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Abstract

A vector space partition of a finite vector space V over the field of q elements is a collection
of subspaces whose union is all of V and whose pairwise intersections are trivial. While a number
of necessary conditions have been proved for certain types of vector space partitions to exist, the
problem of the existence of partitions meeting these conditions is still open. In this note, we consider
vector space partitions of a finite vector space over the field GF (2) into subspaces of dimension 2
and dimension s 6= 2.

While certain cases have been done previously (s = 1, s = 3, and s even), in our main theorem
we build upon these general results to give a constructive proof for the existence of vector space
partitions over GF (2) into subspaces of dimensions s and 2 of almost all types. In doing so, we
introduce techniques that identify subsets of our vector space which can be viewed as the union
of subspaces having trivial pairwise intersection in more than one way. These subsets are used to
transform a given partition into another partition of a different type. This technique will also be
useful in constructing further partitions of finite vector spaces.

1 Introduction

Let q be a prime power, F = GF (q) be the field of q elements, and V = V (n, q) be the n-dimensional
F -vector space Fn, and let S ⊆ V be a subset containing the zero vector. We say a collection of nonzero
subspaces P of V is a subspace partition of S if the union of all the subspaces of P equals S and any two
distinct subspaces of P have trivial intersection. For the sake of simplicity, in this paper we will use the
term partition when we are refering to subspace partitions. We say P is a partition of type sx11 s

x2
2 · · · s

xk
k

if P consists of xi subspaces of dimension si for all 1 ≤ i ≤ k, where the si are positive and distinct.
Note that, in order for a partition of S ⊆ V (n, q) of type sx11 s

x2
2 · · · s

xk
k to exist, there are two obvious

necessary conditions. First is the diophantine equation:

k∑
i=1

xi(q
si − 1) = |S| − 1. (1)

The second comes from dimension considerations and can be stated as follows:

If i 6= j and xi ≥ xj > 0, then si + sj ≤ n. Furthermore, if xi ≥ 2, then 2si ≤ n. (2)

In general, we say the expression sx11 s
x2
2 · · · s

xk
k is a partition type of V (n, q) if the si are distinct, the xi

are nonnegative, and conditions (1) and (2) are satisfied for S = V (n, q).
We note that there are partition types of V (n, q) for which no partition exists. For example, 21011 is

a partition type of V (5, 2), yet by [7, Lemma 2.1] no partition of V (5, 2) of this type exists. A number
of papers investigate the partition types for which a corresponding partition exists. (See, for example,
[10], [11], [12], [13], as well as [3], [7], [8], [9], and [16].) Note also that partial spreads, considered,
for example, in [5] and [15], become vector space partitions if we include the remaining 1-dimensional
subspaces in our partitions.
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This paper is an extension of [7] and [16]. In particular, we give the main theorem of the present
paper.

Theorem 1 (main theorem) Let s ≥ 3 and n ≥ 2s be integers, c be the least residue of n modulo

s, ε =

{
1 if c is even
0 if c is odd,

and h =
2s+c − ε(2s − 1)− 1

3
. If x and y are nonnegative integers such that

x(2s − 1) + 3y = 2n − 1 and y ≥ h, then there exists a partition of V (n, 2) of type sx2y.

In the conclusion of Theorem 1, it is easy to see that the minimum possible value of x is 0 and the
maximum value of x is

m =
2n − 1− 3h

2s − 1
=

2n − 2s+c

2s − 1
+ ε.

The number
2n − 2s+c

2s − 1
+ 1

was conjectured in a 1972 paper [15] by Hong and Patel to be the maximum number of s-dimensional
subspaces in V (n, 2) having trivial pairwise intersections. Although the Hong-Patel conjecture was
recently disproved for n ≥ 8, s = 3, and c = 2 (see [6]), for no n is there a presently known partition
of V (n, 2) of type sx2y in which x exceeds m. Thus the conclusion of Theorem 1 accounts for all the
partition types of V (n, 2) into subspaces of dimensions 2 and s except those that would contradict the
Hong-Patel Conjecture. Furthermore, Corollary 22 states that when c = 0, 1, or 2, our main theorem is
actually an “if and only if” statement.

Note that the main theorem does not include the s = 1 case. We discuss this case in the next section
and see that something similar is true.

The rest of the paper is organized as follows. In Section 2, we first treat the case when s is even,
showing that a more general version of our main theorem for arbitrary q follows as a corollary from
Lemmas 2 and 3. Therefore, we can reduce to the case when s is odd. Furthermore, since [7, Theorem
4.4] implies our main theorem for s = 3, we only consider the case when s ≥ 5. Section 3 gives some
general constructions of partitions for arbitrary q. In particular, in Section 3 we identify particular
subsets of V (n, q) that can be partitioned in multiple ways. This allows us to tranform a given vector
space partition of V (n, q) into another vector space partition of V (n, q) of a different type. In Section
4, we restrict our attention to the case when q = 2 and use the constructions in Section 3 to form
some initial partitions of V (n, 2). Finally, in Section 5, we use the partitions in Section 4 to prove the
initial cases for our main theorem (see Theorems 18, 19, and 20) and then combine these cases with
[16, Theorem 1.4] to give an inductive proof of our main theorem.

While some of the techniques used in this paper are introduced in [16, Section 3] in the case when
s = 5, here we consider arbitrary odd values of s that are at most bn2 c. (Note that when s > bn2 c, there
can be at most one s-dimensional subspace in a partition of V (n, 2) by condition (2). Furthermore, in
order to have a partition of type s12y, we must have n ≡ s (mod 2).)

2 Some known partitions of type sx2y for arbitrary q

Let q be a power of a prime and F = GF (q). Let V be an n-dimensional vector space over F . In this
section, we bring together some previous results and sometimes rephrase them to be consistent with the
statement of our main theorem. Much of what we do in here follows from two known results that we
restate here for the reader’s convenience.

Lemma 2 (André [1]) Let m > 0 be a divisor of n. Then there exists a partition of V (n, q) of type mk,

where k =
qn − 1

qm − 1
.
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Lemma 3 (Beutelspacher [2] and Bu [4]) Let 1 < d < 1
2n. Then there exists a partition of V (n, q) of

type (n− d)1dq
n−d

.

By recursively applying the above lemma, we get the following as a direct consequence.

Lemma 4 Let d1 < d2 < n be positive integers such that n ≡ d2 (mod d1). Then there exists a partition

of V (n, q) of type d12d
g
1 for g =

qn − qd2
qd1 − 1

.

We start with the s = 1 case. If n is even, by Lemma 2, there exists a partition of V of type 102u

where u =
qn − 1

q2 − 1
. Since every two-dimensional subspace can also be viewed as the union of q + 1 one-

dimensional subspaces with pairwise trivial intersection, we can transform any partition of type 1x2y

into a partition of type 1x+q+12y−1 in this way. As a result, when n is even there exists a partition of
type 1x2y for every nonnegative integer solution to the diophantine equation x(q−1)+y(q2−1) = qn−1.

If n ≥ 3 is odd, we note that by successively applying Lemma 3 when d = 2 and n ≥ 5, we have

a partition of type 312z, where z =
qn − q3

q2 − 1
. Since there exists a partition of any three-dimensional

subspace of type 211q
2
, we get a partition of V of type 1q

2
2z+1. So, by reconfiguring the two-dimensional

subspaces into q + 1 one-dimensional subspaces, one two-dimensional subspace at a time, we get a
partition of type 1x2y for all nonnegative solutions to the diophantine equation x(q − 1) + y(q2 − 1) =
qn − 1, where x ≥ q2. Note that it follows from [12, Theorem 1] that x ≥ 2q when n is odd. Hence
for q = 2 and q = 3, the above solutions account for all partition types of the form 1x2y for which a
partition of V exists. We summarize these results below.

Theorem 5 Let q = 2 or q = 3, n ≥ 2, and let b be the least residue of n modulo 2. Then there exists
a partition of V (n, q) of type 1x2y if and only if x and y are nonnegative solutions to the diophantine

equation x(q − 1) + y(q2 − 1) = qn − 1 such that 0 ≤ y ≤ qn − 1

q2 − 1
−
(

q2

q + 1

)
b.

