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Abstract. Let V = V (n, q) denote a vector space of dimension n over the field with q elements. A
set P of subspaces of V is a (vector space) partition of V if every nonzero element of V is contained
in exactly one subspace in P. Suppose that P is a partition of V with xi subspaces of dimension di
for 1 ≤ i ≤ k. Then we call dx1

1 . . . d
xk
k the type of the partition P. Which possible types correspond

to actual partitions is in general an open question. We prove that for any odd integer s ≥ 3 and
for any integer n ≥ 2s, the existence of partitions of V (n, q) across a suitable range of types sx2y

guarantees the existence of partitions of V (n+ js, q) of essentially all the types sx2y for any integer
j ≥ 1. We then apply this result to construct new classes of partitions of V .

1. Introduction and supporting results

Let V = V (n, q) denote a vector space of dimension n over the field with q elements. A set P
of subspaces of V is a (vector space) partition of V if every nonzero element of V is contained in
exactly one subspace in P. Let x1, . . . , xk and d1, . . . , dk be positive integers such that the di’s are
distinct. Suppose that P is a partition of V with xi subspaces of dimension di for 1 ≤ i ≤ k. Then
we call dx11 . . . dxkk the type of the partition P. If dx11 . . . dxkk is the type of some partition of V , then
x1, . . . , xk must satisfy the Diophantine equation

k∑
i=1

(qdi − 1)xi = qn − 1.

A second necessary condition comes from dimension considerations. If U and W are subspaces of V
with U ∩W = {0}, then U ⊕W is a subspace of dimension dim(U) + dim(W ). Therefore,

if xi ≥ 2, then di ≤ n/2, and if i 6= j, then di + dj ≤ n.

Other necessary conditions are given by Blinco et al. [4], Bu [5], Heden [12], and Heden and
Lehmann [14].

The problem of determining which possible types dx11 . . . dxkk correspond to actual partitions of
V (n, q) is in general an open question. A few special cases are known. For future reference in this
paper, we state three of these results as lemmas. In 1956, André proved the following lemma, which
he used to construct translation planes.

Lemma 1.1 (André [1]). Let n and d be positive integers such that d divides n. Then V (n, q) can

be partitioned into qn−1
qd−1 subspaces of dimension d.

Later, Beutelspacher and Bu independently proved the following result.
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Lemma 1.2 (Beutelspacher [3] and Bu [5]). Let n, d be integers such that 1 ≤ d < n/2. Then V (n, q)
can be partitioned into one subspace of dimension n− d and qn−d subspaces of dimension d.

Recently, Blinco et al. proved the following lemma, which can be viewed as a generalization of
André’s result (Lemma 1.1).

Lemma 1.3 (Blinco et al. [4]). Let r and t be positive integers with rt = n, and let x and y be
nonnegative integers such that

x(qr − 1) + y(qt − 1) = qn − 1.

Then there exists a partition of V (n, q) into x subspaces of dimension r and y subspaces of dimension
t.

All partition types of V (n, q) are known in the following cases: for q = 2, k = 2, d2 = 3, and
d1 = 2 (El-Zanati et al. [7]); for q = 2 and n ≤ 7 (El-Zanati et al. [8]); for q = 2, n = 8, and di ≥ 2
for all 1 ≤ i ≤ k (El-Zanati et al. [9]); for q = 2, k = 3, n ≥ 9, d3 = n − 3, d2 = 3, and d1 = 2
(Heden [12]); and finally for k ≥ q + 1 and dq+1 = dq+2 = . . . = dk (Heden [13]).

In this paper, we generalize the method used by El-Zanati et al. [7] who constructed all the
partitions of V (n, 2) of types 3x2y. In particular, we consider partitions of V (n, q) of types sx2y,
where q is a prime power and s ≥ 3 is an odd integer (see Remark 1.5 for the case s even). In essence,
we prove that the partitions of almost all possible types sx2y can be recursively constructed from
a suitable number of base partitions. To be more precise, we first introduce some notation. Let q
be a fixed prime power, and let n and s be positive integers such that s ≥ 3 is odd. Let c be the
remainder in the division of n by s, and let θ = θ(c) be the least residue of c modulo 2. Finally,
define the integers

(1) mc =
qsθ+c − 1

q2 − 1
and Mn =

qn − qsθ+c

qs − 1
.

The main result in this paper is the following theorem.

Theorem 1.4. Let q be a fixed prime power, and let n and s be positive integers such that n ≥ 2s
and s ≥ 3 is odd. Let c be the remainder in the division of n by s, and let mc and Mn be as defined
in (1). Finally, let a be an integer such that

0 ≤ a ≤ qn−s(qs − q)− (q2 − 1)mc

(qs − 1)(q + 1)
.

Suppose there exists a partition of V (n, q) with type sxi2yi for all

xi = Mn − (q + 1)i, yi = mc +
qs − 1

q − 1
i, and a ≤ i ≤

⌊
Mn

q + 1

⌋
− qs−1 − 1

q + 1
.

Then there exists a partition of V (n+ s, q) with type sxi2yi for all

xi = Mn+s − (q + 1)i, yi = mc +
qs − 1

q − 1
i, and a ≤ i ≤

⌊
Mn+s

q + 1

⌋
.

