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Abstract. Let Vn(q) denote a vector space of dimension n over
the field with q elements. A set P of subspaces of Vn(q) is a parti-
tion of Vn(q) if every nonzero element of Vn(q) is contained in ex-
actly one element of P. Suppose there exists a partition of Vn(q)
into xi subspaces of dimension ni, 1 ≤ i ≤ k. Then x1, . . . , xk

satisfy the Diophantine equation
∑k

i=1 (qni − 1)xi = qn − 1. How-
ever, not every solution of the Diophantine equation corresponds
to a partition of Vn(q). In this article, we show that there exists
a partition of Vn(2) into x subspaces of dimension 3 and y sub-
spaces of dimension 2 if and only if 7x + 3y = 2n − 1 and y 6= 1.
In doing so, we introduce techniques useful in constructing further
partitions. We also show that partitions of Vn(q) induce uniformly
resolvable designs on qn points.

1. Introduction and notation

Denote by V = Vn(q) the vector space of dimension n over the field
GF (q) with q elements. For W ⊆ V , we call a set P = {Wi}`

i=1 of

subspaces of V a partition of W if
⋃`

1 Wi\{0} ⊆ W and every nonzero
element of W is in Wi for exactly one i. We say that a partition P
is of type [(x1, n1), . . . , (xk, nk)] if, for each j, P has exactly

∑
ni=j xi

subspaces of dimension j.
Because an m-dimensional subspace contains exactly qm−1 nonzero

elements, in order for a partition of V of type [(x1, n1), . . . , (xk, nk)] to
exist, x1, . . . , xk must satisfy the Diophantine equation

(1)
k∑

i=1

(qni − 1)xi = qn − 1.

A second necessary condition comes from dimension considerations.
If U and W are subspaces of a vector space with U∩W = {0}, the direct
sum of U and W is defined to be U ⊕W = {u + w | u ∈ U,w ∈ W}. It
is well-known that U ⊕W has dimension dim U + dim W . Therefore,

(2) if xi ≥ 2, then ni ≤ n/2, and if i 6= j, then ni + nj ≤ n.
1
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T. Bu [2] gives an additional necessary condition. Suppose Vn(q)
has a partition into the subspaces W1, . . . ,Wk. Let U be a subspace of
dimension n − 1 of Vn(q), and define n′

i = dim(U ∩ Wi), i = 1, . . . , k.
Then n′

i = dim(Wi) if Wi ⊆ U , and n′
i = dim(Wi) − 1 if Wi 6⊆ U .

Because {U ∩Wi}k
i=1 is a partition of U , we must also have

(3)
k∑

i=1

(qn′
i − 1) = qn−1 − 1.

Moreover, Bu proved the following two fundamental lemmas that we
use in this article. (The first of these is well-known.)

Lemma 1.1 (Bu [2]). Let n, r be positive integers such that r divides
n. Then Vn(q) can be partitioned into qn−1

qr−1
subspaces of dimension r.

Lemma 1.2 (Bu [2]). Let n, d be integers such that 1 ≤ d < n/2. Then
Vn(q) can be partitioned into one subspace of dimension n−d and qn−d

subspaces dimension d.

Further work in this area was done by A. Beutelspacher and O. Heden.
Given a subset T ⊆ {1, . . . , n}, we say that a partition P of Vn(q) is a
T -partition if α ∈ T if and only if there is a U ∈ P with dim U = α.
Let T = {t1, . . . , tk}, where t1 < · · · < tk. Beutelspacher proves in [1]
that if t1 = 2, then V2t(q) has a T–partition, and Heden in [6] reduces
the hypothesis to t1 ≥ 2.

We note that the partition problem has applications in combinatorial
designs. Suppose, for example, that P is a partition of V2n(q) into qn+1
subspaces of dimension n. If A denotes the subspaces in P along with
all their cosets, then (V2n(q),A) is an affine plane of order qn (which in
turn is a Kqn–factorization of the complete graph Kq2n). More gener-
ally, a partition of Vn(q) of type [(r1, n1), . . . , (rk, nk)] naturally induces
a factorization of Kqn into ri Kqni –factors for 1 ≤ i ≤ t, which is in
turn a (qn, {qn1 , . . . , qnk}, {r1, . . . , rk})–uniformly resolvable design (see
Section 5). Moreover, the partition problem is related to the problem
of finding optimal partial spreads and has applications to byte error
control codes. For further information on these applications, we direct
the reader to the articles by Herzog and Schönheim [7], Lindström [8],
and Clark and Dunning [3].