Next, we consider the case when s ≥ 4 is even. Note that if n is odd, there does not exist a partition
of V of type sx2y since, if there were such a partition, then 2n − 1 ≡ (−1)n − 1 ≡ 1 (mod 3), while
x(2s − 1) + 3y ≡ x((−1)s − 1) ≡ 0 (mod 3), contradicting (1). Hence we can assume that n = dim(V )
is even.

In this case, we can use Lemmas 2 and 3 to obtain the following theorem.

Theorem 6 Let n > s ≥ 4 be even integers such that 2s ≤ n, and let c be the least residue of n modulo

s. Then for every integer i such that 0 ≤ i ≤ qn − qs+c

qs − 1
+ 1 there exists a partition of V (n, q) of type

sxi2yi, where

xi =
qn − qs+c

qs − 1
+ 1− i and yi =

qs+c − qs

q2 − 1
+

(
qs − 1

q2 − 1

)
i.

Proof. Let n = sj + c, where j ≥ 2 and c is even. When i = 0, we use induction on j to prove
this case of the theorem. So let j = 2. Then by Lemma 3. there exists a partition of V of type
(s + c)1sq

s+c
. Let W be the subspace in this partition of dimension s + c. Now by Lemmas 2 and 3,

there is a partition of W of type s12y where y =
qs+c − qs

q2 − 1
. Therefore, V has a partition of type sx2y

where x = qs+c + 1 =
qn − qs+c

qs − 1
+ 1.

Next, assume the theorem is true for i = 0 and for a given j ≥ 2. If V is a vector space of dimension
n = s(j+1)+c, by Lemma 3 there exists a partition of V of type (sj+c)1sq

sj+c
. Let W be the subspace
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in this partition of dimension sj+ c. By our induction hypothesis, there exists a partition of W of type

sx
′
2r, where x′ =

qsj+c − qs+c

qs − 1
+ 1 and r =

qs+c − qs

q2 − 1
. Therefore, we have a partition of V of type sx2r,

where

x = x′ + qsj+c =
qsj+c − qs+c

qs − 1
+ 1 + qsj+c =

qsj+c − qs+c + qs(j+1)+c − qsj+c

qs − 1
+ 1 =

qn − qs+c

qs − 1
+ 1.

Hence the theorem is established for i = 0.

Since s ≥ 4 is even, each s-dimensional subspace can be reconfigured into
qs − 1

q2 − 1
two-dimensional

subspaces by Lemma 2. By starting with the i = 0 case and making this conversion one s-dimensional
subspace at a time, we get the remaining partitions.

3 Some general results

As above, let q be a power of a prime, F = GF (q), and V be an n-dimensional vector space over F .
Let t = bn2 c, where n ≥ 5. Let V1, V2 ⊆ V be two t-dimensional subspaces of V with trivial intersection,
so that either V = V1 ⊕ V2 or V = V1 ⊕ V2 ⊕ R when n is even or odd, respectively, and R ⊆ V is a
one-dimensional subspace such that R ∩ (V1 ⊕ V2) = {0}. Then we can think of each Vi as a copy of a
degree t field extension K of F . Because K is a finite field extension of F , we know that K is Galois
over F with a cyclic Galois group G = 〈ρ〉 of order t, where ρ(x) = xq for all x ∈ K. For any field L,
we will denote the set of nonzero elements of L by L×.

3.1 n even

We start by considering the case when n is even, so that n = 2t. In this case, we can view V as a
2t-dimensional F -vector space or as a 2-dimensional K-vector space. Using this latter characterization,
we write V = K ⊕K. One way to realize an F -vector space partition of type tq

t+1 is to consider the
one-dimensional K-subspaces of V that we identify with the projective line over K, which is usually
denoted by P1

K . The elements of P1
K are of the form Kv for some nonzero v ∈ V . In general, for any

(a, b) ∈ K ⊕K = V , we let K(a, b) = {(ka, kb) : k ∈ K} ⊆ V . So for every α ∈ K, let Kα = K(1, α),
and let K∞ = K(0, 1). We call this partition the projective line partition. If W ⊆ K is an F -subspace,
we write Uα to denote the subspace {(u, αu) : u ∈ U}.

We now consider some constructions that allow us to group subspaces in such a way that we can
reconfigure each group independently to get F -vector space partitions of V of different types. First, we
use the F -algebra Galois automorphism ρ.

For any subspace U ⊆ K and any α, x ∈ K with x 6= 0, let us define

Uα(x) = {(xu, ρ(x)u+ αxu) : u ∈ U} = {(xu, xqu+ αxu) : u ∈ U} .

Note that Uα(x) ⊆ Kα(x) = K(x, xq + αx) = K(1, xq−1 + α).
Next, we include the following well-known lemma.

Lemma 7 Let x, y ∈ K× be such that xq−1 = yq−1. Then there exists a ∈ F such that y = ax.

Proof. Assume x, y ∈ K× are such that xq−1 = yq−1. Then (yx−1)q−1 = 1; hence yx−1 is a zero
of zq−1 − 1. But the zeros of zq−1 − 1 are exactly the nonzero elements in F . Therefore, yx−1 = a for
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some a ∈ F×, and we get y = ax, as claimed.

It follows that
Kα(x) = Kα(x′)⇔ xq−1 = (x′)q−1. (3)

Furthermore, it follows from definitions that

Uα(x) = {x(u, (xq−1 + α)u) : u ∈ U} = x(Uxq−1+α). (4)

Similarly, for any F -subspace W ⊆ K and for any y ∈ K×, we can define the subset

Wα(y) = {(wy, (wq + αw)y) : w ∈W}.

Theorem 8 Let α ∈ K and W ⊆ K an F -subspace of dimension s. Then the following hold:

1. For any y ∈ K×, the set Wα(y) is an F -subspace of V of dimension s.

2. For any y, y′ ∈ K×, we have

Wα(y) ∩Wα(y′) 6= {0} ⇔Wα(y) = Wα(y′)⇔ Fy = Fy′.

3. For any F -subspace U ⊆ Kof dimension r, we have⋃
06=x∈W

Uα(x) =
⋃

06=y∈U
Wα(y) = {(xy, (xq + αx)y) : x ∈W, y ∈ U}.

Furthermore, the above set can be partitioned into either
qs − 1

q − 1
subspaces of dimension r or

qr − 1

q − 1
subspaces of dimension s.

Proof. (1) Let α, y ∈ K with y 6= 0. To show the Wα(y) are subspaces of dimension s, we define
the function φα,y : K → V by φα,y(x) = (xy, (xq + αx)y) for all x ∈ K. We claim that φα,y is an
injective F -linear transformation.

Indeed, for any x, x′ ∈ K and any b ∈ F , we have

φα,y(x)+bφα,y(x
′) = (xy, (xq+αx)y)+b(x′y, ((x′)q+αx′)y) =

(
(x+ bx′)y, ((xq + αx) + b((x′)q + αx′))y

)
=
(
(x+ bx′)y, ((x+ bx′)q + α(x+ bx′))y

)
= φα,y(x+ bx′),

since x 7→ xq is an F -linear transformation. Furthermore, φα,y(x) = 0⇒ xy = 0⇒ x = 0 since y ∈ K×,
and hence φα,y is injective.

Finally, for any F -subspace W ⊆ K, we have Wα(y) = φα,y(W ), so that Wα(y) is an F -subspace of
V of dimension s, as claimed.

(2) Let α, y, y′ ∈ K with y 6= 0 6= y′. If Fy = Fy′, then there exists b ∈ F such that y′ = by.
So for any w ∈ W we have (wy′, (wq + αw)y′) = (bwy, b(wq + αw)y) = (bwy, ((bw)q + αbw)y). Hence
Wα(y) = Wα(y′).

