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Abstract. Let V = V (n, q) denote the finite vector space of di-
mension n over the finite field with q elements. A subspace par-
tition of V is a collection Π of subspaces of V such that each
1-dimensional subspace of V is in exactly one subspace of Π. In
a recent paper, we proved some strong connections between the
lattice of the subspace partitions of V and the lattice of the set
partitions of n = {1, . . . , n}. We now define a Gaussian parti-
tion of [n]q = (qn − 1)/(q − 1) to be a nonincreasing sequence of
positive integers formed by ordering all elements of some multi-
set {dim(W ) : W ∈ Π}, where Π is a subspace partition of V .
The Gaussian partition function gp(n, q) is then the number of all
Gaussian partitions of [n]q, and is naturally analogous to the clas-
sical partition function p(n). In this paper, we initiate the study
of gp(n, q) by exhibiting all Gaussian partitions for small n. In
particular, we determine gp(n, q) as a polynomial in q for n ≤ 5,
and find a lower bound for gp(6, q).

1. Introduction and background

Let V = V (n, q) denote the finite vector space of dimension n over
the finite field with q elements. A subspace partition1 of V is a collec-
tion Π of subspaces of V such that each 1-dimensional subspace of V
is in exactly one subspace of Π. Subspace partitions is a rich area of
research [5, 7, 9, 15, 21] with applications in the constructions of trans-
lation planes and nets [2, 12], designs [8, 33], and codes [11, 25, 27, 29].
Let a be a positive integer. We adopt the notation

[a]q =
qa − 1

q − 1
,

which is the number of 1-dimensional subspaces in V (a, q). For positive
integers x1, . . . , xs, d1, . . . , ds with d1 < . . . < ds, we let dxs

s . . . dx1
1 de-

note the nonincreasing sequence containing xi integers di for 1 ≤ i ≤ s.
Suppose that there exists a subspace partition Π of V such that the

Date: July 5, 2011.
Key words and phrases. Gaussian partition; Integer partition; Vector space par-

tition; Subspace partition.
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nonincreasing sequence of positive integers obtained from the multiset
{dim(W ) : W ∈ Π} is equal to T = dxs

s . . . dx1
1 ; then we say that T

is a Gaussian partition2 of [n]q. We also say that T is the Gaussian
partition associated with Π. In this case, the following condition holds:

(1) [d1]q x1 + . . .+ [ds]q xs = [n]q.

The above equation is obtained by adding up the numbers of distinct
1-dimensional subspaces in each subspace of the partition. Another
well-known necessary condition for T to be a Gaussian partition of [n]q
is as follows:

(2)

{

2di ≤ n, if xi ≥ 2,

di + dj ≤ n, if i 6= j, xi, xj ≥ 1.

This condition tells us that since the sum of any two subspaces of the
partition is direct, their total dimension cannot exceed n. However,
the converse is not true. If x1, . . . , xs and d1 < . . . < ds are positive
integers such that conditions (1) and (2) hold, then dxs

s . . . dx1
1 is not

necessarily a Gaussian partition of [n]q, since there may not exist a
subspace partition of V with xi subspaces of dimension di, 1 ≤ i ≤ s.
For instance, if n = 5 and q = 2, then x1 = 1, d1 = 1, x2 = 10,
and d2 = 2 satisfy (1) and (2), but there does not exist a subspace
partition of V (5, 2) with 10 subspaces of dimension 2 and one subspace
of dimension 1 (e.g., see [21]). In fact, the problem of finding necessary
and sufficient conditions for dxs

s . . . dx1
1 to be a Gaussian partition of [n]q

is wide open for general n and q. A few special cases were solved by
Beutelspacher [5] (and rediscovered by Bu [9]) for s = 2 and d1+d2 = n;
by Heden for q = 2, s = 3, n ≥ 9, d3 = n − 3, d2 = 3, and d1 = 2
(see [23]); for s ≥ q + 1 and dp+1 = dp = . . . = ds (see [24]); by Blinco
et al. [8] for s = 2, d1 dividing n, and d2 dividing n; by El-Zanati et
al. for q = 2, s = 2, d2 = 3, and d1 = 2 (see [15]); for q = 2 and n ≤ 7
(see [16]); and for q = 2, n = 8, and di > 0 with 1 ≤ i ≤ s (see [17]).
In [1], we studied the lattice structure on the set of subspace par-

titions of V = V (n, q) and proved some strong connections between
this lattice and the lattice of set partitions of n= {1, . . . , n}. Using an
order-preserving Galois map between the two lattices, we proved the
following results (among others; see [1]):