In this article, we introduce some general techniques for construct-
ing partitions of finite vector spaces and of direct sums of subspaces.
Our main result is that for n ≥ 2, Vn(2) can be partitioned into x
subspaces of dimension 3 and y subspaces of dimension 2 if and only if
7x + 3y = 2n − 1 and y 6= 1. A consequence of this result is that there
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exists a (2n, {8, 4}, {x, y})–uniformly resolvable design for all nonnega-
tive integers x and y 6= 1 satisfying 7x + 3y = 2n − 1.

In an earlier article [5], we determined all solutions of the Diophan-
tine equation (1) with q = 2 and n ≤ 7 for which there exists a partition
of Vn(2).

2. Another Necessary Condition

Lemma 2.1. Let V = Vn(q) and t < n be a positive integer. Then
there does not exist a partition {V1, . . . , Vk} of V such that dim V1 = t
and dim Vj > t for all j > 1.

Proof. Assume such a partition exists. Choose a projection π of V
onto V1, and let W = ker(π). Then V = V1 ⊕ W . Furthermore, for
any j > 1, dim π(Vj) ≤ t < dim Vj, so Vj ∩ W 6= {0}. Note that
V2 ∩W, . . . , Vk ∩W forms a partition of W .

Let nj = dim Vj and mj = dim(Vj ∩W ). Then∑k
j=2(q

nj − 1) = (qn − 1)− (qt − 1) = qn − qt,∑k
j=2(q

mj − 1) = qn−t − 1,

and so
k∑

j=2

(qnj − qmj) = qn − qt − qn−t + 1.

Since the left side is 0 modulo q and the right side is 1 modulo q, we
have a contradiction. �

Thus there does not exist a partition of V8(2) of type [(36, 3), (1, 2)]
even though the necessary conditions in (1) and (2) are satisfied in this
case. We note that there is a solution of 7x + 3y = 2n − 1 with y = 1
if and only if n ≡ 2 (mod 3).

3. Partitions of Direct Sums

In this section, we develop some constructive methods for partition-
ing the direct sums of subspaces. In Section 4, we use these techniques
to determine which partitions of Vn(2) of type [(x, 3), (y, 2)] exist.

Theorem 3.1. Let V be a finite-dimensional vector space over the fi-
nite field with q elements. Suppose that U and W are subspaces of V
such that V = U ⊕ W . Assume that dim W = s and that U has a
subspace partition {U1, . . . , Ut}, where dim Ui = di ≤ s for 1 ≤ i ≤ t.
Then for each i and γ ∈ W\{0}, we can define a di-dimensional sub-
space Uiγ of V such that U , W , and the subspaces Uiγ form a partition
of V .
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Proof. We can think of W as the finite field with qs elements. Let
{w1, . . . , ws} be a basis for W , and let {ui1, . . . , uidi

} be a basis for Ui

for 1 ≤ i ≤ t. For each 1 ≤ i ≤ t and each γ ∈ W ∗ = W\{0}, define
Uiγ to be the span of Siγ = {ui1 + γw1, . . . , uidi

+ γwdi
}. Here each

term γwj is the product of two elements of the field W .
We claim that if (i, γ) 6= (i′, γ′) then Uiγ ∩ Ui′γ′ = {0}. For suppose

that y ∈ Uiγ∩Ui′γ′ . Then
∑di

j=1 aj(uij+γwj) = y =
∑di′

j=1 bj(ui′j+γ′wj),
where the aj and bj are scalars in F . Hence

di∑
j=1

ajuij −
di′∑
j=1

bjui′j =

di′∑
j=1

bjγ
′wj −

di∑
j=1

ajγwj ∈ U ∩W = {0}.

If i 6= i′, then the set {ui1, . . . , uidi
, ui′1, . . . , ui′di′

} is linearly inde-
pendent, and so aj = 0 for 1 ≤ j ≤ di. Thus y = 0.

If i = i′, then we have
∑di

j=1(aj − bj)uij = 0 which implies that

aj = bj for all j. Hence (γ′ − γ)
∑di

j=1 ajwj = 0. If γ 6= γ′, we conclude

that
∑di

j=1 ajwj = 0. Again aj = 0 for all j, and so y = 0.

For any (i, γ), we can prove that U∩Uiγ = {0} = W ∩Uiγ in a similar
way. It is also easy to show that the set Siγ is linearly independent; so
Uiγ has dimension |Siγ| = di.