Conversely, assume 0 6= v ∈ Wα(y) ∩Wα(y′). Then there exist w,w′ ∈ W such that (wy, (wq +
αw)y) = v = (w′y′, ((w′)q + αw′)y′). Hence wy = w′y′, and since w 6= 0 6= w′, we have

(wq−1 + α)(wy) = ((w′)q−1 + α)(w′y′)⇒ wq−1 + α = (w′)q−1 + α⇒ wq−1 = (w′)q−1.

Therefore Fw = Fw′ by Lemma 7. Thus there exists b ∈ F such that w′ = bw, and therefore bwy′ =
w′y′ = wy ⇒ by′ = y ⇒ Fy′ = Fy. It follows from the preceding paragraph that Wα(y) = Wα(y′).
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(3) First, the equality of the above unions follows immediately from definitions. Furthermore,
because there are qr − 1 nonzero elements in U , there are qr−1

q−1 distinct s-dimensional subspaces in the
set {Wα(y) : 0 6= y ∈ U} by (1) and (2). Furthermore, if we let Uα(W ) =

⋃
06=y∈U W

α(y), it follows

from (1) and a counting argument that Uα(W ) is the union of qs−1
q−1 subspaces of the form Uα(w) for

0 6= w ∈W . As each grouping of these subspaces have pairwise trivial intersections, we get the claimed
partitions.

For convenience, for any subspaces U,W ⊆ K and any α ∈ K, we define the notation

Uα(W ) =
⋃

06=w∈W
Uα(w) =

⋃
06=u∈U

Wα(u) = Wα(U). (5)

In general, we will write Uα(W ) to emphasize the above set as a union of the subspaces Uα(w), and we
write Wα(U) to emphasize the above set as a union of the subspaces Wα(u).

Hence it follows from Theorem 8 that if we can find a collection of subspaces of a partition of V
whose unions are of the form Uα(W ) for subspaces U,W ⊆ K, then we can transform this collection
into the appropriate number of subspaces of dimensions dim(U) and dim(W ). This will be our general
strategy in Section 5.

3.2 n odd

Now assume V = K ⊕K ⊕ R, where R is an F -vector space of dimension r, and let λ : K → R be an
F -linear transformation. While we are primarily interested in the case when R = Fv for some nonzero
v ∈ V , the initial construction is more general, and so we include the more general formulation here.

Let V0 be the subspace K ⊕K ⊕ {0} ⊆ V , and let us identify R with the subspace {0} ⊕ {0} ⊕ R.
Let α ∈ K and U,W ⊆ K be F -subspaces. Let Uα(W ) ⊆ V0 and Wα(U) ⊆ V0 be the unions of
subspaces defined in equation (5). Also, for any nonempty subset S ⊆ V and any vector y ∈ V , define
S + y = {u+ y : u ∈ S} and the sets

Uα,λ(x) = {(xy, (xq + αx)y, λ(x)) : y ∈ U} = Uα(x) + λ(x) (6)

for each x ∈ K×,
Wα,λ(y) = {(wy, (wq + αw)y, λ(w)) : w ∈W} (7)

for each y ∈ K×, and

Uα,λ(W ) =
⋃

06=w∈W
Uα,λ(w) =

⋃
06=u∈U

Wα,λ(u) = Wα,λ(U).

Note that Uα,λ(x) is a subspace of V if and only if x ∈ ker(λ). For Wα,λ(y) we have the following
lemma.

Lemma 9 Let α, y ∈ K with y 6= 0, and let W ⊆ K be an F -subspace. Then Wα,λ(y) is an F -subspace
of V of dimension dim(W ).

Proof. Define a function ψα,y : W → V by ψα,y(x) = (xy, (xq+αx)y, λ(x)). Then for any x, x′ ∈W
and any a ∈ F we have

ψα,y(x+ ax′) = ((x+ ax′)y, ((x+ ax′)q + α(x+ ax′))y, λ(x+ ax′))
= (xy + ax′y, (xq + αx)y + a((x′)q + αx′)y, λ(x) + aλ(x′))
= ψα,y(x) + aψα,y(x

′).
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Hence ψα,y is F -linear. It is straightforward to show that ψα,y is injective since y ∈ K×. Finally, the
image of ψα,y is Wα,λ(y), completing the proof.

We can now prove a result that parallels the forward implication of Theorem 8(2).

Proposition 10 Let α ∈ K and let W ⊆ K be a subspace of dimension s. Then for any linear
transformation λ : K → R and any y, y′ ∈ K× we have

Wα,λ(y) ∩Wα,λ(y′) 6= {0} ⇔Wα,λ(y) = Wα,λ(y′)⇒ Fy = Fy′.

Proof. Let λ : K → R be an F -linear transformation, and let y, y′ ∈ K× be nonzero.
If 0 6= v ∈ Wα,λ(y) ∩ Wα,λ(y′), then there exist nonzero w,w′ ∈ W such that (wy, (wq−1 +

α)wy, λ(w)) = (w′y′, ((w′)q−1 + α)w′y′, λ(w′)). Hence wy = w′y′ 6= 0 ⇒ wq−1 + α = (w′)q−1 + α ⇒
wq−1 = (w′)q−1. Thus by Lemma 7 there exists b ∈ K such that w′ = bw; so wy = w′y′ = bwy′ ⇒ y =
by′. Hence Fy = Fy′, as claimed.

If w 6∈ ker(λ), we get λ(w) = λ(w′) = λ(bw) = bλ(w) 6= 0 ⇒ b = 1 ⇒ w = w′. Since wy = w′y′, we
have y = y′, and hence Wα,λ(y) = Wα,λ(y′). Finally, if w ∈ ker(λ), then w′ ∈ ker(λ). So the equality
Wα,λ(y) = Wα,λ(y′) follows from Theorem 8.

4 The q = 2 case

When q = 2 and V = K ⊕K, we have for any x, α ∈ K with x 6= 0 that Kα(x) = Kx+α. Therefore, if
K = W ⊕W ′ for some subspaces W and W ′, then Proposition 11 gives us Kα(W ) ∩Kβ(W ) = {0} for
distinct elements α, β ∈ W ′. Then we can apply Theorem 8 to reconfigure collections of subspaces of
the form Kα(W ), where α ∈ K and W is a proper subspace of K of dimension s. In Proposition 13, we
see that something similar will hold for the case when the dimension of V is odd. So let us fix a proper
subspace W of K of dimension s < t.

4.1 n even

Let n = 2t. Then Kα(W ) has a partition of type t2
s−1 consisting of subspaces of the form Kα+w for

w ∈ W which are contained in the projective line partition of V . Furthermore, we get the following
proposition.

Proposition 11 Let W ′ ⊆ K be a subspace such that K = W ⊕W ′. Then for any α 6= β ∈ W ′ we
have Kα(W ) ∩Kβ(W ) = {0}.

Proof. Let w ∈ Kα(W )∩Kβ(W ). Then there exist x, y ∈W such that w ∈ Kα(x)∩Kβ(y). If w 6= 0,
then x−1(x2+αx) = y−1(y2+βy)⇒ x+α = y+β. But this gives x−y = β−α ∈W∩W ′ = {0} ⇒ β = α,
which is a contradiction. Therefore, w = 0, and so Kα(W ) ∩Kβ(W ) = {0}.

It follows from equation (3) that Kα(w) = Kα(w′) ⇔ w = w′. Therefore, the subspaces Kα(w) for
w ∈W partition the set Kα(W ).

Theorem 12 Let V = K ⊕K and t = dim(K). Then for any s < t and any 0 ≤ j ≤ 2t−s, there exists
a partition Pj of V of type ta(j)sb(j), where a(j) = 2t + 1− (2s− 1)j and b(j) = (2t− 1)j. Furthermore,
this partition contains the subspaces K0, K∞, and Kβ for all β ∈ W ′, where W ′ is a subspace of K of
F -dimension t− s.
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Proof. Let W and W ′ be F -subspaces of K such that K = W ⊕W ′ and dim(W ) = s, so that
dim(W ′) = t− s. When j = 0, we just use the projective line partition.