Proposition 1. The number of subspace partitions of V (n, q) is con-
gruent to the number of set partitions of n modulo q − 1.

2This is also called the type of a vector space partition in the literature; we have
introduced this new term in light of our results in this paper.
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Proposition 2. Let T = dxs
s . . . dx1

1 be a Gaussian partition of [n]q such
that

∑

di≥2

xidi > n.

Then the number of all subspace partitions of V (n, q) with associated
Gaussian partition T is congruent to zero modulo q − 1.

Since the number of set partitions of n is Bn (the nth Bell number),

we define the q-Bell number B
(q)
n to be the number of vector space

partitions of V (n, q). Then Proposition 1 simply says that

(3) B(q)
n ≡ Bn (mod q − 1).

Let us emphasize that in addition to being a “numerical” q-analoque

of Bn that is transformed into Bn when q is replaced by 1, B
(q)
n is

also a “combinatorial” q-analoque of Bn that counts interesting objects

(subspace partitions of V (n, q)). In this respect, B
(q)
n seems to be the

most natural q-extension of the number of set partitions of n. For other
q-analogues of Bn in the literature, see, for example, [4, 10, 13, 19, 20,
28, 31, 34, 35, 36].
Just as the subspace partitions of V (n, q) are counterparts of the set

partitions of n, the Gaussian partitions of [n]q are counterparts of the
integer partitions of n. The number of integer partitions of n is the
well-studied partition function p(n), which is equal to the number of
nonnegative solutions of the linear Diophantine equation

(4) x1 + 2x2 + · · ·+ nxn = n.

In contrast, enumerating the Gaussian partitions of [n]q, even for spe-
cific n, is a highly non-trivial task. Although the Gaussian partitions of
[n]q are among the nonnegative solutions of the Diophantine equation

(5) x1 + [2]q x2 + · · ·+ [n]qxn = [n]q,

not every solution qualifies. For instance, the problem of determining
whether or not 334117 is a Gaussian partition of [8]2 was the first open
case of a 1972 conjecture by Hong and Patel [27] (also see [14]) about
the maximum size of a partial t-spread3 of V (n, q). This has been
settled recently by El-Zanati et al. [18], who constructed a subspace
partition of V (8, 2) with 34 subspaces of dimension 3 and 17 subspaces
of dimension 1. Their result disproved the aforementioned conjecture,
which was generally believed to be true.

3A partial t-spread of V = (n, q) is a collection of t-dimensional subspaces of V
with mutually zero intersections.
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We define the Gaussian partition function, gp(n, q), to be the number
of distinct Gaussian partitions of [n]q. In this paper, we initiate the
study of gp(n, q) by exhibiting all Gaussian partitions for small n. In
particular, we determine gp(n, q) as a polynomial in q for n ≤ 5, and
find a lower bound for gp(6, q). We show that gp(n, q) has the same
value as p(n) when q is set equal to 1 in these cases. We also conjecture
that gp(n, q) is a polynomial in q for fixed n, and that the above-
mentioned relationship between gp(n, q) and p(n) holds for all positive
integers n.

2. Main results

2.1. Gaussian partition function gp(n, q) for n ≤ 6. It is easy to
compute the three smallest values of the Gaussian partition function
gp(n, q):

gp(1, q) = 1 = p(1), gp(2, q) = 2 = p(2), and gp(3, q) = 3 = p(3).