Finally, to show that the set of subspaces

{U,W} ∪ {Uiγ | 1 ≤ i ≤ t, γ ∈ W ∗}

forms a partition, we need to show every v ∈ V is contained in one of
these subspaces. But for v ∈ V , there exist u ∈ U and w ∈ W such
that v = u + w. If v 6∈ U ∪ W , then u 6= 0, w 6= 0, and there exists i
such that u ∈ Ui. Let u =

∑di

j=1 ajuij. Then β =
∑di

j=1 ajwj 6= 0. It

is straightforward to check that v =
∑di

j=1 aj(uij + γwj) ∈ Uiγ, where

γ = β−1w. �

If U and W are subspaces such that U ∩W = {0}, we define U � W
to be (U⊕W )\(U∪W ). We use this notation to state a useful corollary
to Theorem 3.1.

Corollary 3.2. Let A and B be subspaces of Vn(q) with A ∩ B = {0}
such that the dimension of A is no more than that of B. Then there
exist k = |B\{0}| subspaces A1, . . . , Ak with the same dimensions as A
that partition A � B.

Proof. Apply Theorem 3.1 with t = 1, U = U1 = A, and W = B. �
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We note that Bu’s Lemma 1.2 is a special case of Corollary 3.2. (Take
A and B to be subspaces of dimensions d and n− d, respectively, with
intersection {0}.)

The next theorem illustrates the usefulness of the � notation.

Theorem 3.3. Let A and B be subspaces of a vector space with A∩B =
{0}, and let A1, . . . , Ak be a partition of A into subspaces. Then A�B
has the (set) partition {A1 � B, . . . , Ak � B}.

Proof. If v ∈ Ai �B, then there exist nonzero vectors a ∈ Ai and b ∈ B
such that v = a + b. Thus v ∈ A � B.

Conversely, if v ∈ A � B, then v = a + b for unique nonzero vectors
a ∈ A and b ∈ B. Hence a ∈ Ai for a unique i, and v ∈ Ai � B. This
shows that the sets Ai � B are disjoint and cover A � B. �

4. Partitions of Vn(2) into subspaces of dimensions 3 and 2

In this section, we prove our main theorem (Theorem 4.4). We start
with three lemmas.

Lemma 4.1. Let U and W be subspaces of Vn(2) of dimension 3 such
that U ∩W = {0}. Then U � W can be partitioned into both

(i) 4 subspaces of dimension 3 and 7 subspaces of dimension 2, and
(ii) 1 subspace of dimension 3 and 14 subspaces of dimension 2.

Proof. As proved in [5], V6(2) has a partition of type [(6, 3), (7, 2)] (re-
spectively, [(3, 3), (14, 2)]). Take U and W to be distinct subspaces of
dimension 3 in such a partition. Then the remaining subspaces give
a partition of U � W into 4 subspaces (respectively, 1 subspace) of
dimension 3 and 7 (respectively, 14) subspaces of dimension 2. �

Lemma 4.2. Let L and W be subspaces of Vn+3(2) of dimensions n
and 3, respectively, such that L ∩ W = {0}. If L has a partition of
type [(x, r), (y, 3), (z, 2)] with r ≥ 3, then L�W has a partition of type
[(2n − 3j − 1, 3), (7j, 2)] for all integers j with z ≤ j ≤ z + 2y.

Proof. In some partition of L of type [(x, r), (y, 3), (z, 2)], let the sub-
spaces of dimension r be A1, . . . , Ax, of dimension 3 be B1, . . . , By, and
of dimension 2 be C1, . . . , Cz. Note that the sets Ai � W (1 ≤ i ≤ x),
Bi � W (1 ≤ i ≤ y), and Ci � W (1 ≤ i ≤ z), form a (set) partition of
L � W by Theorem 3.3.

For z ≤ j ≤ z + 2y, define integers k and ` by j − z = 2k + `,
0 ≤ ` < 2. Note that k ≥ 0 and k + l ≤ y.

Use Corollary 3.2 to partition each of the x sets Ai � W into 2r − 1
subspaces of dimension 3.
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For i ≤ k, use Lemma 4.1 to partition each set Bi�W into 1 subspace
of dimension 3 and 14 subspaces of dimension 2. If ` = 1, use the same
lemma to partition Bk+1 � W into 4 subspaces of dimension 3 and 7
subspaces of dimension 2. Then use Corollary 3.2 to partition any sets
Bi � W with i > k + ` into 7 subspaces of dimension 3.

Finally, use Corollary 3.2 to partition each of the z sets Ci � W into
7 subspaces of dimension 2.