Remark 1.5.
(a) If s is even, then we can use Lemmas 1.1 and 1.3 to prove Theorem 1.4 by induction.
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(b) If x > Mn, then there is no vector space partition of V (n, q) of type sx2y. This follows from a
Drake-Freeman [6] upper bound on the maximum number of s dimensional subspaces in any partition
of V (n, q). Consequently, for any partition of V (n, q) of type sx2y, we have x = xi and y = yi, where

xi = Mn − (q + 1)i, yi = mn +
qs − 1

q − 1
i, for some i with 0 ≤ i ≤

⌊
Mn

q + 1

⌋
.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.4, and in Section 3
we apply it to construct partitions of V (n, 2) of almost all possible types 5x2y for n ≥ 14.
Convention. If S is a subspace of some vector space V (n, q), we sometimes use the term “subspace”
to also refer to the set S \ {0}.

2. Proof of the main theorem (Theorem 1.4)

The proof of Theorem 1.4 uses several lemmas. Three of them (Lemmas 1.1–1.3) are known results
that were already introduced in Section 1.

If U and W are subspaces such that U ∩W = {0}, we define

U �W = {0} ∪ [(U +W )\(U ∪W )] .

We say that L � W has a partition of type sx2y if there exist x subspaces of dimension s and
y subspaces of dimension 2 such that each nonzero vector in L � W is in exactly one of these
subspaces. We introduce two more known lemmas.

Lemma 2.1 (El-Zanati et al. [7]). Let U and W be subspaces of V (n, q) with U ∩W = {0} such
that the dimension of U is no more than that of W . Then U �W can be partitioned into |W\{0}|
subspaces with the same dimensions as U .

Lemma 2.2 (El-Zanati et al. [7]). Let U and W be subspaces of a vector space with U ∩W = {0},
and let U1, . . . , Uk be a partition of U into subspaces. Then each nonzero vector of U � W is in
exactly one of the sets in {U1 �W, . . . , Uk �W}.

In order to prove Theorem 1.4, we prove the next three lemmas.

Lemma 2.3. Let s and n be integers with s ≥ 3 odd, and let U and W be subspaces of V (n, q)

of dimension s with U ∩ W = {0}. Then for all 0 ≤ i ≤ qs−q
q+1 , U � W can be partitioned into

(qs − 1)− (q + 1)i subspaces of dimension s and qs−1
q−1 i subspaces of dimension 2.

Proof. By Lemma 1.3, V (2s, q) has a partition of type sx2y for any nonnegative integers x and y
such that

x(qs − 1) + (q2 − 1)y = q2s − 1.

Note that xi = (qs + 1) − (q + 1)i and yi = qs−1
q−1 i, 0 ≤ i ≤ qs+1

q+1 , are all the nonnegative integer

solutions of the above equation. So for each i, 0 ≤ i ≤ qs+1
q+1 , there exists a partition Pi of V (2s, q)

with type sxi2yi . Since xi ≥ q + 1 ≥ 3, we can select two s-dimensional subspaces U and W from
Pi for any i such that 0 ≤ i ≤ qs+1

q+1 − 1. Then U ∩W = {0}. Hence by Lemma 2.2, U �W admits

a partition into xi − 2 = (qs − 1) − (q + 1)i subspaces of dimension s and yi = qs−1
q−1 i subspaces of

dimension 2 for all 0 ≤ i ≤ qs+1
q+1 − 1 = qs−q

q+1 . �
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Lemma 2.4. Let n and s be positive integers with s ≥ 3 odd. Let L and W be subspaces of V (n+s, q)
of dimensions n and s, respectively, such that L∩W = {0}. If L has a partition of type rwsx2y with
r ≥ s, then L�W admits partitions of all types sxj2yj , where

xj = (qn − 1)− (q + 1) j, yj =

(
qs − 1

q − 1

)
j, and (q − 1)y ≤ j ≤ (q − 1)y +

(
qs − q
q + 1

)
x.

Proof. We first consider the cases when (w, x, y) = (1, 0, 0), (w, x, y) = (0, 0, 1), and (w, x, y) =
(0, 1, 0). If (w, x, y) = (1, 0, 0), by Lemma 2.1 L �W can be partitioned into qr − 1 subspaces of
dimension s. Similarly, if (w, x, y) = (0, 0, 1), then L�W can be partitioned into qs− 1 subspaces of
dimension 2. If (w, x, y) = (0, 1, 0), then by Lemma 2.3, we can partition L�W into (qs−1)−(q+1)i

subspaces of dimension s and
(
qs−1
q−1

)
i subspaces of dimension 2, for all 0 ≤ i ≤ qs−q

q+1 .

Now for general (w, x, y), we use Lemma 2.2 and the above special cases to partition L�W into

xi = w(qr−1)−(q+1)i subspaces of dimension s and yi = y(qs−1)+
(
qs−1
q−1

)
i subspaces of dimension

2, for all 0 ≤ i ≤ x
(
qs−q
q+1

)
. Since L �W has (qn − 1)(qs − 1) elements, for each 0 ≤ i ≤ x

(
qs−q
q+1

)
,

we have

xi = (qn − 1)−
(
q2 − 1

qs − 1

)
yi = qn − 1− (q2 − 1)y − (q + 1)i.

So our result follows by letting j = (q − 1)y + i. �

Lemma 2.5. Let q be a fixed prime power, and let n and s be integers such that n ≥ 2s and s ≥ 3
is odd. Let k and c be integers defined by n = ks+ c and 0 ≤ c < s. Let θ = θ(c) be the least residue
of c modulo 2, and let δn be the least residue of n modulo 2. Let mc = (qsθ+c − 1)/(q2 − 1) and
Mn = (qn − qsθ+c)/(qs − 1). Then

(i) Mn,mc ≥ 0 are integers and (qs − 1)Mn + (q2 − 1)mc = qn − 1.
(ii) Mn+s = Mn + qn.