In this section, we will determine gp(n, q) for n = 4 and 5 as polyno-
mials in q, and find a similar polynomial as a lower bound for gp(6, q).
In all of our examples, setting q = 1 in the formula for gp(n, q) will
yield the corresponding integer partition function p(n) (Theorem 14).
We will be using the following results.

Lemma 3 (André [2] and Bu [9]). Let n, d be positive integers such
that d divides n. Then there exists a partition of V (n, q) consisting of
(qn − 1)/(qd − 1) subspaces of dimension d, i.e., a full d-spread.

Lemma 4 (Beutelspacher [6]). Let n, d be positive integers such that
1 ≤ d < n/2. Then V (n, q) can be partitioned into one subspace of
dimension n− d and qn−d subspaces dimension of d.

Lemma 5 (Blinco et al. [8]). Let r and t be positive integers with
rt = n, and let x and y be nonnegative integers such that

[r]q x+ [t]q y = [n]q.

Then there exists a partition of V (n, q) into x subspaces of dimension
r and y subspaces of dimension t.

Lemma 6 (Beutelspacher[7]). Let n ≥ 3 be an odd integer, and let Π
be a partition of V (n, q) with x2 subspaces of dimension 2, x1 subspaces
of dimension 1, and no other subspaces. Then

x2 ≤
qn − q

q2 − 1
− q + 1.
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The generalization of Lemma 6, where 2 is replaced by t, has long been
an open problem for all prime powers q and for t, n with t > 2 and
n 6≡ 0 (mod t). However, as mentioned in the introduction, the case
q = 2 and t = 3 has recently been settled by El-Zanati et al. [18].

Lemma 7 (Heden [23]). Let Π be a partition of the finite vector space
V (n, q) of type dx1

1 dx2
2 · · · dxs

s , with s ≥ 2, 1 ≤ d1 < d2 < · · · < ds, and
xi > 0 for all 1 ≤ i ≤ s. Then the following hold:

(i) If qd2−d1 does not divide x1, and d2 < 2d1, then x1 ≥ qd1 + 1.
(ii) If qd2−d1 does not divide x1, and d2 ≥ 2d1, then either d1 divides

d2 and x1 = (qd2 − 1)/(qd1 − 1), or x1 > 2qd2−d1.
(iii) If qd2−d1 divides x1, and d2 < 2d1, then x1 ≥ qd2 − qd1 + qd2−d1.
(iv) If qd2−d1 divides x1, and d2 ≥ 2d1, then x1 ≥ qd2.

We now enumerate the Gaussian partitions of [4]q and [5]q, and com-
pute a lower bound for [6]q.

Proposition 8. The distinct Gaussian partitions of [4]q are given by

(6) 41, 311q
3

,

and

(7) 2(q
2+1)−i1i(q+1), 0 ≤ i ≤ q2 + 1.

Proof. Among the solutions of Eq. (5) for n = 4, we have legitimate
Gaussian partitions of [4]q, as well as solutions that do not correspond
to actual partitions of V (4, q). An example of the latter is the “type”

312q
2−q1q, which does not satisfy condition (2). It is easy to verify that

the Gaussian partitions of [4]q are given by Eqs. (6) and (7): these are
indeed all solutions of (5) that also satisfy (2). The second partition

exists because of Lemma 4. The full 2-spread is of the form 2q
2+1 by

Lemma 3, and subsequent partitions of its two-dimensional subspaces
are obtained by complete refinement into one-dimensional subspaces,
again by Lemmas 3 and 4. �

Proposition 9. The distinct Gaussian partitions of [5]q are given by

(8) 51, 411q
4

,

(9) 312q
3−i1i(q+1), 0 ≤ i ≤ q3,

and

(10) 2q
3+1−i1q

2+i(q+1), 0 ≤ i ≤ q3 + 1.
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Proof. We recursively apply Lemma 4 to V (5, q) and obtain the distinct
Gaussian partitions (8)-(10). Because of the necessary condition (2), at
most one subspace of dimension greater than or equal to 3 can appear.
Moreover, all nonnegative solutions of the Diophantine equation

x1 + [2]q x2 + [3]q = [5]q

are represented in Eq. (9). Hence, the only other potential Gaussian
partitions of [5]q not shown above would be those of the form 2x1y

where x > q3 + 1. However, Lemma 6 yields

x ≤
q5 − q

q2 − 1
− q + 1 = q3 + 1,

which shows that such Gaussian partitions cannot exist. �

Proposition 10. The distinct Gaussian partitions of [6]q containing
one of 6, 5, or 4 are given by

(11) 61, 511q
5

,

(12) 412q
4

, 412q
4−i1i(q+1) (1 ≤ i ≤ q4 − 1), and 411q

5+q4.