Thus we have a partition of L � W into subspaces of dimensions 3
and 2, with

k · 14 + ` · 7 + z · 7 = 7(2k + ` + z) = 7j

subspaces of dimension 2. Since L � W has 2n+3 − 1− (2n − 1)− 7 =
7(2n − 1) elements, the number of subspaces of dimension 3 must be
1
7
(7(2n − 1)− 7j · 3) = 2n − 3j − 1. �

Lemma 4.3. For any r ≥ 0, let mr be 0, 5, or 1 according to whether
r is congruent to 0, 1, or 2 modulo 3, respectively. Let δ be the least
residue of r modulo 2 and Mr be the integer (2r − 1− 3mr)/7. Then
(i) 2Mr + bMr/3c+ mr = b2r/3c
(ii) bMr/3c+ b2r/3c+ δ = bMr+3/3c.

Proof. Let R be the least residue of r modulo 6. The order of 2 modulo
21 is 6, so that 2r ≡ 2R (mod 21). Let 2r = 21k + 2R. Note that

(4) b2r/3c = 7k + b2R/3c = 7k + 〈0, 0, 1, 2, 5, 10〉,

where, by 〈a0, a1, a2, a3, a4, a5〉, we mean aR.
Now

2R−(3mr+1) = 〈1, 2, 4, 8, 16, 32〉−〈1, 16, 4, 1, 16, 4〉 = 〈0,−14, 0, 7, 0, 28〉,

so that

Mr =
21k + 2R − 1− 3mr

7
= 3k + 〈0,−2, 0, 1, 0, 4〉.

Then bMr/3c = k + 〈0,−1, 0, 0, 0, 1〉.
Finally

2Mr + bMr/3c+ mr

= 6k + 〈0,−4, 0, 2, 0, 8〉+ k + 〈0,−1, 0, 0, 0, 1〉+ 〈0, 5, 1, 0, 5, 1〉
= 7k + 〈0, 0, 1, 2, 5, 10〉.

In light of (4), this proves (i).
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For (ii), we have⌊
Mr+3

3

⌋
=

⌊
2r+3 − 1− 3mr

21

⌋
=

⌊
8(21k + 2R)− 1− 3mr

21

⌋
= 8k +

⌊
2R+3 − 1− 3mr

21

⌋
= 8k + 〈0, 0, 1, 3, 5, 12〉,

while from our previous computations we have⌊
Mr

3

⌋
+

⌊
2r

3

⌋
+ δ

= k + 〈0,−1, 0, 0, 0, 1〉+ 7k + 〈0, 0, 1, 2, 5, 10〉+ 〈0, 1, 0, 1, 0, 1〉
= 8k + 〈0, 0, 1, 3, 5, 12〉

also. �

We now prove our main theorem.

Theorem 4.4. Let n > 2, x, and y be nonnegative integers. There
exists a partition of Vn(2) of type [(x, 3), (y, 2)] if and only if 7x+3y =
2n − 1 and y 6= 1.

Proof. Clearly (x, y) must satisfy the Diophantine equation 7x + 3y =
2n − 1. Moreover, by Lemma 2.1, there is no partition of Vn(2) of type
[(x, 3), (1, 2)].

Our proof that there is a partition when y 6= 1 will be by induction
on n. For 3 ≤ n ≤ 7, the theorem is proved in [5], and for n = 8, see
the Appendix. Hence we may assume that n ≥ 9 and that the theorem
holds for all n′ with 3 ≤ n′ < n.

For r ≥ 2, it can be checked that the nonnegative solutions of the
Diophantine equation 7x + 3y = 2r − 1 are given by x = Mr − 3i and
y = mr + 7i, where 0 ≤ i ≤ bMr/3c. Here the integers Mr and mr are
as given in the statement of Lemma 4.3.

Let L and W be subspaces of Vn(2) of dimensions n− 3 ≥ 6 and 3,
respectively, such that L∩W = {0}. By Lemma 1.2, L has a partition
of type

P = [(1, n− 6), (2n−6, 3)].

Also, by the induction hypothesis, L has partitions of type

Qi = [(Mn−3 − 3i, 3), (mn−3 + 7i, 2)]

for all 0 ≤ i ≤ bMn−3/3c such that mn−3 + 7i 6= 1. Note that mn−3 +
7i = 1 only when i = 0 and n ≡ 2 (mod 3). To summarize,

L has a partition of type [(Mn−3 − 3i, 3), (mn−3 + 7i, 2)](5)

for 0 ≤ i ≤ bMn−3/3c, except when i = 0 and n ≡ 2 mod 3.
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By Lemma 4.2, the partition of type P implies a partition of L � W
of type

Tj = [(2n−3 − 3j − 1, 3), (7j, 2)]

for all j such that 0 ≤ j ≤ 2 · 2n−6 = 2n−5, and by the same lemma
each partition of L of type Qi implies a partition of L � W of type Tj

for all j such that

(6) mn−3 + 7i ≤ j ≤ mn−3 + 7i + 2(Mn−3 − 3i) = 2Mn−3 + mn−3 + i.