(iii) qs−q
q+1 Mn + (q − 1)

(⌊
Mn
q+1

⌋
+mc

)
=
⌊
qn

q+1

⌋
.

(iv)
⌊
Mn
q+1

⌋
+
⌊
qn

q+1

⌋
=
⌊
Mn+s

q+1

⌋
− δn.

Proof. Parts (i) and (ii) follow easily from the definitions of c, θ, mc, and Mn. We now prove (iii)
and (iv). By (i), we have (qs − 1)Mn + (q2 − 1)mc = qn − 1, which yields

(2)
(qs − q)Mn

q + 1
+

(q − 1)Mn

q + 1
+ (q − 1)mc =

qn − 1

q + 1
.

Since n = ks+ c ≥ 2s and θ = c (mod 2), we have

Mn =
qn − qsθ+c

qs − 1
=
qsθ+c(q(k−θ)s − 1)

qs − 1
=

k−θ∑
i=1

q(k−i)s+c.

Since s is odd and c is fixed, Mn is a sum of powers of q in which any two consecutive terms
have different parity. Since q ≡ −1 (mod q + 1), the terms alternate being congruent to 1 and
−1 modulo q + 1. Thus if n (and so k − θ) is even, Mn ≡ 0 (mod q + 1), while if n is odd, then

Mn ≡ q(k−1)s+c ≡ qn−s ≡ 1 (mod q + 1). Hence

(3)

⌊
Mn

q + 1

⌋
=
Mn − δn
q + 1

,
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where δn is 1 if n is odd and 0 if n is even. Similarly, we have

(4)

⌊
qn

q + 1

⌋
=
qn − 1− δn(q − 1)

q + 1
.

Hence

qs − q
q + 1

Mn + (q − 1)

(⌊
Mn

q + 1

⌋
+mc

)
=

qs − q
q + 1

Mn + (q − 1)

(
Mn − δn
q + 1

+mc

)
=

qn − 1

q + 1
− δn(q − 1)

q + 1
=

⌊
qn

q + 1

⌋
,

where the first equality follows from (3), the second from (2), and the last from (4). This proves (iii).
Finally, we prove (iv). We have⌊

Mn

q + 1

⌋
+

⌊
qn

q + 1

⌋
=

Mn − δn
q + 1

+
qn − 1− δn(q − 1)

q + 1

=
Mn+s − (δn+s + δn)− qδn

q + 1
=

⌊
Mn+s

q + 1

⌋
− δn,

where the first equality follows from (3) and (4), the second from (ii) and the fact that δn+s + δn = 1
(because s is odd), and the last from (3).

�

Proof of Theorem 1.4. Let i ≥ 0 be an integer and set

b =
qs−1 − 1

q + 1
, Bi = (q − 1)mc + (qs − 1)i,(5)

Ri =
qs − q
q + 1

Mn +Bi − (qs − q)i, and I =

⌊
Mn

q + 1

⌋
− b,

where n, q, mc, and s are as defined in the statement of the theorem.
Let L and W be subspaces of V (n + s, q) of dimensions n ≥ 2s and s, respectively, such that

L ∩W = {0}. For convenience, we let

Pj denote a partition of L�W of type suj2vj with(6)

uj = qn − 1− (q + 1)j and vj =
qs − 1

q − 1
j, for some integer j ≥ 0.

By Lemma 1.2, L has a partition of type (n− s)1sqn−s
. By Lemma 2.4, this partition yields

partitions Pj for 0 ≤ j ≤ qn−s(qs − q)
q + 1

.(7)

By the hypothesis of the theorem on the upper bound for a, we have

(8) Ba = (q − 1)mc + (qs − 1)a ≤ qn−s(qs − q)
q + 1

.
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Now (7) and (8) yield

partitions Pj for 0 ≤ j ≤ Ba ≤
qn−s(qs − q)

q + 1
.(9)

It again follows from the hypothesis of the theorem that

L has partitions Qi of types sxi2yi , where(10)

xi = Mn − (q + 1)i and yi = mc +
qs − 1

q − 1
i,

for all i with a ≤ i ≤ bMn/(q + 1)c − b.

By Lemma 2.4, each partition Qi of L of type sxi2yi yields

partitions Pj for Bi ≤ j ≤ Bi +
qs − q
q + 1

(Mn − (q + 1)i) = Ri,(11)

where a ≤ i ≤ bMn/(q + 1)c − b.

Using the definitions of Bi and I in (5), we see that Ri−1 ≥ Bi holds for all a < i ≤ I. Hence, the
intervals (for the index j) defined in (9) and (11) overlap. By setting i = I in (11), we then obtain

partitions Pj for 0 ≤ j ≤ RI =

⌊
qn

q + 1

⌋
− (q − 1)b,(12)

where the value of RI is computed using (5) and Lemma 2.5(iii) as follows:

RI = BI +
qs − q
q + 1

Mn − (qs − q)I

=
qs − q
q + 1

Mn + (q − 1)

(⌊
Mn

q + 1

⌋
+mc − b

)
=

⌊
qn

q + 1

⌋
− (q − 1)b.