Proof. Once again, because of Eq. (2), at most one subspace of dimen-
sion 4, 5, or 6 may appear in a partition of V (6, q), and never with a
3-dimensional space. The above Gaussian partitions exist because of
Lemma 4. The Gaussian partitions in Eq. (12) represent the whole set
of nonnegative solutions of the Diophantine equation

x1 + [2]q x2 + [4]q = [6]q,

hence the list of Gaussian partitions of [6]q containing 41 is complete.
�

Proposition 11. The distinct Gaussian partitions of [6]q of the form
3x2y1z with x, y, z ≥ 0 that can be obtained from the nonnegative solu-
tions of the Diophantine equation

[3]q x+ [2]q y = [6]q

via Lemmas 3–5 are completely determined by the pairs (x, y) in the
following list:

0 ≤ x ≤ x0, 0 ≤ y ≤ −x+ x0 + y0

0 ≤ x ≤ x1, −x+ x0 + y0 + 1 ≤ y ≤ −x+ x1 + y1

0 ≤ x ≤ x2, −x+ x1 + y1 + 1 ≤ y ≤ −x+ x2 + y2
...

0 ≤ x ≤ xq2−q, −x+ xq2−q−1 + yq2−q−1 + 1 ≤ y ≤ −x+ xq2−q + yq2−q

x = 0, xq2−q + yq2−q + 1 ≤ y ≤ xq2−q+1 + yq2−q+1,
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where

(xi, yi) = ((q3 + 1)− i(q + 1), i(q2 + q + 1)), 0 ≤ i ≤ q2 − q + 1.

Proof. All nonnegative solutions

(13) 3(q
3+1)−i(q+1)2i(q

2+q+1) (0 ≤ i ≤ q2 − q + 1)

of the Diophantine equation

[3]q x+ [2]q y = [6]q

represent Gaussian partitions of [6]q by Lemma 5. We start with these
solutions (base pairs),

(xi, yi) = ((q3 + 1)− i(q + 1), i(q2 + q + 1)), 0 ≤ i ≤ q2 − q + 1,

and obtain new Gaussian partitions by finding all refinements of a rep-
resentative vector space partition of V (6, q) of the given type. We can
also talk about refinements of a Gaussian partition in the obvious sense.
Hence, we consider refinements of (i) 31 into 211q

2
, (ii) 31 into 1q

2+q+1,
and (iii) 21 into 1q+1 (these are supported by Lemma 3 and Lemma 4).
Let (xi, yi) be a base pair with nonnegative integer coordinates, and
(x∗, y∗) be any lattice point obtained from it by applying some of the
refinements (i)–(iii). Let us consider the effects of these refinements
on (x∗, y∗). In case (i), we obtain the nonnegative integer lattice point
(x∗ − 1, y∗ + 1) on the line x + y = x∗ + y∗, above and to the left
of (x∗, y∗). In case (ii), we obtain the point (x∗ − 1, y∗) to the left of
(x∗, y∗), and in case (iii), the point (x∗, y∗ − 1) below (x∗, y∗). Clearly,
we can only move on and inside the trapezoid with vertices

(0, 0), (xi, 0), (xi, yi), and (0, xi + yi),

with the exceptions of i = 0 and i = q2 − q + 1. In these last two
cases, the trajectories lie inside a right triangle and on a line segment
respectively. We note for later use that (xi+1 + yi+1)− (xi + yi) = q2.
These possibilities are depicted in Figure 1.

