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Abstract. Let G = (V,E) be a graph and R ⊆ E. A matching M in G is
called R-feasible if the subgraph induced by the M -saturated vertices does not have
an edge of R. We show that the general problem of finding a maximum size R-
feasible matching in G is NP-hard and identify several natural applications of this
new concept. In particular, we use R-feasible matchings to give a necessary and
sufficient condition for the existence of a Systems of Disjoint Representatives in a
family of hypergraphs. This provides another Hall-type theorem for hypergraphs.
We also introduce the concept of R-feasible (vertex) cover and combine it with
the concept of R-feasible matching to provide a new formulation and approach to
Ryser’s conjecture.

1. Introduction and Generalities

Let G = (V,E) be a graph and R ⊆ E. We denote an edge between u, v ∈ V by
uv. A matching M of G is a collection of pairwise disjoint edges. An independent set
in G is a collection of vertices of G such that no two of them form an edge. A vertex
u ∈ V is called M -saturated if it is incident with some edge in M . Let V (M) denote
the set of M -saturated vertices. Let GR = (V,R) denote the spanning subgraph of G
with edge set R.

Definition 1. Let G = (V,E) be a graph and R ⊆ E. A matching M in G is called
R-feasible if the subgraph induced by the M-saturated vertices does not have an edge
of R. In other words, V (M) is an independent set in GR.

IfR = ∅, then we recover the classic definition of a matching. The Feasible Matching
problem consists of finding a maximum-size R-feasible matching of a graph G, for a
given graph G and a given subset R of edges of G. We denote this number by ν(G,R).
Since the M -saturated vertices of an R-feasible matching M of G form an independent
set in GR, we have

(1) ν(G,R) ≤ bα(GR)/2c,

where α(GR) is the maximum size of an independent set of GR; and the upper bound
becomes an equality if G is a complete graph. Inequality (1) hints that in general,
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the Feasible Matching (FM) problem is as hard as the Independent Set (IS) prob-
lem; which consists of finding a maximum-size independent set, for a given graph H
(denoted by α(H)). In fact, we have the following theorem.

Theorem 2. The FM problem is NP-hard.

Proof. Let G = (V,E) be a graph and let R ⊆ E.
We show that the IS problem can be reduced (in polynomial time) to the FM

problem. Let H be a given graph and supposed that we want to find α(H). Let W
be a set such that W ∩ V (H) = ∅ and |W | = |V (H)|. We construct an auxiliary
graph G = G(H) with vertex set V (G) = W ∪ V (H) and edge set

E(G) = E(H) ∪ {hw : h ∈ V (H) and w ∈ W}.

If we set R = E(H), then it is straightforward to check that α(H) = ν(G(H), R).
Moreover, the construction of G from H can be clearly done in time that is polynomial
in |V (H)|. Consequently, the FM problem is as hard as the IS problem, which
concludes the proof. �

The decision problem corresponding to the FM problem is: “Given a graph G, a
subset of edges R ⊆ E(G), and a constant k; is there an R-feasible matching of G of
size k?” It follows from Theorem 2 that this decision problem is NP-complete.

For each edge e ∈ E, we associate a binary variable ce. Then we have the follow-
ing Integer-Linear-Programming (ILP) formulation of the Feasible Matching (FM)
problem:

Maximize
∑
e∈E

ce subject to (L1)∑
x′∈V ; xx′∈E

cxx′ ≤ 1, for each x ∈ V (L2)∑
x′∈V ; xx′∈E

cxx′ +
∑

y′∈V ; yy′∈E
cyy′ ≤ 1, for each xy ∈ R (L3)

ce ∈ {0, 1}, for each e ∈ E (L4).

Observe that the linear constraints in (L3) ensure that the resulting matching is R-
feasible. This ILP formulation might be useful in finding ν(G,R) for small examples.

We now introduce the related definition of R-feasible cover.

Definition 3. Let G = (V,E) be a graph and R ⊆ E. A subset C ⊆ V is an R-
feasible cover of G if for any edge xy ∈ (E−R) at least one of the following conditions
holds:
(i) {x, y} ∩ C 6= ∅;
(ii) there exists an edge x′y′ ∈ R such that {x, y} ∩ {x′, y′} 6= ∅ and {x′, y′} ∩ C 6= ∅.