Since L�W = {0} ∪ [(L+W )\(L ∪W )] and dim(W ) = s, it follows from (6), (10), and (12) that

V (n+ s, q) = L+W has partitions of types sxij2yij , where(13)

xij = (Mn + 1) + qn − 1− (q + 1)(i+ j) and yij = mc +
qs − 1

q − 1
(i+ j),

for all i, j with a ≤ i ≤ bMn/(q + 1)c − b and 0 ≤ j ≤
⌊
qn

q + 1

⌋
− (q − 1)b.

By Lemma 2.5(ii), we have Mn+s = qn +Mn. So by letting h = i+ j, we deduce from (13) that

V (n+ s, q) has partitions of types sxh2yh , where(14)

xh = Mn+s − (q + 1)h and yh = mc +
qs − 1

q − 1
h, and for all h with

a ≤ h ≤
⌊
Mn

q + 1

⌋
− b+

⌊
qn

q + 1

⌋
− (q − 1)b =

⌊
Mn+s

q + 1

⌋
− qb− δn,

where the last equality again comes from Lemma 2.5(iv).
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For convenience, we let

Πh denote a partition of V (n+ s, q) of type sxh2yh with

xh = Mn+s − (q + 1)h and yh = mc +
qs − 1

q − 1
h, for some integer h ≥ 0.

Then to finish the proof of the theorem, it remains to show the existence of

partitions Πh for

⌊
Mn+s

q + 1

⌋
− qb− δn ≤ h ≤

⌊
Mn+s

q + 1

⌋
.(15)

We consider the cases n odd and n even.

Case 1: n is odd. By Lemma 1.2, there is a partition F of V (n+s, q) into subspaces of dimensions
2s and (n+s)−2s = n−s. (The number of subspaces of each dimension is at least one and depends
on whether 2s < (n+s)/2 or not.) Since both 2s and n−s are even, this partition F can be changed
(by Lemma 1.1) into a partition F ′ of V (n+ s, q) of type (2s)12y, with y = (qn+s − q2s)/(q2 − 1).

We now apply Lemma 1.3 to the 2s-dimensional subspace in the partition F ′ to obtain

partitions of V (n+ s, q) of types sei2fi , with(16)

ei = qs + 1− (q + 1)i, fi =
qn+s − q2s

q2 − 1
+
qs − 1

q − 1
i, for 0 ≤ i ≤ qs + 1

q + 1
.

Since n+ s is even, it follows from (3) that

(17)

⌊
Mn+s

q + 1

⌋
=
Mn+s

q + 1
.

Using Lemma 2.5(i) and (17), we can describe the partitions in (16) as

partitions Πh for H =

⌊
Mn+s

q + 1

⌋
− qs + 1

q + 1
≤ h ≤

⌊
Mn+s

q + 1

⌋
.(18)

Finally, by (18) and the definition of b in (5), we have

partitions Πh for H =

⌊
Mn+s

q + 1

⌋
− qb− 1 ≤ h ≤

⌊
Mn+s

q + 1

⌋
,

as required in (15), because δn = 1 for n odd.

Case 2: n is even. Since s odd and n ≥ 2s is even, there exist integers k and c such that
n = 2s + (k − 2)s + c, k ≥ 2, 0 ≤ c < s, and n − 2s is even. Similarly to the argument used at
the start of Case 1, we can use Lemma 1.2 (based on whether 2s < n − 2s or not) and Lemma 1.1
(since both 2s and n − 2s are even) to infer the existence of a partition F1 of the n-dimensional
subspace L of type (2s)12y, with y = (qn − q2s)/(q2 − 1). Moreover, since n is even, Lemma 1.1

yields a partition F ′1 of L of type 2y
′
, with y′ = (qn − 1)/(q2 − 1). By applying Lemma 2.4 with the

partition F ′1 of L and the partition of W of type s1, we obtain a partition F2 of L �W of type 2z,
with z = (qn − 1)(qs − 1)/(q2 − 1). By combining the other partition F1 of L, the partition F2 of
L�W , and the partition of W of type s1, we obtain a partition F of V (n+ s, q) = L⊕W of type

(2s)1s12y+z, with y + z =
qn+s − q2s − qs + 1

q2 − 1
.
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We now apply Lemma 1.3 to the 2s-dimensional subspace in the partition F above to obtain

partitions of V (n+ s, q) of types sαi2βi , with(19)

αi = qs + 2− (q + 1)i, βi =
qs − 1

q − 1
i+

qn+s − q2s − qs + 1

q2 − 1
, for 0 ≤ i ≤ qs + 1

q + 1
.

Since n+ s is odd, it follows from (3) that

(20)

⌊
Mn+s

q + 1

⌋
=
Mn+s − 1

q + 1
.

Using Lemma 2.5(i) and (20), we can describe the partitions in (19) as

partitions Πh for H =

⌊
Mn+s

q + 1

⌋
− qs + 1

q + 1
≤ h ≤

⌊
Mn+s

q + 1

⌋
.(21)

Finally, by (21) and the definition of b in (5), we have

partitions Πh for H <

⌊
Mn+s

q + 1

⌋
− qb ≤ h ≤

⌊
Mn+s

q + 1

⌋
,

as required in (15), because δn = 0 for n even. �

3. Application: Partitions of V (n, 2) of type 5x2y

In this section, we consider the case when q = 2 to construct partitions of V (n, 2) of type 5x2y

for all n ≥ 14. Since this construction is based on a recursive application of our main theorem
(Theorem 1.4), we only need to consider the base cases n ∈ {10, 12, 14, 16, 18}. Let F = F2 and V
be an F -vector space of dimension n = 2t for 5 ≤ t ≤ 9. Let K be a field extension of degree t over
F and V = K ⊕K. Then V can be considered a 2t-dimensional F -vector space or a 2-dimensional
K-vector space. One way to realize an F -vector space partition of V of type t2

t+1 is to consider the
1-dimensional K-subspaces of V , which we can identify with the projective line over K, P1

K . The
elements of P1

K are of the form Kv for some nonzero v ∈ V . We call this partition the projective
line partition. For any (a, b) ∈ K ⊕ K, let K(a, b) = {(ka, kb) : k ∈ K}. Let K∞ = K(0, 1) and
for α ∈ K, let Kα = K(1, α). If W ⊆ K is an F -subspace, we use Wα to denote the subspace
{(w,αw) : w ∈W}.