The base pair (x0, y0) = (q3 + 1, 0) generates a right triangle with
vertices

(0, 0), (x0, 0), and (0, x0).

The lattice points on and inside the triangle are of the form (x, y) with

0 ≤ x ≤ x0, 0 ≤ y ≤ −x+ x0 + y0 (y0 = 0).

Next, we have the trapezoid with vertices

(0, 0), (x1, 0), (x1, y1), and (0, x1 + y1).
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(0, 0) (x0, 0)

(0, x0)

(0, x0 + y0 + 1)

(0, x1 + y1)

(x1, x0 + y0 − x1 + 1)

(x1, y1)

(0, x1 + y1 + 1)

(0, x2 + y2)

(x2, x1 + y1 − x2 + 1)

(x2, y2)

(0, xq2−q + yq2−q + 1)

(0, xq2−q+1 + yq2−q+1)

Figure 1. The solution pairs (x, y) representing 3x2y1z.

The trapezoid is thinner and taller than the previous triangle and the
lattice points in the part that is not covered by the triangle lie on and
inside the parallelogram with vertices

(0, x0 + y0 + 1), (0, x1 + y1), (x1, y1), and (x1, x0 + y0 − x1 + 1).

This set of points (x, y) is characterized by

0 ≤ x ≤ x1, −x+ x0 + y0 + 1 ≤ y ≤ −x+ x1 + y1.

As we argued above, we only need to count the new points on and
inside the parallelogram with vertices

(0, x1 + y1 + 1), (0, x2 + y2), (x2, y2), and (x2, x1 + y1 − x2 + 1).

These points are characterized by

0 ≤ x ≤ x2, −x+ x1 + y1 + 1 ≤ y ≤ −x+ x2 + y2,

and so on. The final base point, (xq2−q+1, yq2−q+1) = (0, q4 + q2 + 1), is
on the y-axis and we only need to add the points (0, y) with

xq2−q + yq2−q + 1 ≤ y ≤ xq2−q+1 + yq2−q+1
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that lie outside the last trapezoid. �

We can now establish a lower bound for gp(n, q) using Proposi-
tions 10 and 11.

Proposition 12. Let gp(n, q) denote the Gaussian partition function.
Then

gp(6, q) ≥
q7

2
+

5q4

2
+ q3 + q2 + 6.

Moreover, within the list of the Gaussian partitions of [6]q that are
enumerated above, there exist:
• One Gaussian partition of each of the forms 61, 511q

5
, 412q

4
, 411q

5+q4,
3q

3+1, 2q
4+q2+1, and 1[6]q ;

• q4 − 1 of the form 412x1y with x, y > 0;
• q2 − q of the form 3x2y with x, y > 0;
• q3 of the form 3x1z with x, z > 0;
• q4 + q2 of the form 2y1z with y, z > 0; and

• q7

2
+ q4

2
− q2 + q of the form 3x2y1z with x, y, z > 0.

Proof. The total number of Gaussian partitions of [6]q depicted in
Proposition 10 is

(q4 − 1) + 4 = q4 + 3.

The number of Gaussian partitions in Proposition 11 that come from
the “triangle” is

1 + 2 + · · ·+ (x0 + 1) =
1

2
(x0 + 1)(x0 + 2) =

1

2
(q3 + 2)(q3 + 3),

and the total number of Gaussian partitions from the q2 − q parallelo-
grams is

q2(x1 + 1) + · · ·+ q2(xq2−q + 1)

= q2[(q3 + 1)− (q + 1) + · · ·+ (q3 + 1)− (q2 − q)(q + 1)] + q2(q2 − q)

= q2(q3 + 1)(q2 − q)− q2(q + 1)
1

2
(q2 − q)(q2 − q + 1) + q2(q2 − q)

=
q7

2
−

q6

2
+

3q4

2
−

3q3

2
.

Finally, there are q2 Gaussian partitions in Proposition 11 that come
from the q2 points on the y-axis. By adding up the numbers of all
Gaussian partitions of [6]q from Propositions 10 and 11, we obtain
(after simplifications):

gp(6, q) ≥ q7/2 + 5q4/2 + q3 + q2 + 6.