If R = ∅, then we recover the classic definition of a vertex cover. The Feasible Cover
problem consists of finding the minimum number of vertices in any R-feasible cover
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for the pair (G,R). We denote this number by τ(G,R). The Feasible Cover problem
is clearly NP-complete since the the classic Vertex Cover problem is NP-complete.

The rest of the paper is organized as follows. In Section 2, we give a Hall-type
theorem for feasible matchings and bounds on feasible coverings. In Section 3, we
use R-feasible matchings to characterize Systems of Disjoint Representatives and
give several other applications. In Section 4, we combine the concepts of R-feasible
matching and R-feasible cover to provide a new formulation and approach to Ryser’s
conjecture. Finally, in Section 5, we discuss some open questions.

2. Some Results on Feasible Matchings and Feasible Coverings

Applications of the results in this section will be given in Sections 3 and 4.
Let G = (V,E) be a graph and R ⊆ E. We say that G is R-bipartite with bipartite

sets X and Y if the graph G′ = (V,E − R) is bipartite (in the usual sense) with
bipartite sets X and Y . For W ⊆ X, let N(W ) = {y ∈ Y : wy ∈ E for some w ∈
W}.

In what follows, we give a necessary and sufficient condition for the existence of an
R-feasible matching of G that saturates all the vertices in X.

Theorem 4. Let G = (V,E) be a graph and R ⊆ E. Suppose that G is R-bipartite
with bipartite sets X and Y . Then G has an R-feasible matching that saturates all
the vertices in X if and only if X is an independent set in GR and there exists S ⊆ Y
such that S is independent in GR and for any W ⊆ X, we have |S ∩N(W )| ≥ |W |.

Proof. Necessity. If M is an R-feasible matching that saturates all the vertices in X,
then clearly X is an independent set in GR and the set S of vertices matched to X
in M is an independent set in GR. Hence, it follows from Hall’s theorem [5, 10] that
|S ∩N(W )| ≥ |W | for any W ⊆ X.

Sufficiency. If such a set S exists, then by Hall’s Theorem, there is a matching
from X to S that saturates all the vertices in X. Since both X and S are independent
sets in GR, such a matching is R-feasible. �

Remark 5. If R = ∅ in Theorem 4, then G = G′ is a bipartite graph and we obtain
Hall’s Theorem.

Let G, R, X, and Y be as in Theorem 4 above. For any subset X ′ ⊆ X, we define
the deficiency of X ′ as follows

(2) def(X ′) = min
S
{d ∈ N : |S ∩N(W )| ≥ |W | − d for any W ⊆ X ′},

where the minimum is over all sets S ⊆ N(X ′) that are independent in GR = (V,R)
and N is the set of all natural numbers.

We then obtain the following deficiency version of Theorem 4.
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Corollary 6. Consider a graph G = (V,E) and let R ⊆ E. Suppose that G is R-
bipartite with bipartite sets X and Y . If X ′ is an independent subset of X, then G
has an R-feasible matching of size |X ′| − def(X ′).

Proof. Add def(X ′) vertices to Y and connect each of these vertices to every vertex
in X ′ by an edge. Then apply Theorem 4. �

An R-feasible matching of G is called a perfect R-feasible matching of G if ev-
ery vertex of G is M -saturated. The following proposition follows easily form this
definition and we omit its proof.

Proposition 7. Let G = (V,E) be a graph and R ⊆ E. Then G has a perfect
R-feasible matching if and only if R = ∅ and G has a perfect matching.

For any connected component U in the graph GR, the edges in U do not need to
be covered in an R-feasible cover of G. This leads to the following definitions. Let
G\R be the graph with

V (G\R) = {U ⊆ V : U is a connected component in GR}
and

E(G\R) = {UU ′ : U,U ′ ∈ V (G\R) and there exists u ∈ U , u′ ∈ U ′ with uu′ ∈ E −R}.
For any subset C ⊆ V , we define

C\R = {U ∈ V (G\R) : there exists c ∈ C with c ∈ U}.

Proposition 8.

ν(G\R, ∅) ≤ τ(G\R, ∅) ≤ τ(G,R) ≤ 2ν(G,R).

Moreover, if C is an R-feasible cover of G, then C\R is a vertex cover of G\R.