Next, we give some constructions that will let us reconfigure some of these subspaces to get F -
vector space partitions of V of different types.

Given an F -subspace U ⊆ K, α ∈ K, and x ∈ K× = K \ {0}, we define

Uα(x) = {(xy, (x+ α)xy) : y ∈ U} ⊆ Kx+α = K(1, x+ α).

Therefore, we see that

(22) Uα(x) = Uα(x′)⇔ x = x′.

Similarly, for any F -subspace W ⊆ K and for any α ∈ K, y ∈ K×, we define

Wα(y) = {(wy, (w + α)wy) : w ∈W}.
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Lemma 3.1. Let α ∈ K and U,W ⊆ K be F -subspaces of dimensions r and s, respectively. Then
for any y ∈ K×, the sets Uα(y) and Wα(y) are subspaces of V of dimensions r and s, respectively.
Furthermore, ⋃

x∈W\{0}

Uα(x) =
⋃

y∈U\{0}

Wα(y) = {(xy, (x+ α)xy) : x ∈W, y ∈ U}.

Proof. Let α, y ∈ K with y 6= 0. Since the function να,y : K → V defined by να,y(x) = x(y, (y+α)y) =
(yx, (y + α)yx) is an injective linear transformation, Uα(y) is a subspace of dimension r.

To show that Wα(y) is a subspace of dimension s, we define the function φα,y : K → V by
φα,y(x) = (xy, (x+ α)xy) for all x ∈ K. We claim that φα,y is an injective F -linear transformation.
Indeed, for any x, x′ ∈ K, we have

φα,y(x) + φα,y(x
′) = (xy, (x+ α)xy) + (x′y, (x′ + α)x′y)

=
(
(x+ x′)y, (x2 + (x′)2 + α(x+ x′))y

)
=

(
(x+ x′)y, ((x+ x′)2 + α(x+ x′))y

)
= φα,y(x+ x′),

since q = 2. Furthermore, φα,y(x) = 0⇒ xy = 0⇒ x = 0 since y ∈ K×, hence φα,y is injective.
Finally, for any F -subspace W ⊆ K of dimension s, we have Wα(y) = φα,y(W ). Hence Wα(y) is

an F -subspace of V of dimension s.
The last equality in the statement of the lemma is immediate. �

For any α ∈ K and subspaces U,W ⊆ K define

(23) Uα(W ) =
⋃

w∈W\{0}

Uα(w) =
⋃

u∈U\{0}

Wα(u) = Wα(U).

In general, we use Uα(W ) to emphasize the above set as a union of the subspaces Uα(w) and we
write Wα(U) to emphasize the above set as the union of the subspaces Wα(u). Furthermore, we
observe that K∞ ∩Kα(W ) = {0} since in Kα(w) the first component is never zero except when we
consider the zero element. Furthermore, K0 ∩Kα(W ) = {0} if and only if α 6∈W .

Next, we want to show that Equation (22) has an analogy for the Wα(y).

Theorem 3.2. Let α ∈ K and let W ⊆ K be a subspace of dimension s. Then for any y, y′ ∈ K×,

Wα(y) ∩Wα(y′) 6= {0} ⇔Wα(y) = Wα(y′)⇔ y = y′.

Therefore, for any subspace U ⊆ K of dimension r, the set Uα(W ) consisting of 2s − 1 subspaces of
dimension r can also be considered a set of 2r − 1 subspaces of dimension s having pairwise trivial
intersection.

Proof. Let α ∈ K, let W ⊆ K be a subspace of dimension s, and let y, y′ ∈ K×. Assume v ∈
Wα(y) ∩Wα(y′) and v 6= 0. Then there exist nonzero w,w′ ∈ W such that (wy, (w + α)wy) = v =
(w′y′, (w′ + α)w′y′). Hence wy = w′y′, so (w + α)wy = (w′ + α)w′y′ ⇒ w + α = w′ + α ⇒ w = w′.
Since w = w′ 6= 0, we have wy = w′y′ ⇒ y = y′. Hence Wα(y) = Wα(y′).

Since there are 2r − 1 elements in U× = U \ {0}, our proven condition tells us there are 2r − 1
distinct s-dimensional subspaces in the set {Wα(y) : y ∈ U×} with pairwise trivial intersection.
Since Uα(W ) =

⋃
y∈U×W

α(y), it follows from Lemma 3.1 and a counting argument that Uα(W ) is

the union of 2s−1 subspaces with pairwise trivial intersection of the form Uα(w) for w ∈W \{0}. �



10 SEELINGER, SISSOKHO, SPENCE, AND VANDEN EYNDEN

Proposition 3.3. Let K = W ⊕W ′. Then for any α, β ∈ W ′ with α 6= β, we have Kα(W ) ∩
Kβ(W ) = {0}.