We have a partition of L � W of type Tj for 0 ≤ j ≤ 2n−5, and
also, taking i = 1 in (6), for mn−3 + 7 ≤ j ≤ 2Mn−3 + mn−3 + 1.
Since 2n−5 ≥ 16 > mn−3 + 7, partitions of type Tj exist for 0 ≤ j ≤
2Mn−3 + mn−3 + 1, and taking i = 2, . . . , bMn−3/3c in (6) extends this
to 0 ≤ j ≤ 2Mn−3 + mn−3 + bMn−3/3c = b2n−3/3c, where the last
equality comes from Lemma 4.3. To summarize,

L � W has a partition of type [(2n−3 − 3j − 1, 3), (7j, 2)](7)

for 0 ≤ j ≤ b2n−3/3c.

Since L � W = (L⊕W )\(L∪W ), by (5) and (7) the space Vn(2) =
L⊕W has a partition of type

[(2n−3 − 3j − 1 + Mn−3 − 3i + 1, 3), (7j + mn−3 + 7i, 2)]

for the appropriate values of i and j. Note that

2n−3 + Mn−3 =
7 · 2n−3 + 2n−3 − 1− 3mn−3

7
=

2n − 1− 3mn

7
= Mn.

Thus Vn(2) has a partition of type [(Mn−3(i+ j), 3), (mn +7(i+ j), 2)]
for

γ ≤ i + j ≤
⌊

Mn−3

3

⌋
+

⌊
2n−3

3

⌋
=

⌊
Mn

3

⌋
− δ,

where the last equality again comes from Lemma 4.3. Here δ is the
least residue of n − 3 modulo 2, and γ is 1 if n ≡ 2 (mod 3) and 0
otherwise. Having γ = 1 when n ≡ 2 (mod 3) is acceptable in proving
the induction step, since then i+j = 0 would correspond to a partition
with exactly y = 1 subspace of dimension 2.

The desired upper limit of i+ j = bMn/3c is achieved unless n− 3 is
odd. But in this case n is even, and so 3 divides 2n − 1− 3mn = 7Mn.
Then bMn/3c = Mn/3, and a partition with i + j = Mn/3 would
consist entirely of subspaces with dimension 2. Such a partition exists
by Lemma 1.1. �

Theorem 4.4 leads to the following corollary.
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Corollary 4.5. For n > 6 and all 0 ≤ j ≤ b2n−3/3c, there exists a
partition of Vn(2) of type [(1, n− 3), (2n−3 − 3j, 3), (7j, 2)] except when
n = 7 and j = 1.

Proof. We use the notation in the proof of Theorem 4.4. For n = 7,
the theorem is proved in [5], and for n = 8, see Theorem 6.1 in the
Appendix. Hence we may assume n ≥ 9.

Let L and W be subspaces of Vn(2) of dimensions n− 3 ≥ 6 and 3,
respectively, such that L ∩W = {0}. As in the proof of Theorem 4.4,
we see that

L � W has a partition of type [(2n−3 − 3j − 1, 3), (7j, 2)](8)

for 0 ≤ j ≤ b2n−3/3c.
Since L � W = (L⊕W )\(L ∪W ), it follows from (8) that Vn(2) =

L⊕W has a subspace partition of type[
(1, dim L), (1, dim W ), (2n−3 − 3j − 1, 3), (7j, 2)

]
= [(1, n− 3), (2n−3 − 3j, 3), (7j, 2)]

for 0 ≤ j ≤ b2n−3/3c. �

5. Application to Uniformly Resolvable Designs

In this brief section, we exhibit some new uniformly resolvable de-
signs which arise naturally from vector space partitions. We begin with
some definitions.

A design is a pair (X,B), where X is a finite set of elements called
points and B is a collection of nonempty subsets of X called blocks.
Suppose v ≥ 2 and L is a set of integers ≥ 2. A (v, L)–pairwise
balanced design (abbreviated (v, L)–PBD) is a design (X,B) such that
|X| = v, |B| ∈ L for all B ∈ B, and every pair of distinct points is
contained in exactly one block. It is easy to see that a (v, L)–PBD is a
decomposition of the complete graph Kv into complete subgraphs with
orders in L.