Proof. Since every vertex cover ofG\R contains a vertex from each edge of a maximum-
sized matching in G\R, then ν(G\R, ∅) ≤ τ(G\R, ∅).

Next we show that τ(G,R) ≤ 2ν(G,R). Let M be a maximum R-feasible matching
in G and let V (M) denote the set of M -saturated vertices. We claim that V (M) is
an R-feasible cover for G. In fact, for each edge xy in G such that {x, y}∩V (M) = ∅,
there exists x′ ∈ V (M) such that xx′ ∈ R or there exists y′ ∈ V (M) such that
yy′ ∈ R. Since otherwise, M ∪ {xy} together with M is an R-feasible matching,
contradicting the assumption that M is a maximum R-feasible matching. Therefore,

τ(G,R) ≤ |V (M)| = 2ν(G,R).

Next, we show that τ(G\R, ∅) ≤ τ(G,R). Let C be a minimum R-feasible cover of
G. Then it follows from the definition of C\R that |C\R| ≤ |C|. If C\R is a vertex
cover of G\R, then τ(G\R, ∅) ≤ |C\R| ≤ |C| = τ(G,R). Hence, to finish the proof,
it suffices to show that C\R is a vertex cover of G\R.

Let XY be an edge in G\R. By the definition of E(G\R), there exists x ∈ X and
y ∈ Y such that xy ∈ E(G) − R. Since C is an R-feasible cover of G, then at least
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one of the following possibilities holds: (i) x ∈ C; (ii) y ∈ C; (iii) there exists x′ ∈ C
such that xx′ ∈ R; and (iv) there exists y′ ∈ C such that yy′ ∈ R. We only discuss
(i) and (iii) since (ii) and (iv) can be handled in a similar manner. If x ∈ C, then
x ∈ X ∈ C\R by the definition of C\R. If there exists x′ ∈ C such that xx′ ∈ R,
then x, x′ ∈ X ∈ V (G\R) by the definition of V (G\R). Since x′ ∈ C and x′ ∈ X, we
have X ∈ C\R by the definition of C\R. �

3. Applications of Feasible Matchings

We point out an application of Theorem 4 to the system of disjoint representatives
and several other applications of feasible matchings.

Application 1: Systems of Disjoint Representatives
In this section, we identify a hypergraph with its set of (hyper)edges. Let A =
{H1, ..., Hm} be a family of hypergraphs (i.e., Hi is the set of edges of the i-th hyper-
graphs, 1 ≤ i ≤ m). A System of Disjoint Representatives (SDR) for A is a function
f : A →

⋃m
i=1Hi such that f(Hi) ∈ Hi for all i and f(Hi)∩f(Hj) = ∅ whenever i 6= j.

A necessary and sufficient condition for the existence of an SDR in A was proved by
Aharoni and Haxell [2] using topological methods. Before stating their theorem, we
introduce some relevant notation.

Let H be the set of edges of some hypergraph. A subset F ⊆ H is pinned by
another set K of edges if every edge in F has a non-empty intersection with some
edge in K. For any subfamily B ⊆ A, let ∪B =

⋃
H∈BH.

Theorem 9 (Aharoni-Haxell [2]). A family of hypergraphs A has a system of disjoint
representatives if and only if for each subfamily B ⊆ A there exists an assignment of
a matching MB in ∪B which satisfies the condition that MB cannot be pinned by fewer
than |B| edges from the set of edges

⋃
{MC : C ⊆ B and MC is a matching in ∪C}.

We will use Theorem 4 and the following construction to devise another necessary
and sufficient condition for the existence of an SDR in a family of hypergraphs.

Construction 1: Given a family of hypergraphs A = {H1, . . . , Hm}, we let G = G(A)
denote the auxiliary graph of A with vertex set V = X ∪ Y and edge set E = E0 ∪R,
given below.

X = {1, 2, ...,m}, Y = H1 ∪ . . . ∪Hm,

E0 = {ihi : 1 ≤ i ≤ m and hi ∈ Hi},
R = {hihj : hi ∈ Hi, hj ∈ Hj, and hi ∩ hj 6= ∅}.

It follows from Construction 1 that there is a one-to-one correspondence between
an SDR of A and an R-feasible matching of G = G(A) saturating X. Note that the
auxiliary graph G(A) given in Construction 1 is R-bipartite and X is an independent
set in GR.
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Applying Theorem 4, we have the following characterization of the existence of an
SDR of a family of hypergraphs.