Proof. Let w ∈ Kα(W )∩Kβ(W ). Then there exist x, y ∈W such that w ∈ Kα(x)∩Kβ(y). If w 6= 0,
then we have x + α = y + β. But this gives x − y = β − α ∈ W ∩W ′ = {0} ⇒ β = α, which is a
contradiction. Therefore, w = 0 and so Kα(W ) ∩Kβ(W ) = {0}. �

It follows from Equation (22) that

Kα(w) = Kα(w′)⇔ w + α = w′ + α⇔ w = w′.

Therefore, the subspaces in {Kα(w) : w ∈W} partition the set Kα(W ).

Theorem 3.4. Let V and K be as above. Then for any s < t, there exists a partition Q of type tasb,
where a = 2t−s + 1 and b = 22t−s − 2t−s. Furthermore, the t-dimensional subspaces in this partition
are K∞ and Kβ for all β ∈W ′, where W ′ is a subspace of K of F -dimension t− s.

Proof. Let W and W ′ be F -subspaces of K such that K = W ⊕W ′ and dim(W ) = s, so dim(W ′) =
t− s. Then for each β ∈W ′ we can use Theorem 3.2 to reconfigure the 2s − 1 subspaces in Kβ(W )

into the 2t−1 subspaces W β(y) of dimension s for all y ∈ K \{0}. Since by Proposition 3.3 pairwise
intersections of the Kβ(W ) are trivial for distinct β in W ′, we get the appropriate partition. It is
also straightforward to check that K0 ∩Kβ(W ) = {0} = K∞ ∩Kβ(W ) for all β ∈W ′, and hence K0

and K∞ are both in the resulting partition.
Furthermore, since Kβ(w) = {(wy, (w + β)wy) : y ∈ K}, where w ∈ W \ {0}, we see that for any

γ ∈W ′ we have

z ∈ (Kγ ∩Kβ(W )) \ {0} ⇒ (wy, (w + β)wy) = (xy′, γxy′)

for some w ∈ W \ {0}, x, y, y′ ∈ K \ {0} and β ∈ W ′. As wy = xy′ 6= 0, we have w + β = γ ⇒
β − γ = w 6= 0. However, then w ∈W ∩W ′ = {0}, which is a contradiction. So Kγ ∩Kβ(W ) = {0}
for all β, γ ∈W ′. �

Now we are able to construct partitions of V (n, 2) of type 5x2y for n = 2t with 5 ≤ t ≤ 9. The
case t = 5 is trivial since for any solution (x, y) of the Diophantine equation 31x+ 3y = 1023, there
exists a partition of V (10, 2) of type 5x2y by Lemma 1.3. For the cases 5 < t ≤ 9, we consider the
decomposition K = X ⊕X ′, where X and X ′ are subspaces with dim(X) = 5 and dim(X ′) = t− 5.

Then

{K∞} ∪ {Kα |α ∈ X ′} ∪ {Kα(X) |α ∈ X ′}
is a partition of V of type t2

t+1, namely our initial projective line partition. Also, by Theorem 3.2,
each Kα(X) can be reconfigured to 2t − 1 subspaces of dimension 5. Therefore, we get the partition
of type ta5b, with a = 2t−5 + 1 and b = 2t−5(2t − 1). This partition is given in Theorem 3.4 with
W = X, where Kα(X) = Xα(K) for each α ∈ X ′.

The next lemma allows us to change 3 subspaces of dimension t into subspaces of dimensions 2
and 5.

Lemma 3.5. Let A1, A2, A3 be subspaces of V of dimension t such that Ai ∩ Aj = {0} for all
1 ≤ i < j ≤ 3. For i = 1, 2, let πi : V = A1 ⊕A2 → Ai be the corresponding projection. Then:

(1) for any x ∈ A3 \ {0} the set Bx = {0, x, π1(x), π2(x)} is a subspace of dimension 2 contained
in A1 ∪A2 ∪A3.
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(2) A1 ∪A2 ∪A3 is the union of 3 subspaces of dimension 5 and 2t − 25 subspaces of dimension
2 whose pairwise intersections are trivial.

Proof. (1) Since V = A1 ⊕ A2, for any v ∈ V we have v = π1(v) + π2(v). Therefore, since q = 2, it
follows that Bx is a subspace of dimension 2 contained in A1 ∪A2 ∪A3.
(2) Let C ⊆ A3 be a subspace of dimension 5. Then we take C, π1(C), π2(C) to be the 3 subspaces
of dimension 5 and Bx for x ∈ A3 \ C to be the 2t − 25 subspaces of dimension 2. �

Next, we let z ∈ X ′ \ {0} and consider a direct sum decomposition X ′ = X ′′ ⊕ Fz for some
(possibly trivial) subspace X ′′.

Lemma 3.6. For any α ∈ X ′′, we have

Kα(X ⊕ Fz) = Kα(X) ∪Kα+z(X) ∪Kα+z.

Proof. It follows from the definition of Kα(X ⊕ Fz) that

Kα(X ⊕ Fz) = Kα(X) ∪Kα(X + z) ∪Kα(z).

Furthermore, for any x ∈ X \ {0}, we have

Kα(x+ z) = (x+ z)Kx+z+α = x−1(x+ z)Kz+α(x) = Kz+α(x).