Suppose (X,B) is a (v, L)–PBD. A parallel class in (X,B) is a subset
of disjoint blocks from B whose union is X. A partition of B into
parallel classes is called a resolution, and (X,B) is said to be a resolvable
PBD if B has at least one resolution.

A parallel class in a (v, L)–PBD is uniform if all its blocks have the
same size. A uniformly resolvable design, (v, L, R)–URD, is a resolvable
(v, L)–PBD such that (1) all its parallel classes are uniform, (2) R is a
multiset with |R| = |L|, and (3) for each ` ∈ L there is a nonnegative
integer r` ∈ R such that there are exactly r` parallel classes of size `. If
v = `n, L = {`n1 , . . . , `nt}, and R = {r1, . . . , rt}, then a (v, L, R)-URD



10 EL-ZANATI, SEELINGER, SISSOKHO, SPENCE, AND VANDEN EYNDEN

is a factorization of K`n into ri K`ni –factors for 1 ≤ i ≤ t. In this case,
we must have (see [4]):

(a) `n − 1 =
∑t

i=1 ri(`
ni − 1),

(b) if ri ≥ 2, then ni ≤ n/2, and
(c) if i 6= j, then ni + nj ≤ n.

If U is a subset of Vn(q), we denote by K(U) the complete graph
whose vertices are labeled with elements of U . If U and W are subsets
of Vn(q) with 0 /∈ W , we define G(U,W ) to be the subgraph of K(Vn(q))
with edge set {{u, u + w} : u ∈ U,w ∈ W}. It is easy to see that if
W is a subspace of Vn(q) of dimension ni, then K(Vn(q), W \ {0}) is
a Kqni –factor of Kqn . Moreover, if W1 and W2 are subspaces of Vn(q)
such that W1 ∩ W2 = {0}, then the factors they induce are disjoint.
Thus a partition P of Vn(q) of type [(r1, n1), . . . , (rt, nt)] induces a
factorization of Kqn into ri Kqni –factors for 1 ≤ i ≤ t. Equivalently, if
we let B denote the subspaces in P together with all their cosets, then
(Vn(q),B) is a (qn, {qn1 , . . . , qnt}, {r1, . . . , rt})–URD. Thus, we have the
following result on URDs.

Theorem 5.1. If n > 2 and x and y 6= 1 are nonnegative integers
such that 7x+3y = 2n−1, then there exists a (2n, {8, 4}, {x, y})–URD.
Moreover, if n is not congruent to 2 modulo 3, then these are all the
(v, L, R)–URDs with v = 2n and L = {8, 4}.

In terms of graph factorizations, Theorem 5.1 says that K2n can be
factored into x K8–factors and y K4–factors for all pairs of nonnegative
integers x, y such that 7x + 3y = 2n − 1 and y 6= 1.

It is important to note that the condition y 6= 1 in Theorem 5.1
may not be necessary for the existence of a (2n, {8, 4}, {x, y})–URD.
This is because Lemma 2.1 may not have a counterpart for URDs.
For example, there does exist a (32, {4, 2}, {10, 1})–URD even though
there is no partition of V5(2) into 10 subspaces of dimension 2 and
one subspace of dimension one. A (32, {4, 2}, {10, 1})–URD is better
known as a 4-RGDD of type 216 (a resolvable group divisible design
with block size four and 16 groups of size two) and was first found by
H. Shen [9] in 1996.

Moreover, if a (2n0 , {8, 4}, {x0, 1})–URD exists for some n0 ≡ 2
(mod 3), then a (2n, {8, 4}, {x, 1})–URD can be constructed recursively
for all n ≥ n0 with n ≡ 2 (mod 3) and 7x + 3 = 2n − 1. Thus it would
suffice to construct a (256, {8, 4}, {36, 1})–URD (i.e., an 8-RGDD of
type 464) in order to make the condition 7x + 3y = 2n − 1 necessary
and sufficient for the existence of a (2n, {8, 4}, {x, y})–URD.
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6. Appendix: Partitions of V8(2) into subspaces
of dimensions 5, 3, and 2.

In this appendix, we show that the main theorem is true for n = 8
by proving the following stronger result.

Theorem 6.1. Suppose that x, y, and z are nonnegative integers that
satisfy 31x + 7y + 3z = 255. Then V8(2) has a partition of type
[(x, 5), (y, 3), (z, 2)] unless such a partition is precluded by condition
(2) or Lemma 2.1.

