessary condition.

Lemma 3.1. Let P be a partition of Vn(q) in which the dimension of the
subspace with minimal dimension is m.

(a) The number of subspaces in P is congruent to 1 modulo qm.

(b) If P contains more than one subspace, then the number of subspaces of
dimension m is at least q + 1 if m = 1, and exceeds 1 in any case.

Proof. (a) Suppose that P contains ai subspaces of dimension i for i =
1, 2, . . . , k, and let

s = ak + ak−1 + · · ·+ a1.

Add this equation to the equation

ak(q
k − 1) + ak−1(q

k−1 − 1) + · · ·+ a1(q − 1) = qn − 1

to obtain
akq

k + ak−1q
k−1 + · · ·+ a1q = qn − 1 + s. (5)

Since ai = 0 for i < m, each term on the left side of this equation is divisible
by qm. Hence the right side must be congruent to 0 modulo qm, and so (a)
follows.

(b) Suppose P contains the subspace V of dimension m. Choose a sub-
space W of dimension n− 1 such that W does not contain V . Let P ′ be the
partition of W consisting of all sets W ∩ U with U ∈ P that are not {0},
and let s′ = a′k + . . . + a′1, where a′i denotes the number of subspaces in P ′ of
dimension i (1 ≤ i ≤ k).
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If m = 1, let b1 be the number of subspaces of dimension 1 in P not
contained in W . Then s′ = s− b1, and so q divides b1 by part (a). If a1 = 1,
then b1 = 1, a contradiction. Thus a1 > 1, and we can choose W with the
additional restriction that W contains a subspace of P of dimension 1. Thus
a1 > b1 ≥ q.

If m > 1 and am = 1, then the equation for P ′ analogous to equation (5)
is

a′kq
k + a′k−1q

k−1 + · · ·+ a′1q = qn−1 − 1 + s′.

In this case, s′ = s, a′m−1 = 1 and a′i = 0 for i < m − 1; so the preceding
equation becomes

a′kq
k + a′k−1q

k−1 + · · ·+ a′mqm + qm−1 = qn−1 − 1 + s.

Since qm divides every term on the left side except the last, this again con-
tradicts (a).

Thus by Lemma 3.1(b), there does not exist a partition of V5(2) into
10 subspaces of dimension 2 and 1 subspace of dimension 1, even though
10(22 − 1) + 1(21 − 1) = 25 − 1.

Theorem 3.2. Let m be the smallest dimension of any subspace in a partition
of Vn(q), where m < n. Then the number of subspaces of dimension m in the
partition is at least mq + 1.

Proof. The proof will be by induction on m. If m = 1, the result follows
from Lemma 3.1(b). Suppose we know that if the dimension of a smallest
subspace in a partition is m − 1, then there are at least (m − 1)q + 1 such
subspaces, where m ≥ 2.

Consider a partition of Vn(q) where a smallest subspace has dimension
m ≥ 2 and m < n. We know that there are at least two subspaces of
dimension m in the partition. We know also that we can find a subspace W of
Vn(q) with dimension n−1 that contains one of these subspaces of dimension
m but not the other. For each i, let there be ai subspaces of dimension i
in our original partition, and let there be bi subspaces of dimension i in the
partition of W that it induces.

Now we have∑
ai(q

i − 1) = qn − 1 and
∑

bi(q
i − 1) = qn−1 − 1.
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The smallest dimension of a subspace in the induced partition is m− 1, and
0 < bm−1 < am by our choice of W . Also

∑
ai =

∑
bi because m ≥ 2. Then

subtracting the second displayed equation from the first gives∑
(ai − bi)q

i = qn − qn−1.

Since am−1 = 0 this implies that q divides bm−1. Now the induction hypothe-
ses says that bm−1 ≥ (m− 1)q + 1. But q divides bm−1, so bm−1 ≥ mq. Since
am > bm−1, we have am ≥ mq + 1.

By the previous theorem no partition of V12(2) into 23 subspaces of di-
mension 6, 84 of dimension 5, and 6 of dimension 3 can exist, even though
23(26−1)+84(25−1)+6(23−1) = 212−1 and all previously known necessary
conditions for the existence of such a partition are satisfied.

It follows from [5] that the bound in Theorem 3.2 is sharp for q = 2 and
m = 1. We suspect, however, that a sharper bound exists in other cases.

4 Uniformly resolvable designs from vector

space partitions

The finite vector space partition problem has a natural application in con-
structions of uniformly resolvable designs. We begin with some definitions.