The distribution of the various forms of Gaussian partitions can be
deduced from this number and Propositions 10 and 11. �
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Proposition 13. Let the notation and terminology be as in Proposi-
tion 11. The positive solutions of the Diophantine equation

[3]q x+ [2]q y + [1]q z = [6]q

that are not listed in Proposition 11 are lattice points inside the triangle
defined by the lines x = 0, y = 0, and [3]q x + [2]q y = [6]q and outside
the boundaries of the regions described in the Proposition. Then none of
the unlisted lattice points (which we call exceptional types) is a Gaussian
partition of [6]q if and only if none of the following exceptional types is
a Gaussian partition:

3 q3−(i+1)q−i+1 2 iq2+(i+1)(q+1) 1q
3−q−1, 0 ≤ i ≤ q2 − q.

Proof. The q2− q+1 points (x, y) that correspond to the types 3x2y1z

listed above fall immediately to the right of the intersections of the right
edges of trapezoids (or in the last case, the y-axis) with the previous
structure (triangle or trapezoid) as described in Proposition 11. If
we show that these points do not correspond to Gaussian partitions,
then neither will any other unlisted point in the big triangular region,
because of the admissible moves (or refinements) (i) 31 into 211q

2
, (ii) 31

into 1q
2+q+1, and (iii) 21 into 1q+1, which are supported by Lemma 3

and Lemma 4. �

El-Zanati et al. [16] have shown that among all the exceptional types
defined in Proposition 13, 372315 is the only one which does not cor-
respond to a Gaussian partition of [6]2. For instance, the exceptional
types 3421015 and 3121715 are Gaussian partitions of [6]2. However,
these examples do not seem to indicate a generalization to q > 2, and
the problem of determining the exceptional types of the form 3x2y1z

remains open in general.
The results in Propositions 8–13 directly yield the following theorem.

Theorem 14. Let gp(n, q) denote the Gaussian partition function.
Then
(i) gp(4, q) = q2 + 4 and gp(4, q) = 5 = p(4) when q is set equal to 1.
(ii) gp(5, q) = 2q3+5 and gp(5, q) = 7 = p(5) when q is set equal to 1.

(iii) gp(6, q) ≥ q7

2
+ 5q4

2
+ q3 + q2 + 6.

It is interesting that for n = 4 and 5, the stronger condition gp(n, q) ≡
p(n) (mod q − 1) holds. Moreover, the correspondence between the
Gaussian partitions of [6]q depicted in Proposition 12 and the integer
partitions of 6 is striking: the number of Gaussian partitions contain-
ing certain parts (with positive coefficients) becomes the number of
integer partitions of 6 with the same parts when q is set equal to 1.



GAUSSIAN PARTITIONS 11

For example, there are q2 − q Gaussian partitions containing only the
parts 3 and 2, and no integer partitions of 6 only with parts 3 and 2.
Furthermore, the lower bound in Proposition 12 is equal to p(6) = 11
after replacing q by 1. We actually believe that the number of the ex-
ceptional types (as explained in Proposition 13) should be zero when q
is replaced by 1. If this claim could be confirmed, then the exact value
of the function gp(6, q) would be p(6) when q is set equal to 1.
The following conjecture is motivated by the above theorem, as well

as by our results in [1] (see Propositions 1 and 2 in Section 1) that
show strong connections between the lattice of subspace partitions of
V (n, q) and the lattice of set partitions of n= {1, 2, . . . , n}.

Conjecture 15. The Gaussian partition function gp(n, q) is a polyno-
mial in q with rational coefficients for fixed n ≥ 1. Moreover, gp(n, q)
becomes p(n) when q is replaced by 1.