Corollary 10. Let A be a family of hypergraphs and let G = G(A) be its auxiliary
bipartite graph with bipartite sets X and Y and edge set E = E0 ∪ R (as given
by Construction 1). Then A has a system of disjoint representatives if and only if
there exists S ⊆ Y such that S is independent in GR and for any W ⊆ X, we have
|S ∩N(W )| ≥ |W |.

Application 2: Hypergraph Matchings.
Consider an r−uniform hypergraph H = (V , E) which satisfies the following prop-

erty:
(∗) V can be partitioned into two sets A and B such that for any e ∈ E , we have
|e ∩ A| = 1 and |e ∩B| = r − 1.

Note that the above condition implies that H is 2-colorable, i.e., we can assign 2
colors to its vertices such that none of its edges is monochromatic. Let

C = {U ⊆ V : e ∩B = U for some e ∈ E},

E0 = {aU : a ∈ A, U ∈ C, {a} ∪ U ∈ E},
and

R = {UW : U,W ∈ C and U ∩W 6= ∅}.
We define an auxiliary graph G = G(H) with vertex set V = A ∪ C and edge set
E = E0 ∪ R. Then, there is a one-to-one correspondence between matchings in the
hypergraph H and an R-feasible matching of G. In particular, the maximum size of
a matching in H is the maximum size of an R-feasible matching in G.

Application 3: Network Channel Assignment with Interference.
Consider a wireless network with a set of customers A and set of (signal) towers B.

We put an edge between a ∈ A and b ∈ B if customer a can connect to tower b. At
any point of time, we want to find a maximum-size matching in the bipartite graph
G0 with partite sets A and B and edge set E0. In practice, we have a multichannel
network, i.e. a tower b can accept a number mb of connections. We can incorporate
this condition by creating mb copies of the vertex b in B and find a maximum-size
matching in the resulting graph. Moreover, let R be the set of all edges b1b2 such
that there is an interference between the channels used by towers b1 and b2. Then
given the graph G with V (G) = V (G0) and E(G) = E0 ∪ R, we are interested in
finding the maximum-size R-feasible matching, which corresponds to a maximum
size interference-free channel assignment.

Application 4: Scheduling with constraints.
Consider a scheduling problem in which we have a set B of musical bands to be

scheduled at time periods T for a music festival. Assuming that each band can only
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play at some specified times, we can try to find a maximum-size assignment of bands
to time periods. Moreover, we add a red edge between two bands if they cannot both
be scheduled to perform. Similarly, we may have some restrictions about the time
periods represented by blue edges. This problem can be modeled by the problem of
finding an R-feasible matching, where R is the set of red and blue edges.

4. Application to Ryser’s conjecture

For a hypergraph H = (V , E), the vertex cover number, denoted by τ(H), is the
minimum size of a vertex set that intersects every edge. The matching number ν(H),
is the maximum size of a set of pairwise-disjoint edges. A hypergraph is called r-
uniform if all its edges have size r. A hypergraph is called r-partite if its vertex set
can be partitioned into r parts, and every edge contains precisely one vertex from
each part. Note that an r-partite hypergraph must be r-uniform. Since every edge in
a hypergraph H intersects some vertex of V (M), where M is a maximum matching
in H, then

(3) τ(H) ≤ |V (M)| = rν(H)

for any r-partite hypergraph H.
Ryser conjectured that for r ≥ 2, every r-partite hypergraph H satisfies

(4) τ(H) ≤ (r − 1)ν(H).

For r = 2, Conjecture 4 holds by König’s theorem [4]. However, for r ≥ 3, this
conjecture turns out to be very difficult. For ν(H) = 1 and 3 ≤ r ≤ 5, Conjecture 4
has been proved by Tuza [8, 9]. For r = 3 and all values of ν(H), it has been proved
by Aharoni [1]. Füredi [3] proved the so-called fractional version of the conjecture,
i.e., τ ∗(H) ≤ (r − 1)ν(H), where τ ∗(H) is the fractional covering number of H.