A design is a pair (X,A), where X is a set of elements called points, and A
is a collection of nonempty subsets of X called blocks. Suppose v ≥ 2, λ ≥ 1,
and L ⊆ {n ∈ Z : n ≥ 2}. A (v, L, λ)-pairwise balanced design (abbreviated
(v, L, λ)-PBD) is a design (X,A) where: (1) |X| = v, (2) |A| ∈ L for all
A ∈ A, and (3) every pair of distinct points is contained in exactly λ blocks.
We will restrict our interest to designs where λ = 1 and we will denote a
(v, L, 1)-PBD simply as a (v, L)-PBD. It is easy to see that a (v, L)-PBD
is equivalent to a decomposition of the complete graph Kv into complete
subgraphs with orders in L.

Suppose (X,A) is a (v, L)-PBD. A parallel class in (X,A) is a subset of
disjoint blocks from A whose union is X. A partition of A into r parallel
classes is called a resolution, and (X,A) is said to be a resolvable PBD if A
has at least one resolution.

A parallel class in a (v, L)-PBD is uniform if every block in the parallel
class is of the same size. Let L = {`1, `2, . . . , `r} be an ordered set of integers
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≥ 2 and let R = {t1, t2, . . . , tr} be an ordered multiset of positive integers.
A uniformly resolvable design, denoted (v, L, R)-URD, is a resolvable (v, L)-
PBD with ti parallel classes with blocks of size `i for 1 ≤ i ≤ r. It is easy to
see that a (v, {`1, . . . , `r}, {t1, . . . , tr})-URD is equivalent to a factorization
of Kv into ti K`i

-factors for 1 ≤ i ≤ r. Thus, for a (v, L, R)-URD to exist,
one can check that the following must hold.

Lemma 4.1 (see [4]). The following conditions are necessary for the exis-
tence of a (v, {`1, . . . , `r}, {t1, . . . , tr})-URD.

1. v ≡ 0 (mod `i) for each `i;

2. v − 1 =
∑r

i=1 ti(`i − 1);

3. if ti > 1, then v ≥ `2
i ; and

4. if i 6= j, then v ≥ `i`j.

Note that if v = qn and `i = qni , then condition 2 in Lemma 4.1 is the
same as the Diophantine equation (1). Similarly, conditions 3 and 4 above
correspond to condition (2) in the partition problem.

For further information on URDs, we direct the reader to [4] and the
references therein. We single out however a particularly nice result due to
Rees [9] who showed that there exists a (6n, {3, 2}, {r, s})-URD if and only
if 2r + s = 6n− 1 and (n, r, s) /∈ {(1, 2, 1), (2, 5, 1)}.

If W is a subset of Vn(q), we denote the complete graph with vertices
labeled with elements of W by K(W ). If W and X are subsets of Vn(q) with
0 /∈ X, we define G(W, X) to be the subgraph of K(Vn(q)) with edge set
{{w, w+x} : w ∈ W, x ∈ X}. It is easy to see that if X is a subspace of Vn(q)
of dimension ni, then G(Vn(q), X \ {0}) is a Kqni -factor of Kqn . Moreover,
if X1 and X2 are disjoint subspaces, then the factors they induce are also
disjoint. Thus a partition P of Vn(q) of type [(t1, n1), . . . , (tk, nk)] induces a
factorization of Kqn into ti Kqni -factors for 1 ≤ i ≤ k. Equivalently, if we let
A denote the subspaces in P , along with all their cosets, then, (Vn(q),A) is
a (qn, {qn1 , . . . , qnk}, {t1, . . . , tk})-URD. Thus we have the following result on
URDs as a corollary to Theorem 2.2.

Corollary 4.2. Let n, r, and t be positive integers such that rt divides n.
Let q be a prime power and let x and y be nonnegative integers. Then there
exists a (qn, {qr, qt}, {x, y})-URD if and only if x(qr−1)+y(qt−1) = qn−1.
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In terms of graph factorizations, Corollary 4.2 says that Kqrts can be
factored into x Kqr -factors and y Kqt-factors if and only if x(qr − 1) + y(qt−
1) = qrts − 1.

Similarly, we have the following result on URDs as a corollary to Theo-
rem 2.7.

Corollary 4.3. Let n be a positive integer. Let x and y be nonnegative
integers. Then there exists a (22n, {2n, 2n−1}, {x, y})-URD if and only if
x(2n − 1) + y(2n−1 − 1) = 22n − 1.

As a final note, we observe that some of the necessary conditions for the
existence of certain partitions of Vn(q) (for example Lemma 3.1(b) and The-
orem 3.2) may not have counterparts for URDs. For example, there does
exist a (32, {4, 2}, {10, 1})–URD even though there is no partition of V5(2)
into 10 subspaces of dimension 2 and one subspace of dimension one. A
(32, {4, 2}, {10, 1})–URD is better known as a 4-RGDD of type 216 (a resolv-
able group divisible design with block size four and 16 groups of size two)
and was first found by H. Shen [10] in 1996.
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