Next, let 1 ≤ j ≤ 2t−s, and let S ⊆ W ′ be a subset of exactly j elements. Then for each β ∈ S we
can reconfigure the 2s − 1 subspaces in Kβ(W ) into the 2t − 1 subspaces W β(y) of dimension s for all
0 6= y ∈ K. Since by Proposition 11 the Kβ(W ) are distinct for distinct β in S, we get the appropriate
partition. It is also straightforward to check that K0 ∩Kβ(W ) = {0} = K∞ ∩Kβ(W ) for all β ∈ W ′;
hence K0 and K∞ are both in the resulting partition.

Furthermore, since Kβ(w) = {(wy, (w + β)wy) : y ∈ K}, where 0 6= w ∈ W , we see that for
any γ ∈ W ′ we have Kγ ∩ Kβ(W ) 6= {0} ⇒ (wy, (w + β)wy) = (xy′, γxy′) for some 0 6= w ∈ W ,
x, y, y′ ∈ K \ {0}, and β ∈ W ′. As wy = xy′ 6= 0, we have w + β = γ ⇒ β − γ = w 6= 0. But then
w ∈W ∩W ′ = {0}, which is a contradiction. So Kγ ∩Kβ(W ) = {0} for all β, γ ∈W ′.

4.2 n odd

Let n = 2t + c for some 0 < c < t and let R be a c-dimensional F -vector space. Let V = K ⊕K ⊕ R.
It follows from Proposition 10 that for any α ∈ K, any F -linear transformation λ : K → R, and any
F -subspace W of K we have Wα,λ(y) ∩Wα,λ(y′) 6= {0} ⇔ y = y′. In addition, we have the following
proposition.

Proposition 13 Let W ⊆ K be an F -subspace, and let α, β ∈ K such that α− β 6∈ ker(λ) ∩W . Then
for any y, y′ ∈ K× we have Wα,λ(y) ∩W β,λ(y′) = {0}.

Proof. Assume 0 6= z ∈Wα,λ(y) ∩W β,λ(y′). Then there exists nonzero x, x′ ∈W such that

(xy, (x2 + αx)y, λ(x)) = z = (x′y′, ((x′)2 + βx′)y′, λ(x′)).

Hence xy = x′y′, and so we get

(x+ α)xy = (x2 + αx)y = ((x′)2 + βx′)y′ = (x′ + β)x′y′.

Therefore x + α = x′ + β ⇒ x′ = x + α − β, and α − β ∈ W . Now, by looking at the last component,
we also have λ(x) = λ(x′) = λ(x) + λ(α− β)⇒ α− β ∈ ker(λ).

In what follows, we will primarily be interested in the case when R = Fv for some nonzero vector
v ∈ V , so that c = dimF (R) = 1. So if W ⊆ K is a subspace of dimension s ≥ 2 not contained in the
kernel of the linear functional λ : K → F , we can construct a direct sum decomposition of K of the
form

K = (W ∩ ker(λ))⊕ Fw ⊕W ′,

where W = (W ∩ ker(λ)) ⊕ Fw and ker(λ) = (W ∩ ker(λ)) ⊕W ′. As such, for each α ∈ W ′ ⊕ Fw,
Lemma 9 shows that the set Wα,λ(K) is the union of 2t − 1 subspaces of dimension s = dim(W ), and
Proposition 13 shows that for any α 6= β ∈W ′ ⊕ Fw we have Wα,λ(K) ∩W β,λ(K) = {0}.

Lemma 14 Let V = K ⊕K ⊕ Fv for some nonzero v ∈ V , let V0 be the subspace K ⊕K ⊕ {0}, let
λ : K → Fv be a linear transformation, and let α ∈ K. For any subspace U ⊆ K we have the following.

1. If U ⊆ ker(λ), then Kα,λ(U) = Kα(U) ⊆ V0.

2. If U 6⊆ ker(λ), then for any x ∈ U \ ker(λ)

Kα,λ(U) = Kα(U ∩ ker(λ)) ∪ (Kα+x(U ∩ ker(λ)) + v) ∪ (Kα+x + v) .
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Proof. (1) Assume 0 6= u ∈ U ⊆ ker(λ). Then Kα,λ(u) = Kα(u) + λ(u) = Kα(u), and hence the
equality follows.

(2) If U 6⊆ ker(λ), then dim(U ∩ ker(λ)) = dim(U) − 1 since dim(ker(λ)) = t − 1. So for any
x ∈ U \ ker(λ) we have a corresponding direct sum decomposition U = Fx⊕ (U ∩ ker(λ)). Since q = 2,
we get U = (U ∩ker(λ))∪((U ∩ker(λ))+x). So for any 0 6= u ∈ U ∩ker(λ) we see that Kα,λ(u) = Kα(u)
and Kα,λ(u+ x) = Kα(u+ x) + v = Kα+x(u) + v. Finally, we have Kα,λ(x) = Kα(x) + v = Kx+α + v.
Therefore,

Kα,λ(U) = Kα(U ∩ ker(λ)) ∪ (Kα+x(U ∩ ker(λ)) + v) ∪ (Kα+x + v) .

Proposition 15 Let q = 2 and V be a vector space such that dim(V ) = 2t + 1. Then for any s ≤ t
there exists a partition of type (t+ 1)1txsy, where x = 2t−s+1 and y = 22t−s+1 − 2t−s+1.

Proof. As above, let K be a field extension of degree t over F , and let V = K ⊕K ⊕ Fv for some
nonzero v ∈ V . Let λ : K → F be a nontrivial linear transformation and U ⊆ K be a subspace of
dimension s such that U 6⊆ ker(λ). Then dim(U ∩ker(λ)) = s−1, and we can choose a subspace W ⊆ K
of dimension t− s+ 1 such that K = W ⊕ (U ∩ ker(λ)), dim(W ∩ ker(λ)) = t− s, and dim(W ∩U) = 1.

Then, for each α ∈W , the set Kα,λ(U) has a partition consisting of 2t− 1 subspaces of dimension s
by Lemma 9. So

⋃
α∈W Kα,λ(U) has a partition consisting of 2t−s+1(2t−1) = 22t−s+1−2t−s+1 subspaces

of dimension s by Proposition 13.
Observe that K∞⊕Fv is a subspace of dimension t+1 not included in the above sets. Furthermore,

for any w ∈ K we have w = w0 +w1 for some w0 ∈ U ∩ ker(λ) and w1 ∈W . Choose u ∈W ∩U so that
λ(u) = 1. Then Kw + v = Kw1(w0) + v = Kw1+λ(w)u,λ(w0 + λ(w)u) ⊆ Kw1+λ(w)u,λ(U). Hence

Kw + v ⊆
⋃
α∈W

Kα,λ(U)

for all w ∈ K.
Finally, for each β ∈ W we have Kβ ∩Kα,λ(U) = {0} for all α ∈ W . Hence {Kβ : β ∈ W} is a set

of 2t−s+1 subspaces of dimension t that completes the desired partition.

5 Partitions of type sx2y for s odd

Let s ≥ 3 be odd. In this section, we use the partitions given in Theorem 12 and Proposition 15
to construct the partitions of type sx2y needed to prove the initial cases for our main theorem (see
Theorems 18, 19, and 20). Once we establish these cases, we can combine them with [16, Theorem 1.4]
to give an inductive proof of our main theorem.

First, we will assume dim(V ) = 2t. If s = t, then for any solution x and y of the diophantine
equation (2s − 1)x+ 3y = 22s − 1 there exists a partition of V of type sx2y by [3, Lemma 2.1].

Next, assume s < t < 2s. Decompose K = W ⊕W ′, where dim(W ) = s. Then

{K∞} ∪
{
Kα : α ∈W ′

}
∪

( ⋃
α∈W ′

{Kβ : Kβ ⊆ Kα(W )}

)
, (8)

is a t2
t+1-partition of V , which is our initial projective line partition. Also, by Theorem 8, each set

Kα(W ) can be partitioned into 2t − 1 subspaces of dimension s. Therefore, we can also view the above
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decomposition as a partition of type t2
t−s+1s2

t−s(2t−1), where for each α ∈W ′ we have

Kα(W ) = Wα(K).

Since we are interested in partitions of type sx2y, we first restate [16, Lemmas 3.5 and 3.6] which
we will use to reconfigure the subspaces Kα.