For an R-bipartite graph G = (V,E) with R-bipartite sets V = X ∪ Y , we define
a weight function w : V → {1, r− 1} such that w(v) = 1 for v ∈ X and w(v) = r− 1
for v ∈ Y . Let τw(G,R) be the minimum weight R-feasible cover of the vertex-
weighted graph (G,w) and let ν(G,R) be the maximum size R-feasible matching in
the unweighted graph G.

Construction 2: Given an r-partite hypergraph H = (V , E), where V is the union
of r disjoint parts Vi, 1 ≤ i ≤ r, let

X = V1,

Y = {y : e ∩ ∪r
i=2Vi = y for some e ∈ E},

E = {xy : x ∈ X, y ∈ Y, {x} ∪ y ∈ E},
and

R = {yy′ : y, y′ ∈ Y and y ∩ y′ 6= ∅}.
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We define an auxiliary graph G = G(H) with vertex set V = X ∪ Y and edge set
E ∪R.

Observe that there is a one-to-one correspondence between matchings in the hy-
pergraph H and an R-feasible matching of G. In particular, the maximum size of a
matching in H is the maximum size of an R-feasible matching in G, i.e.,

(5) ν(H) = ν(G,R).

Proposition 11.

τ(H) ≤ τw(G,R).

Proof. Let T be a minimum weight R-feasible cover of G. Let TH be the set of vertices
in H obtained by recovering vertices in T , i.e., every vertex in T ∩ X will be kept
and every vertex in T ∩ Y will be recovered to r − 1 vertices in ∪ri=2Vi. We claim
that TH is a vertex cover of H. Indeed, for every edge e = {v1, v2, · · · , vr} ∈ E(H)
with vi ∈ Vi, the corresponding pair {v1, y}, where y = {v2, · · · , vr}, is an edge in G.
Since T is a cover of G, then either v1 ∈ T , or y ∈ T , or there is y′ ∈ T such that
y ∩ y′ 6= ∅. In each case, edge e intersects TH and the claim is verified. Moreover, we
clearly have |TH| = τw(G,R). Hence

τ(H) ≤ |TH| = τw(G,R).

�

Proposition 12.

τw(G,R) ≤ rν(G,R).

Proof. Let M be a maximum R-feasible matching in G. We claim that the vertex
set V (M) is an R-feasible vertex cover for G. In fact, for each edge xy in G with
{x, y} ∩ V (M) = ∅, either there exists x′ ∈ V (M) such that xx′ ∈ R, or there exists
y′ ∈ V (M) such that yy′ ∈ R. Since otherwise, M ∪ {xy} is an R-feasible matching,
contradicting the assumption that M is a maximum R-feasible matching. Since every
vertex in X ∩M has weight 1 and every vertex in Y ∩M has weight r − 1, then

τw(G,R) ≤ r|M | = rν(G,R).

�

Propositions 11, 12, and equation (5) imply the bound in (3). So if G and R are
such that Proposition 12 can be improved to (r−1)ν(G,R) ≥ τw(G,R), then Ryser’s
conjecture (inequality (4)) holds for corresponding r-partite hypergraphs. This yields
a new approach to Ryser’s conjecture that consists of finding families of subgraphs
G and R for which Ryser’s conjecture holds, as opposed to the current approach
(see [1, 8, 9]) of finding r or ν for which the conjecture holds.
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5. Concluding Remarks

After Theorem 2, we have established that the decision version of Feasible Matching
problem is in general NP-complete. This leads to the following related complexity
question.

Question 13. Let G = (V,E) be a graph, R ⊆ E, and let GR = (V,R) be the spanning
subgraph of G with edge set R. Characterize the subgraphs GR for which there exists
a polynomial time algorithm that finds a maximum-size R-feasible matching in G.

If R does not contain P3 (the path on 3 vertices) as an induced graph, then R is
a disjoint union of cliques. In this case, it is easy to see that ν(G,R) = ν(G\R, ∅),
where ν(G\R, ∅) is the (classic) maximum size matching in the graph G\R. Since this
latter number can be computed in polynomial time, ν(G,R) can also be computed in
polynomial time in this case. What about other classes of graphs GR?

Finally, it would be interesting to define a general framework within which one
can define and study a hybrid problem obtained by combining a polynomial-time
problem and an NP-hard problem in a suitable way. In this sense, the maximum size
feasible matching problem is a hybrid problem that results from the maximum size
matching problem and the maximum size independent set problem. We will pursue
these questions in subsequent projects.
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