6.1. Notation and Generalities. We start with some notation and
the basic setup used in the proof of Theorem 6.1.

Let V be a subspace of Vn(2) with basis v1, v2, v3, and define vi for
i > 0 recursively by

(9) vi+3 = vi + vi+1.

Then it is easily checked that vi = vj if and only if i ≡ j (mod 7). It
follows that any 7 consecutive elements of the sequence {vi} constitute
V \{0}, and any 3 consecutive elements are linearly independent.

Note that from (9) we have vi+1 + vi+3 = vi, or

(10) vi + vi+2 = vi+6

for all i. Likewise

(11) vi + vi+3 = vi+1

for all i. Equations (9), (10), and (11) can be used to add any vi and
vj, since any two integers differ by at most 3 modulo 7.

Now choose subspaces X, U , and W of V8(2) of dimensions 2, 3, and
3, respectively, such that V8(2) = X ⊕ U ⊕ W . Let U and W have
bases {u1, u2, u3} and {w1, w2, w3}, respectively, and define ui and wi

for i > 0 by the recurrence relations

ui+3 = ui + ui+1 and wi+3 = wi + wi+1.

Set aij = uj +wi+j for all i and j. For fixed i, the sequence aij also sat-
isfies (9), and since ai1, ai2, ai3 are linearly independent, any 7 consec-
utive terms aij, . . . , ai,j+6 are the nonzero elements of a 3-dimensional
subspace of U � W . Call the set of these 7 nonzero elements Ai.

Note that if v ∈ Ai ∩ Ai′ , then v = uj + wi+j = uj′ + wi′+j′ . Thus
uj − uj′ = wi′+j′ −wi+j = 0, and so i ≡ i′ and j ≡ j′ (mod 7). We see
that A1∪{0}, . . . , A7∪{0} form a subspace partition of (U �W )∪{0}.
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6.2. Proof of Theorem 6.1. We use the preceding notation and de-
finitions to define 7-element sequences U j, W j, and Aj

i by

U j = (uj, . . . uj+6), W j = (wj, . . . wj+6),

and Aj
i = U j + W i+j = (aij, . . . , ai,j+6),

where addition is pointwise. Note that the set of entries in Aj
i is Ai.

Furthermore, U i + U i+1 = U i+3, and so the sequences U i and W i also
satisfy (9), (10), and (11).

It is not hard to see that {X ⊕ U,X + W ∗, X + (U � W )} is a (set)
partition of X ⊕U ⊕W , where W ∗ = W\{0}. Let X = {0, x1, x2, x3},
and recall that U � W has the partition {A0, . . . , A6}. Thus the sets

X ⊕ U, W ∗, xj + W ∗ (1 ≤ j ≤ 3), and

Ai (0 ≤ i ≤ 6), xj + Ai (1 ≤ j ≤ 3, 0 ≤ i ≤ 6),

form a (set) partition of V8(2) in which X ⊕ U is a 5-dimensional
subspace and each of the other 32 sets consists of 7 nonzero elements.

Now define C1 = x3 + W 1, C2 = x1 + A4
0, C3 = x2 + A6

1, and
Ci+3 = Ci + Ci+1 for i > 0. The sequence Ci is periodic modulo 7, and
(12)
(C1, . . . , C7) = (x3 +W 1, x1 +A4

0, x2 +A6
1, x2 +A4

5, x3 +A3
2, A

3
3, x1 +A6

4).

For example,

C1 + C2 = (x3 + W 1) + (x1 + A4
0) = x2 + W 1 + U4 + W 4

by (11)
= x2 + U4 + W 2 = x2 + A4

5.

Thus if we fix any particular coordinate of the sequences C1, . . ., C7,
we obtain the nonzero elements of a subspace of dimension 3. Hence the
sets listed in (12) (with 0 included) can be partitioned into 7 subspaces
of dimension 3.

In the same way, let D1 = x2 + W 1, D2 = x3 + A1
1, D3 = A3

4,
E1 = x1 + W 1, E2 = x1 + A2

1, E3 = x2 + A3
2, F1 = W 1, F2 = x3 + A4

0,
and F3 = x1 + A1

2. Furthermore, let the sequences Di, Ei, and Fi

satisfy the same recursion that vi does in (9). Then these sequences
are periodic modulo 7, and
(13)
(D1, . . . , D7) = (x2+W 1, x3+A1

1, A
3
4, x1+A1

3, x3+A7
6, x1+A7

5, x2+A3
0),

(14)
(E1, . . . , E7) = (x1 +W 1, x1 +A2

1, x2 +A3
2, A

2
5, x3 +A5

4, x2 +A5
6, x3 +A3

3),

(15)
(F1, . . . , F7) = (W 1, x3 +A4

0, x1 +A1
2, x3 +A4

5, x2 +A2
4, x2 +A2

3, x1 +A1
6).
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Note that equations (12) to (15) use exactly 28 of the 32 sets men-
tioned above, as shown in Table 1. These sets form 28 subspaces of
dimension 3 (when we include 0 in each of them).