Lemma 16 [16, Lemma 3.5] Let A1, A2, A3 be subspaces of V = K ⊕K of dimension t such that Ai ∩
Aj = {0} for i 6= j. Then V = A1 ⊕ A2. Let πi : V → Ai for i = 1, 2 be the corresponding projection.
Then:

1. For any 0 6= x ∈ A3 the set Bx = {0, x, π1(x), π2(x)} is a two-dimensional subspace of V contained
in A1 ∪A2 ∪A3. Hence there exists a partition of A1 ∪A2 ∪A3 of type 22

t−1.

2. For any s < t, A1 ∪A2 ∪A3 has a partition of type s322
t−2s.

Let K = U ⊕ U ′ be a direct sum decomposition and choose 0 6= c ∈ U ′. If we consider the direct
sum decomposition U ′ = U ′′ ⊕ Fc for some subspace U ′′, then we get the following lemma.

Lemma 17 [16, Lemma 3.6] For any α ∈ U ′′ we have

Kα(U ⊕ Fc) = Kα(U) ∪Kα+c(U) ∪Kα+c.

Now we can prove the first of a series of three theorems.

Theorem 18 Let V = K ⊕ K, where t = dim(K), so that dim(V ) is even. Let s be an odd integer
such that s < t < 2s. Then for each 0 ≤ i ≤ 1

3

(
22t−s + 1

)
there exists a partition Pi of V of type sxi2yi,

where

xi = (22t−s + 1)− 3i and yi =
1

3
(22t−s − 2s) + (2s − 1)i.

Proof. We break this proof up into two cases. First we consider when t is even (so n ≡ 0 (mod 4)),
then we consider the case when t is odd (so n ≡ 2 (mod 4)).

Case 1: Assume t is even. To prove P0 exists, we start with the projective line partition as
described in (8). By Theorem 8, for every α ∈ W ′ we can partition Kα(W ) into 2t − 1 subspaces
of dimension s. Since there are 2t−s of these sets, we have partitioned their union into 22t−s − 2t−s

subspaces of dimension s. In addition, we have 2t−s+1 subspaces of dimension t, which are the subspaces
{Kα : α ∈W ′} ∪ {K∞}.

Since t is even, t−s is odd, so 2t−s+1 ≡ 0 (mod 3). As a result, we can divide up these t-dimensional
subspaces into 1

3(2t−s + 1) triples. Using Lemma 16, the union each of these triples can be partitioned
into three subspaces of dimension s and 2t − 2s subspaces of dimension 2. Hence, from the union of
all of these triples of t-dimensional subspaces we get a partition conisisting of 2t−s + 1 subspaces of
dimension s and 1

3(2t−s + 1)(2t − 2s) = 1
3(22t−s − 2s) two-dimensional subspaces. We now combine all

of the above to get a partition of V . Since there is a total of (22t−s − 2t−s) + (2t−s + 1) = 22t−s + 1
subspaces of dimension s in this partition, we have a partition of type sx02y0 .

Next, to get the remaining Pi, it is sufficient to create an appropriate number of triples of s-
dimensional subspaces that can be reconfigured into 2s − 1 two-dimensional subspaces.

Since t is even, there exists a partition of K consisting of d = 1
3(2t−1) subspaces of dimension 2. Let

U1, . . . , Ud be the subspaces of this partition. Then for any α ∈ W ′, the 2t − 1 subspaces of dimension
s in Kα(W ) can be grouped into sets of three {Wα(u) : 0 6= u ∈ Uj} for 1 ≤ j ≤ d. But

Wα(Uj) =
⋃

06=u∈Uj

Wα(u) = (Uj)α(W ),
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and so by Theorem 8 can partitioned into 2s−1 subspaces of dimension 2. Hence we need only consider
the partitions of the Kα for α ∈ W ′ and K∞. But in P0 these were grouped in triples. Since t is even,
we can take any three of these subspaces and partition each individual subspace into 1

3(2t−1) subspaces
of dimension 2. This reconfigures 3 subspaces of dimension s and 2t − 2s of dimension 2 into 2t − 1
subspaces of dimension 2. Thus the theorem follows when t is even.

Case 2: Now assume t is odd. To prove P0 exists, we again start with the partition given in (8). As
above, by Theorem 8 Kα(W ) can be partitioned into 2t − 1 subspaces of dimension s for each α ∈W ′.
Hence the union of all of these sets can be partitioned into 22t−s − 2t−s subspaces of dimension s. In
addition, we have 2t−s + 1 subspaces of dimension t, which are the subspaces {Kα : α ∈W ′} ∪ {K∞}.

Since both s and t are odd, by Lemma 4 we can partition each t-dimensional subspace above into one
subspace of dimension s and 1

3(2t−2s) subspaces of dimension 2. Therefore, the union K∞∪
⋃
α∈W ′ Kα

can be partitioned into 2t−s + 1 subspaces of dimension s and 1
3(2t − 2s)(2t−s + 1) = 1

3(22t−s − 2s)
subspaces of dimension 2. Hence by combining these partitions of subsets we again have a partition of
V of type sx02y0 .

Next, to get the remaining Pi, it is sufficient to create an appropriate number of triples of s-
dimensional subspaces that can be reconfigured into 2s − 1 two-dimensional subspaces.

Choose 0 6= c ∈ W ′ and W ′′ ⊆ W ′ such that W ′ = W ′′ ⊕ Fc. Then we can rearrange our initial
projective line partition of V as

{K∞} ∪
{
Kα : α ∈W ′′

}
∪

( ⋃
α∈W ′′

{Kβ : Kβ ⊆ Kα(W ⊕ Fc)}

)
.

Since dim(W ′′) = t−s−1 is odd, the number of subspaces in the set {K∞}∪{Kα : α ∈W ′′} is divisible
by 3, and so we can group these subspaces into triples and use Lemma 16 to change the partition of
each triple from a partition of three s-dimensional subspaces and 2t − 2s two-dimensional subspaces to
a partition of 2t − 1 two-dimensional subspaces.

Since t is odd, we can create a partition of K of type s12b where b = 1
3(2t − 2s). Let W be the

subspace of dimension s in this partition, and let U1, . . . , Ub be the two-dimensional subspaces in this
partition. As s is odd, there exists a partition of W of type 2

1
3
(2s−5)14. Let Ub+1, . . . , Ug be the subspaces

of dimension 2 in this latter partition, where g = 1
3(2t − 5).

Next, we look at two ways to partition the set Kα(W ⊕Fc) into subspaces of dimensions 2 and s for
each α ∈ W ′′. Our first method will give us nine subspaces of dimension s or more, while our second
method will give us nine subspaces of dimension s or fewer.

To describe our first method, for each α ∈ W ′′ we apply Lemma 17 to the set Kα(W ⊕ Fc) =
Kα(W ) ∪Kα+c(W ) ∪Kα+c. As with K, we can partition Kα+c into one s-dimensional subspace and
b two-dimensional subspaces. Next, by Theorem 8, each (Uj)α(W ) and (Uj)α+c(W ) can be partitioned
into three s-dimensional subspaces or 2s−1 two-dimensional subspaces. In this way, we can reconfigure
Kα(W⊕Fc) three s-dimensional subspaces at a time so that there are only nine s-dimensional subspaces
in this set and the rest are two-dimensional subspaces. Hence we have reorganized the set Kα(W ⊕Fc)
from a partition of 2t+1 − 1 subspaces of dimension s and 1

3(2t − 2s) subspaces of dimension 2 into a
partition of nine subspaces of dimension s and 1

3(2t−2s+(2t+1−10)(2s−1)) = 1
3(2t+s+1−2t−11(2s)+10)

subspaces of dimension 2 by changing partitions of (Uj)α(W ) of type s3 to partitions of type 22
s−1 one

set at a time.
To describe our second method, we note we can also partition the set Kα(W ⊕ Fc) into 2s+1 − 1

subspaces of the form Kβ. As s + 1 is even, 2s+1 − 1 ≡ 0 (mod 3), hence we can group these Kβ

into triples and use Lemma 16 to partition each triple into three subspaces of dimension s and 2t − 2s

subspaces of dimension 2. In this way, we can partition Kα(W⊕Fc) into 2s+1−1 subspaces of dimension
s and 1

3(2s+1 − 1)(2t − 2s) = 1
3(2t+s+1 − 2t − 22s+1 + 2s) subspaces of dimension 2. Since s ≥ 3, the

number of s-dimensional subspaces is 2s+1 − 1 > 9, so we have partitioned Kα(W ⊕ Fc) into 2s+1 − 1
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subspaces of dimension s and 1
3(2s+1−1)(2t−2s) of dimension 2. Now we can use Lemma 16 to change

the partition each triple of subspaces of the form Kβ from a partition of type s322
t−2s to a partition of

type 22
t−1.