Similarly, Kα(z) = zKα+z = Kα+z. �

Now we can prove the main theorem of this section, which we will combine with Theorem 2.1 to
get the existence of a range of partitions of type 5x2y when n ≥ 14

Theorem 3.7. Let dim(V ) = n ∈ {12, 14, 16, 18}. Then for each 0 ≤ i ≤ 1
3

(
2n−5 + 1

)
, there exists

a partition Pi of V of type 5xi2yi, where

xi = (2n−5 + 1)− 3i and yi =
1

3
(2n−5 − 32) + 31i.

Proof. Let K be a field of degree t = n
2 over F , and identify V with K ⊕K. We again consider the

decompositionK = X⊕X ′, whereX andX ′ are subspaces such that dim(X) = 5 and dim(X ′) = t−5.
We break this proof up into the case when t is even and the case when t is odd.

Case 1: Assume that t is equal to 6 or 8. To prove that P0 exists, we start with the partition Q
given in Theorem 3.4 consisting of 2n−5 − 2t−5 subspaces of dimension 5 and 2t−5 + 1 subspaces of
dimension t, where W = X and for every α ∈ X ′, it follows from Theorem 3.2 that the set Kα(X)
consists of 2t − 1 subspaces of dimension 5. In addition, we have 2t−5 + 1 subspaces of dimension t,
which are the subspaces {Kα : α ∈ X ′} ∪ {K∞}.

Since t is equal to 6 or 8, 2t−5 + 1 is equal to 3 or 9. As a result, we can group the remaining
subspaces of dimension t into 1

3(2t−5 + 1) triples. Using Lemma 3.5, each of these triples gives 3

subspaces of dimension 5 and 2t−32 subspaces of dimension 2. Hence, from these 1
3(2t−5 + 1) triples

of subspaces of dimension t, we get 2t−5 + 1 subspaces of dimension 5 and 1
3(2t−5 + 1)(2t − 32) =

1
3(2n−5− 32) subspaces of dimension 2. Since there is a total of (2n−5− 2t−5) + (2t−5 + 1) = 2n−5 + 1
subspaces of dimension 5, we have a partition of type 5x02y0 .

Next, to get the remaining partitions Pi, it is sufficient to create an appropriate number M of
triples of subspaces of dimension 5 that can be reconfigured into 31 ·M subspaces of dimension 2.

As t is even, there exists a partition of K consisting of c = 1
3(2t−1) subspaces of dimension 2. Let

U1, . . . , Uc be the subspaces of this partition. Then for any α ∈ X ′, it follows from Theorem 3.2 that
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the 2t−1 subspaces of dimension 5 in Kα(X) can be grouped into sets of three {Xα(u) : u ∈ Uj \{0}}
for 1 ≤ j ≤ c. Since

Xα(Uj) =
⋃

u∈Uj\{0}

Xα(u) = (Uj)α(X),

these sets of three can be reconfigured to 31 subspaces of dimension 2. Thus, we need only consider
the partitions of the subspaces Kα, for α ∈ X ′, and K∞. But in P0 these were grouped in triples.
Since t is even, we can take any three of these subspaces and partition each individual one into
1
3(2t − 1) subspaces of dimension 2. Hence a group of 3 subspaces of dimension 5 and 2t − 32
subspaces of dimension 2 can be reconfigured into 2t − 1 subspaces of dimension 2. So the theorem
follows when t is even.

Case 2: Assume that t is equal to 7 or 9. To prove that P0 exists, we again start with the partition
Q in Theorem 3.4 (with W = X). This partition gives us 2n−5 − 2t−5 subspaces of dimension 5 and
2t−5 + 1 subspaces of dimension t. Again, for every α ∈ X ′, it follows from Theorem 3.2 that the
set Kα(X) consists of 2t− 1 subspaces of dimension 5 in our partition and the 2t−5 + 1 subspaces of
dimension t are the subspaces {Kα : α ∈ X ′} ∪ {K∞}.

Since t is odd, we can partition each of the subspaces of dimension t above into one subspace of
dimension 5 and 1

3(2t − 32) subspaces of dimension 2. Therefore, we have an additional 2t−5 + 1

subspaces of dimension 5 and 1
3(2t− 32)(2t−5 + 1) = 1

3(22t−5− 32) subspaces of dimension 2. Hence,
here again, we have a partition of V of type 5x02y0 .

As in Case 1, we get the remaining partitions Pi by taking an appropriate number N of triples of
subspaces of dimension 5 and reconfiguring them into 31 ·N subspaces of dimension 2.

Choose z ∈ X ′ \ {0} and X ′′ ⊆ X ′ such that X ′ = X ′′ ⊕ Fz. Then we can write V as the union
of subspaces

V = K∞ ∪

( ⋃
α∈X′′

Kα

)
∪

( ⋃
α∈X′′

Kα(X ⊕ Fz)

)
.

Since dim(X ′′) = t − 6 > 0 is odd, the set {K∞} ∪ {Kα : α ∈ X ′′} has order divisible by 3. Hence,
we can group these into triples and use Lemma 3.5 to reconfigure 3 subspaces of dimension 5 and
2t − 32 subspaces of dimension 2 into a set of 2t − 1 subspaces of dimension 2.

Since t is equal to 7 or 9, we use Lemma 1.1 and Lemma 1.2 to construct a partition of K of type
512b, where b = 1

3(2t − 32). Let X be the subspace of dimension 5 and Y1, . . . , Yb be the subspaces
of dimension 2 this partition. We can recursively apply Lemma 1.2 to construct a partition of X of
type 2914. Let Yb+1, . . . , Yg be the subspaces of dimension 2 in this partition, where g = 1

3(2t − 5).
Next, for each α ∈ X ′′, we use two methods to group the elements of the sets Kα(X ⊕ Fz) into

pairwise trivially intersecting sets of subspaces of dimensions 2 and 5. For each α ∈ X ′′, our first
method will give us nine or more subspaces of dimension 5, while our second method will give us
nine or fewer subspaces of dimension 5.