W A0 A1 A2 A3 A4 A5 A6

0 + (15) (12) (13) (14)
x1 + (14) (12) (14) (15) (13) (12) (13) (15)
x2 + (13) (13) (12) (14) (15) (15) (12) (14)
x3 + (12) (15) (13) (12) (14) (14) (15) (13)

Table 1. The Equation Containing a Given Set

The 4 sets not used, A0, A1, A2, and A6, form subspaces of dimension
3 when 0 is included. Thus we have a partition P of V8(2) of type
[(1, 5), (32, 3)] that consists of X ⊕ U , A0, A1, A2, A6, and the 28
subspaces produced by equations (12) through (15).

From each list of sets (12) through (15), we can also obtain two sets of
seven 2-dimensional subspaces and one of the 3-dimensional subspaces
Ai ∪ {0} in a similar manner. The nonzero elements in these sets of
2-dimensional subspaces are described by the equations below. Some
of the sequences are permuted to get these equations, but note that
W i corresponds to the same set W ∗ no matter what i is, likewise the
set of elements of Aj

i depends only on i.

(x1 + A4
0) + (x2 + A6

1) = (x3 + A3
2) and

(x3 + W 1) + (x2 + A1
5) = (x1 + A1

4)(16)

(x2 + A3
0) + (x3 + A1

1) = (x1 + A7
5) and

(x2 + W 5) + (x1 + A1
3) = (x3 + A1

6)(17)

(x1 + A2
1) + (x2 + A3

2) = (x3 + A5
4) and

(x1 + W 5) + (x3 + A1
3) = (x2 + A1

6)(18)

(x3 + A4
0) + (x1 + A1

2) = (x2 + A2
4) and

(x3 + A1
5) + (x1 + A6

6) = (x2 + A5
3)(19)

These sets of equations omit the sets A3, A4, A5, and W ∗ from
equations (12) through (15), respectively. By using any of these sets
of two equations instead of the corresponding one of equations (12)
through (15), we replace 7 subspaces of dimension 3 with 1 subspace of
dimension 3 and 14 subspaces of dimension 2. Using k of the equation
sets gives a partition of type [(1, 5), (32−6k, 3), (14k, 2)] for 0 ≤ k ≤ 4.

We can also form any 3 of the unused subspaces Ai∪{0} into a set of 7
subspaces of dimension 2. For example, each of the following equations
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allows us to replace 3 subspaces of dimension 3 with 7 subspaces of
dimension 2.

(20) A1
0 + A3

1 = A7
2

(21) A1
3 + A3

4 = A7
5

We can always do this once using (20), and if k = 4 in a partition of
type [(1, 5), (32− 6k, 3), (14k, 2)], we can use (21) to do it again.

Hence we can obtain a partition of V8(2) of type

[(1, 5), (32− 3j, 3), (7j, 2)]

for any j = 0, . . . , 10 by combining equations (12)–(21) appropriately.
Of course, condition (2) implies that a partition of V8(2) can have at
most 1 subspace of dimension 5. Thus we can obtain all partitions of
V8(2) into subspaces of dimensions 5, 3, and 2 for which there is exactly
1 subspace of dimension 5.

We can use Lemma 1.2 to partition a subspace of dimension 5 into
1 subspace of dimension 3 and 8 subspaces of dimension 2. Doing this
with partitions of V8(2) of type

[(1, 5), (32− 3j, 3), (7j, 2)] for 0 ≤ j ≤ 10

gives partitions of type

[(33− 3j, 3), (7j + 8, 2)] for 0 ≤ j ≤ 10.

This provides partitions of V8(2) of type [(x, 3), (y, 2)] for all solutions
of the equation 7x + 3y = 255 except x = 36, y = 1 and x = 0, y = 85.
A partition with y = 1 is impossible by Lemma 2.1, while a partition
into all subspaces of dimension 2 exists by Lemma 1.1.

This completes the proof of Theorem 6.1, and so proves the main
theorem (Theorem 4.4) when n = 8.
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