By converting Kα(W ⊕ Fc) for each α ∈ W ′′ in this way, one at a time, we get all the remaining
partition types, and hence the theorem is proven.

Next, we consider the case when dim(V ) = 2t + 1 is odd. If s = 3, then our main theorem follows
from [7, Theorem 4.4]. So assume s ≥ 5. Let V = K⊕K⊕Fc, where dimF (K) = t. Write K = W⊕W ′,
where dim(W ) = s, and let λ : K → F be a linear functional such that W 6⊆ ker(λ) and W ′ ⊆ ker(λ).
So W = (ker(λ) ∩W ) ⊕ Fw for some 0 6= w ∈ W . Then by Lemma 9 and Proposition 13, for each
α ∈W ′⊕Fw, we can partition Kα,λ(W ) = Wα,λ(K) into 2t− 1 subspaces of dimension s. We use this
to prove the following theorem.

Theorem 19 Let dim(V ) = n ≡ 1 (mod 4), where n = 2t + 1 with 5 ≤ s ≤ t < 2s. Then for each
0 ≤ i ≤ 1

3(22t−s+1 − 1) there exists a partition Qi of V of type sxi2yi, where

xi = 22t−s+1 − 3i and yi =
1

3
(22t−s+1 − 1) + (2s − 1)i.

Proof. Let V , K, W , W ′, λ, w, and c be as above. As in Theorem 18, we first prove Q0 exists. For
each α ∈W ′⊕Fw we can partition the set Wα,λ(K) into 2t−1 subspaces of dimension s. Hence we can
partition the union of the Wα,λ(K) over all α ∈W ′⊕Fw into 2t−s+1(2t− 1) subspaces of dimension s.
Furthermore, for any β ∈ K = (W∩ker(λ))⊕W ′⊕Fw, we can find α ∈W ′⊕Fw and γ ∈W∩ker(λ) such
that β−w = α+γ. By equation (4), we have Kβ+c = Kα(w+γ)+c. Therefore, by equation (6), we have
Kα(w+ γ) + c = Kα,λ(w+ γ) ⊆ Kα,λ(W ) = Wα,λ(K) ⊆

⋃
σ∈W ′⊕FwW

σ,λ(K). Thus the complement of
the above union can be partitioned into the 2t−s+1 subspaces {Kα : α ∈W ′⊕Fw} of dimension t and the
subspace K∞⊕Fc of dimension t+1. Since t is even and s is odd, 2t−s+1 ≡ 1 (mod 3); so we can group
2t−s+1 − 1 of these t-dimensional subspaces into triples and apply Lemma 16 to each of these triples to
get 2t−s+1 − 1 more subspaces of dimension s and 1

3(2t−s+1 − 1)(2t − 2s) = 1
3(22t−s+1 − 2t+1 − 2t + 2s)

subspaces of dimension 2. Since t is even, the one remaining subspace of dimension t can be partitioned
into 1

3(2t − 1) subspaces of dimension 2. Finally, since dim(K∞ ⊕ Fc) = t+ 1 is odd, we can partition
this into one subspace of dimension s and 1

3(2t+1 − 2s) subspaces of dimension 2.
So, in total, the number of subspaces of dimension s in our partition of V is

2t−s+1(2t − 1) + (2t−s+1 − 1) + 1 = 22t−s+1 = x0,

and the number of two-dimensional subspaces is

1

3
(22t−s+1 − 2t+1 − 2t + 2s) +

1

3
(2t − 1) +

1

3
(2t+1 − 2s) =

1

3
(22t−s+1 − 1) = y0.

Hence we have Q0.
To find the other Qi, we show that we can partition unions of triples of s-dimensional subspaces into

sets of 2s− 1 two-dimensional subspaces one triple at a time. We leave the partition of K∞⊕Fc alone,
as well as the one Kα not used in the preceding triples. For any triple of the Kα mentioned above, we
use Lemma 16 to partition the union of three s-dimensional subspaces and the 2t − 2s two-dimensional
subspaces into 2t − 1 two-dimensional subspaces.

Next, let Y1, . . . , Yb be a partition of K into two-dimensional subspaces, where b = 1
3(2t − 1). Now

we look at partitioning the set Wα,λ(Yj) into 2s − 1 two-dimensional subspaces. Let W0, Z1, . . . , Zd be
a partition of W , where W0 ⊆ ker(λ) is of dimension s− 2, Zi is of dimension 2, and d = 1

3(2s − 2s−2).
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(Such a partition exists since we are assuming s ≥ 5.) Now each (Zi)
α,λ(Yj) ⊆ Wα,λ(Yj) is a two-

dimensional subspace. Furthermore, (Yj)α,λ(x) is a two-dimensional subspace for every 0 6= x ∈ W0

by Lemma 14. Hence we can partition Wα,λ(Yj) into either three s-dimensional subspaces or 2s − 1
two-dimensional subspaces. This completes the proof.

Theorem 20 Let dim(V ) = n ≡ 3 (mod 4), and let n = 2t + 1 with 5 ≤ s ≤ t < 2s. Then for each
0 ≤ i ≤ 1

3(22t−s+1 − 1) there exists a partition Qi of V of type sxi2yi, where

xi = 22t−s+1 − 3i and yi =
1

3
(22t−s+1 − 1) + (2s − 1)i.

Proof. Let V , K, W , W ′, λ, w, and c be as in the paragraph preceding Theorem 19. As
before, we first prove Q0 exists. Consider the partition of type (t + 1)1tgsh, where g = 2t−s+1 and
h = 22t−s+1 − 2t−s+1, given by

{K∞ ⊕ Fc} ∪
{
Kα : α ∈W ′ ⊕ Fw

}
∪

( ⋃
α∈W ′⊕Fw

{
Wα,λ(k) : k ∈ K×

})
.

For each α ∈ W ′ ⊕ Fw the set Wα,λ(K) consists of 2t − 1 subspaces of dimension s; hence this
gives us 2t−s+1(2t − 1) = 22t−s+1 − 2t−s+1 subspaces of dimension s. Furthermore, for any β ∈ K =
(W ∩ ker(λ))⊕W ′ ⊕ Fw, we can find α ∈W ′ ⊕ Fw and γ ∈W ∩ ker(λ) such that β − w = α+ γ. By
equation (4), we have Kβ + c = Kα(w + γ) + c. Therefore, by equation (6), we have Kα(w + γ) + c =
Kα,λ(w+γ) ⊆ Kα,λ(W ) = Wα,λ(K) ⊆

⋃
σ∈W ′⊕FwW

σ,λ(K). Thus we are left with the 2t−s+1 subspaces
{Kα : α ∈W ′⊕Fw} of dimension t and the subspace K∞⊕Fc of dimension t+1. Since n ≡ 3 (mod 4),
necessarily t is odd. So we can partition each Kα into one subspace of dimension s and 1

3(2t − 2s)
subspaces of dimension 2. Also, dim(K∞ ⊕ Fc) = t + 1 is even; so we can partition K∞ ⊕ Fc into
1
3(2t+1 − 1) subspaces of dimension 2.

Therefore, in our partition of V the total number of subspaces of dimension s is

(22t−s+1 − 2t−s+1) + 2t−s+1 = 22t−s+1 = x0,

and the total number of subspaces of dimension 2 is

2t−s+1

(
1

3
(2t − 2s)

)
+

1

3
(2t+1 − 1) =

1

3
(22t−s+1 − 1) = y0.