In our first method, we apply Lemma 3.6 to the set Kα(X ⊕ Fz) = Kα(X) ∪Kz+α(X) ∪Kz+α.
As with K, we can partition Kz+α into 1 subspace of dimension 5 and b subspaces of dimension 2.
Next, by Theorem 3.2, the elements of each of the sets (Yj)α(X ′) and (Yj)z+α(X ′) can be grouped as
3 subspaces of dimension 5 or 31 subspaces of dimension 2. In this way, the elements of Kα(X⊕Fz)
can be grouped, using 3 subspaces of dimension 5 at a time, so that there are at least 9 subspaces
of dimension 5 in this set and the rest are subspaces of dimension 2. Hence we have reorganized
the set Kα(X ⊕ Fz) from a grouping of 2t+1 − 1 subspaces of dimension 5 and 1

3(2t − 32) subspaces
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of dimension 2 into nine subspaces of dimension 5 and 1
3

(
2t − 32 + 31(2t+1 − 10)

)
= (21 · 2t − 114)

subspaces of dimension 2 with pairwise trivial intersections.
In our second method, we regard the set Kα(X ⊕ Fz) as the union of 63 subspaces of the form

Kβ. Then we can group these subspaces Kβ into triples and use Lemma 3.5 to group each triple
into 3 subspaces of dimension 5 and 2t− 32 subspaces of dimension 2. In this way, we can group the
elements of Kα(X ⊕ Fz) into 63 subspaces of dimension 5 and 21(2t − 32) subspaces of dimension 2
all of which have pairwise trivial intersections. Since the number of subspaces of dimension 5 here
is greater than 9, this gives us another way to group the elements of Kα(X ⊕ Fz) into 63 subspaces
of dimension 5 and 21(2t − 32) of dimension 2. Now we can use Lemma 3.5 to convert each triple
of subspaces of the form Kβ from 3 subspaces of dimension 5 and 2t − 32 subspaces of dimension 2
into 2t − 1 subspaces of dimension 2 with pairwise trivial intersections.

By using the two methods above to convert Kα(X ⊕ Fz) for each α ∈ X ′′, one at a time, we get
all the remaining partition types. This concludes the proof. �

We conclude this section with the following corollary, which follows from Theorem 1.4 and Theo-
rem 3.7. We first recall the definitions of mc and Mn (see (1)) when s = 5 and q = 2. Let c be the
remainder in the division of n by 5, and let θ = θ(c) be the least residue of c modulo 2. In this case,

(24) Mn =
2n − 25θ+c

31
and mc =

25θ+c − 1

3
.

Corollary 3.8. Let n ≥ 14 and c be the remainder in the division of n by 5. Let mc and Mn be as
defined in (24). Then for any integer i with mc ≤ i ≤ bMn/3c, there exists a partition Pi of V (n, 2)
with type 5xi2yi, where

xi = Mn − 3i and yi = mc + 31i.

Proof. For any integer k ≥ 2 and c = 0, the corollary follows from Lemma 1.3.
Let c be a fixed integer such that 0 < c < 5, and let kc be the smallest integer such that kc ≥ 2

and kc + c is even. Then for any integer k ≥ kc, we can prove the corollary for n = 5k + c by using
induction on k where the base cases n = 5kc + c are given by Theorem 3.7, and the inductive step
is given by Theorem 1.4.

For instance, let us consider the case n = 12. Then c = 2 and k2 = 2. Now it follows from
Theorem 3.7 that for each integer i with 0 ≤ i ≤ 43, there exists a partition Pi of V (12, 2) of type
5xi2yi , where xi = 129− 3i and yi = 32 + 31i.

Let Mn and mc be as defined in (24). Then we can easily compute M12 = 132 and m12 = 1. If
we set a to m2 = 1 in Theorem 1.4, then for any integer i with 1 ≤ i ≤ bM12/3c = 44, there exists a
partition Pi of V (12, 2) with type 5xi2yi , where

xi = 132− 3i = M12 − 3i and yi = 1 + 31i = m2 + 31i.

This establishes the base case (i.e., k = k2 = 2) of the induction argument when n = 5k + 2.
Now assume that for any integer k ≥ 2 and for any integer i with 1 ≤ i ≤ bMn/3c, there exists a

partition Pi of V (n, 2) with type 5xi2yi , where xi = Mn−3i and yi = m2+31i. Then by Theorem 1.4,
for any integer i with 1 ≤ i ≤ bMn+5/3c, there exists a partition Pi of V (n+ 5, 2) with type 5xi2yi ,
where xi = Mn+5 − 3i and yi = mn+5 + 31i.

Since n+5 = 5(k+1)+2, this proves the inductive step. Hence, the corollary holds for all integers
n = 5k + 2 and k ≥ k2 = 2.
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For c = 4, 1, and 3, we have kc = 2, 3, and 3, respectively. The corresponding base cases n = 14, 16,
and 18 are given by Theorem 3.7. Then an argument similar to the one used for n = 5k + 2 above
yields the appropriate partition Pi of V (n, 2) for n = 5k+ c with k ≥ kc when mc ≤ i ≤ bMn/3c. �
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