Hence we have Q0.
To find the other Qi, we show that we can partition the union of triples of s-dimensional subspaces

into 2-dimensional subspaces one triple at a time. We leave the partition of K∞ ⊕ Fc unchanged.
Let v ∈W ′ ⊆ ker(λ), and create a direct sum decomposition W ′ = W ′′⊕Fv. For each α ∈W ′′⊕Fw,

we consider the set Kα,λ(W ) ∪Kα+v,λ(W ) ∪Kα+v. We will use two methods to partition this set into
subspaces of dimensions 2 and s. We will apply the first method to get at least 9 subspaces of dimension
s and we will apply the second method to get 9 or fewer subspaces of dimension s.

Now we describe our first method. Since t is odd, there exists a partition of K of type s12b, where
b = 1

3(2t − 2s). Let us choose this partition so that W is the subspace of dimension s in this partition.
Let U1, . . . , Ub be the two-dimensional subspaces in this partition. In this way, we can also partition
Kα+v into one subspace of dimension s and b subspaces of dimension 2.

Furthermore, as s is odd, by Lemma 4, there exists a partition of W of type 312
1
3
(2s−8), to which

we can apply Lemma 3 to get a partition of type 2
1
3
(2s−5)14. Let Ub+1, . . . , Ug be the subspaces of

dimension 2 in this partition, where g = 1
3(2t − 5).
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For α ∈W ′ ⊕ Fw consider the sets Wα,λ(K) = Kα,λ(W ) and Wα+v,λ(K) = Kα+v,λ(W ). As stated
above, we can partition each of these sets into 2t − 1 subspaces of dimension s. Let 1 ≤ k ≤ g and
consider the three s-dimensional subspaces in Wα,λ(Uk). This set can be partitioned into 2s − 1 two-
dimensional subspaces as follows. Let W0, Z1, . . . , Zd be a partition of W , where W0 ⊆ ker(λ) is of
dimension s− 2, Zi is of dimension 2, and d = 1

3(2s − 2s−2). (Such a partition exists by Lemma 3 since
we are assuming s ≥ 5.) Each (Zi)

α,λ(u) ⊆Wα,λ(u) is a two-dimensional subspace for each 0 6= u ∈ Uk.
Furthermore, (Uk)α,λ(x) is a two-dimensional subspace for every 0 6= x ∈ W0 by Lemma 14. Hence
we can regard Wα,λ(Uk) as either three s-dimensional subspaces or (2s − 2s−2) + (2s−2 − 1) = 2s − 1
two-dimensional subspaces. As a result, we can partition the set Wα,λ(K) into (2t − 1) − 3j subpaces
of dimension s and (2s − 1)j subspaces of dimension 2 for any 0 ≤ j ≤ g. The same procedure can
be carried out on Wα+v,λ(K) as well. Hence we can partition Kα,λ(W ) ∪ Kα+v,λ(W ) ∪ Kα+v into
(2t+1 − 1) − 3j subspaces of dimension s and b + (2s − 1)j subspaces of dimension 2 for 0 ≤ j ≤ 2g.
(Note that when j = 2g, we get 9 subspaces of dimension s.)

In our second method, for each α ∈ W ′′ ⊕ Fw, we partition the set Kα,λ(W ) ∪Kα+v,λ(W ) ∪Kα+v

into subspaces of dimensions s and 2 in ways that include the cases when the number of s-dimensional
subspaces is fewer than 9.

As above, we first use the two-dimensional subspaces (Zi)
α,λ(u) and (Zi)

α+v,λ(u) for all 0 6= u ∈ K
and 1 ≤ i ≤ d to get 1

3(2t+s+1 − 2t+s−1 − 2s+1 + 2s−1) subspaces of dimension 2. Once we exclude the
union of these subspaces, we are left with

Kα,λ(W0) ∪Kα+v,λ(W0) ∪Kα+v = Kα(W0) ∪Kα+v(W0) ∪Kα+v,

since W0 ⊆ ker(λ). Now, by Lemma 17, we have Kα(W0) ∪Kα+v(W0) ∪Kα+v = Kα(W0 ⊕ Fv), which
we partition into 2s−1− 1 subspaces of dimension t in K⊕K ⊆ V of the form Kβ for 0 6= β ∈W0⊕Fv.
Since s is odd, we have 2s−1 − 1 ≡ 0 (mod 3), hence we can group the Kβ into triples and use Lemma
16 to partition the union of each triple into either 3 subspaces of dimension s and 2t − 2s subspaces of
dimension 2 or into 2t − 1 subspaces of dimension 2.

Using this second method, for each of the triples of t-dimensional subspaces above, we can partition
their union into two-dimensional subspaces. As a result, we can partition Kα,λ(W )∪Kα+v,λ(W )∪Kα+v

into 2s−1 − 1 − 3j subspaces of dimension s and 1
3(2t+s+1 − 22s−1 − 2t − 2s−1) + (2s − 1)j subspaces

of dimension 2 for 0 ≤ j ≤ 1
3(2s−1 − 1). Note that when j = 0 we have the number of s-dimensional

subspaces is 2s−1 − 1 ≥ 15 > 9, since s ≥ 5, hence this accounts for the cases when there are 9 or fewer
subspaces of dimension s.

Hence we have proven, for each α ∈ W ′′ ⊕ Fw, the set Kα,λ(W ) ∪ Kα+v,λ(W ) ∪ Kα+v can be
partitioned into (2t+1− 1)− 3j subspaces of dimension s and b+ (2s− 1)j subspaces of dimension 2 for
0 ≤ j ≤ 1

3(2t+1 − 1). Since |W ′′ ⊕ Fw| = 2t−s, the union⋃
α∈W ′′⊕Fw

(Kα,λ(W ) ∪Kα+v,λ(W ) ∪Kα+v)

can be partitioned into 2t−s(2t+1 − 1)− 3j subspaces of dimension s and 2t−sb+ (2s − 1)j subspaces of
dimension 2 for all 0 ≤ j ≤ 1

32t−s(2t+1 − 1) = 1
3(22t−s+1 − 2t−s).

Note that in the above partitions we have not used the subspaces contained in the Kα for α ∈
W ′′⊕Fw, each of which contains the subspace Wα of dimension s. In all, there are 2t−s such subspaces
of dimension s. Since t is odd, 2t−s ≡ 1 (mod 3); so we can group 2t−s − 1 of these subspaces into
triples, and then use Lemma 16 to partition the union of each triple into 2s − 1 two-dimensional
subspaces. In this way, we have a total of 2t−s(2t+1 − 1) + 2t−s − 3j subspaces of dimension s and
2t−sb+ 1

32t−s(2t − 2s) + (2s − 1)j subspaces of dimension 2 in our partition for 0 ≤ j ≤ 1
3(22t−s+1 − 1).

Therefore we have constructed all the Qj , and the proof is complete.
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To get our main result, we combine Theorems 18–20 with [16, Theorem 1.4], which we restate here
for q = 2.

Theorem 21 (Theorem 1.4 of [16]) Let n and s be integers such that n ≥ 2s and s is odd. Let c be
the least residue of n modulo s, and let θ be the least residue of c modulo 2. Define mc = 1

3(2sθ+c − 1)

and Mn =
2n − 2sθ+c

2s − 1
for all positive integers n. Let a be an integer such that

0 ≤ a ≤ 2n − 2n−s+1 − 2sθ+c + 1

3(2s − 1)
.

Suppose there exists a partition of V (n, 2) with type sxi2yi for all

xi = Mn − 3i and yi = mc + (2s − 1)i

such that a ≤ i ≤ b13(Mn−(2s−1+1))c. Then for every integer a ≤ i ≤ b13Mn+sc there exists a partition
of V (n+ s, 2) of type sxi2yi where

xi = Mn+s − 3i and yi = mc + (2s − 1)i.

5.1 Proof of the main theorem

We are now ready to prove our main theorem.

Proof of main theorem: As in the statement of the main theorem, let s ≥ 3 and n ≥ 2s be integers,

c be the least residue of n modulo s, ε =

{
1 if c is even
0 if c is odd,

and h =
2s+c − ε(2s − 1)− 1

3
.

We first note that if s is even and n is odd, then there are no solutions to the diophantine equation

x(2s − 1) + 3y = 2n − 1, (9)

so the theorem is vacuously true in this case. Also, for s = 3, [7, Theorem 4.4] implies our main theorem.
If s is even and n is even, then c is also even; hence ε = 1. So the main theorem is just a restatement of

Theorem 6 when q = 2 since the nonnegative solutions of x(2s−1)+3y = 2n−1 with y ≥ h = 1
3(2s+c−2s)

have the form

x =
2n − 2s+c

2s − 1
+ 1− i =

2n − 1− 3h

2s − 1
− i and y =

1

3
(2s+c − 2s + (2s − 1)i) = h+

1

3
(2s − 1)i

for 1 ≤ i ≤
(

2n − 2s+c

2s − 1
+ 1

)
.

Now assume s ≥ 5 is odd. Write n = sr + c for some integer r ≥ 2 and 0 ≤ c < s. We will consider
two cases according to whether c is even or odd, proceeding by induction on r in each case.

Case 1: Assume c is even, which gives us ε = 1 and h = 1
3(2s+c − 2s). Define mc = 1

3(2c − 1) and

Mn =
2n − 2c

2s − 1
. (Note that mc and Mn have the same values as in Theorem 21.) Then h = 2smc, and

so x = Mn − 3mc and y = h is a nonnegative integer solution to equation (9). Furthermore, it is
straightforward to show all other nonnegative integer solutions of equation (9) must have the form

x = Mn − 3(mc + i) and y = 2smc + (2s − 1)i
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for some integer 0 ≤ i ≤ 1
3Mn −mc. Therefore, it is sufficient to prove that for every integer 0 ≤ i ≤

1
3Mn −mc, there exists a partition of V of type sxi2yi , where

xi = Mn − 3(mc + i) and yi = 2smc + (2s − 1)i.

If r = 2, then n = 2s+ c is even. Let t = n/2. In this case, our theorem claims that for each integer

0 ≤ i ≤ 1

3

(
2n − 2s+c

2s − 1
+ 1

)
there exists a partition of V of type sxi2yi , where

xi =
22s+c − 2s+c

2s − 1
+ 1− 3i = 2s+c + 1− 3i = 22t−s + 1− 3i

and

yi =
1

3
(2s+c − 2s) + (2s − 1)i =

1

3
(22t−s − 2s) + (2s − 1)i.

Since
1

3

(
2n − 2s+c

2s − 1
+ 1

)
=

1

3

(
2s+c + 1

)
=

1

3

(
22t−s + 1

)
, this is exactly the result of Theorem 18.

Now assume case 1 is true for n = s(r − 1) + c, where r > 2. Let a = mc. Then, in order to use

Theorem 21, we need to show that a = mc ≤
2n − 2n−s+1 − 3mc

3(2s − 1)
. So the above inequality is true if and

only if
2s(3mc) = 2s(2c − 1) ≤ 2n − 2n−s+1 = 2n−s+1(2s−1 − 1).

Since c ≤ s− 1 and n ≥ 2s⇒ n− s+ 1 > s, the above inequality holds. Therefore, the hypotheses for
Theorem 21 are satisified, and we conclude that for all 0 ≤ i ≤ 1

3Mn+s −mc there exists a partition of
V (n+ s, 2) of type sxi2yi , where

xi = Mn+s − 3(mc + i) and yi = 2smc + (2s − 1)i.

This completes the proof of case 1.

Case 2: Assume c is odd, which gives us ε = 0 and h = 1
3(2s+c − 1). Define mc = 1

3(2s+c − 1) = h

and Mn =
2n − 2s+c

2s − 1
. (Again, mc and Mn have the same values as in Theorem 21.) Now we see that

x = Mn and y = h is a nonnegative integer solution to equation (9). Furthermore, it is straightforward
to show all other nonnegative integer solutions of equation (9) must have the form

x = Mn − 3i and y = mc + (2s − 1)i

for some integer 0 ≤ i ≤ 1
3Mn. Therefore, it is sufficient to prove that for every integer 0 ≤ i ≤ 1

3Mn

there exists a partition of V of type sxi2yi where

xi = Mn − 3i and yi = mc + (2s − 1)i.

If r = 2, then n = 2s + c is odd. Let t = (n − 1)/2. In this case our theorem claims that for each
integer 0 ≤ i ≤ 1

3Mn = 1
32s+c there exists a partition of type sxi2yi , where

xi =
2n − 2s+c

2s − 1
− 3i =

22s+c − 2s+c

2s − 1
− 3i = 2s+c − 3i = 2n−s − 3i = 22t−s+1 − 3i

and

yi =
2s+c − 1

3
+ (2s − 1)i =

1

3
(2n−s − 1) + (2s − 1)i =

1

3
(22t−s+1 − 1) + (2s − 1)i.

This is exactly what was proved in Theorems 19 and 20. (Note that since 2s+c ≡ 1 (mod 3) and i is
restricted to integer values, the bounds for i match what is given in both Theorems 19 and 20.)
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Now assume r > 2 and case 2 is true for n = (r − 1)s+ c. Then for each 0 ≤ i ≤ 1
3Mn there exists

a partition of V (n, 2) of type sxi2yi , where

xi = Mn − 3i and yi = mc + (2s − 1)i.

Hence, by Theorem 21 we know that for each 0 ≤ i ≤ 1
3Mn+s there exists a partition of V (n+ s, 2) of

type sxi2yi , where
xi = Mn+s − 3i and yi = mc + (2s − 1)i.

This completes the proof.

5.2 A necessary and sufficient condition when n ≡ 0, 1, 2 (mod s)

Let s ≥ 3 be an odd integer, n be an integer such that 2s ≤ n, c be the least residue of n modulo s,

ε =

{
1 if c is even
0 if c is odd,

and h =
2s+c − ε(2s − 1)− 1

3
. Our main theorem shows that if

xi =
2n − 2s+c

2s − 1
− 3i+ ε =

2n − 1− 3h

2s − 1
− 3i and yi = h+ (2s − 1)i,

there exists a partition of V (n, 2) of type sxi2yi for all integers 0 ≤ i ≤ 1

3

(
2n − 2s+c

2s − 1
+ ε

)
.

By using [12, Theorem 1], we can show the converse of our main theorem in some cases. Suppose
that there exists a partition of V (n, 2) type sx2y for y < y0 = h. Then x and y have the forms

x = x0 + 3i and y = y0 − (2s − 1)i

for some positive integer i. By [12, Theorem 1], we have

y ≥
{

2s if 2s−2 divides y
2s−1 + 1 otherwise.

Hence y0 − (2s − 1)i = y ≥ 2s−1 + 1. So

2s+c − 1− (2s − 1)ε ≥ 3(2s − 1)i+ 3(2s−1 + 1).

Thus if
2s+c − 1− (2s − 1)ε < 3(2s − 1)i+ 3(2s−1 + 1) (10)

for every positive integer i, then there can be no partition of V (n, 2) of type sx2y with y < y0. Note
that if inequality (10) holds for i = 1, then it holds for every positive integer i. So we get the following
corollary.

Corollary 22 Let s ≥ 3 be an odd integer, k ≥ 2 an integer, c = 0, 1, or 2, and ε =

{
1 if c is even
0 if c is odd.

Then a partition of V (ks+ c, 2) of type sx2y exists if and only if

x(2s − 1) + 3y = 2ks+c − 1 and y ≥ 1

3
(2s+c − ε(2s − 1)− 1).

Proof. Given our main theorem and the preceeding discussion, it is sufficient to show that inequality
(10) holds for i = 1 and c = 0, 1, and 2. Since

2s+c − 1− (2s − 1)ε ≤ 2s+c − 1 = 2c+12s−1 − 1 < 9 · 2s−1

for c+ 1 ≤ 3, the corollary follows.
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