2.2. Another q-analogue. In this section, we consider a traditional
method of obtaining q-analogues, i.e., replacing n with [n]q. The formu-

las for p(n) and the resulting q-analogue P
(q)
n given below in Proposi-

tions 17 and 18 respectively may be known, but we have not seen them
published elsewhere. These propositions follow directly from Lemma 16
(below), which is a minor variation of a result recently proved by Mah-
moudvand et al. [30].
Before stating these formulas, recall that

[n

k

]

q
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

is theGaussian coefficient, an integer equal to the number of k-dimensional
subspaces of V (n, q). We have seen in Section 1 that a necessary con-
dition for the existence of a Gaussian partition nxn · · · 1x1 (xi ≥ 0) of
[n]q is

(14) [1]q x1 + [2]q x2 + · · ·+ [n]q xn = [n]q,

where we use the simplified notation [a]q for
[

a

1

]

q
. The number of

nonnegative solutions P(q)(n) of the above equation (an upper bound
for gp(n, q)) is –in a strictly numerical sense– a q-analogue of p(n),
which, in turn, is the number of nonnegative solutions of

(15) x1 + 2x2 + · · ·+ nxn = n.

Consider the generic linear Diophantine equation

(16) a1x1 + · · ·+ arxr = n

with positive coefficients. Then it is a simple matter to count the
number of nonnegative solutions in the case a1 = 1 by induction.
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Lemma 16 (Mahmoudvand et al. [30]). For r ≥ 3, the number of non-
negative solutions of the linear Diophantine equation (16) with positive
coefficients and a1 = 1 is given by

⌊ n
ar
⌋

∑

ir=0

⌊

n−arir
ar−1

⌋

∑

ir−1=0

⌊

n−arir−ar−1ir−1
ar−2

⌋

∑

ir−2=0

· · ·

⌊

n−arir−ar−1ir−1−···−a4i4
a3

⌋

∑

i3=0
(⌊

n− arir − ar−1ir−1 − · · · − a4i4 − a3i3
a2

⌋

+ 1

)

.

Combining Lemma 16 with Equation (15), we obtain the following
formula for p(n):

Proposition 17. A formula for the partition function p(n) is given by

p(n) =

⌊n
n⌋

∑

in=0

⌊n−nin
n−1 ⌋
∑

in−1=0

⌊

n−nin−(n−1)in−1
n−2

⌋

∑

in−2=0

· · ·

⌊

n−nin−(n−1)in−1−···−4i4
3

⌋

∑

i3=0
(⌊

n− nin − (n− 1)in−1 − · · · − 4i4 − 3i3
2

⌋

+ 1

)

.

Similarly, combining Lemma 16 with Equation (14), we obtain the
following formula for P(q)(n):

Proposition 18. A formula for P(q)(n) is given by

P(q)(n)

=

⌊

[n]q
[n]q

⌋

∑

in=0

⌊

[n]q−[n]qin
[n−1]q

⌋

∑

in−1=0

⌊

[n]q−[n]qin−[n−1]qin−1
[n−2]q

⌋

∑

in−2=0

· · ·

⌊

[n]q−[n]qin−[n−1]qin−1−···−[4]qi4
[3]q

⌋

∑

i3=0
(⌊

[n]q − [n]qin − [n− 1]qin−1 − · · · − [4]qi4 − [3]qi3
[2]q

⌋

+ 1

)

.

A direct application of Proposition 18 yields

P(q)(4) = q3/2 + q2/2 + q + 3,

which is equal to p(4) = 5 when q is replaced by 1, and

P(q)(5) = q6/6 + q5/4 + q4/2 + 11q3/12 + 4q2/3 + 11q/6 + 2,

which is equal to p(5) = 7 when q is replaced by 1. The analogies break
down modulo q − 1.
Some results about the properties of P(q)(n) in the literature are worth
mentioning. For example, Stanton [32] recently proved two q-analogues
of Euler’s Theorem, which states that “the number of integer partitions
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of n with all parts odd is equal to the number of integer partitions of
n with all parts distinct”. The first of analogue is

Proposition 19 (Stanton). Let N, q be positive integers. Then the
number of integer partitions of N into q-odd parts, i.e., parts of the
form [2m + 1]q, is equal to the number of integer partitions of N into
parts [n]q of multiplicity at most qn.

An older result by Hickerson [26], also about Euler-type identities, can
be written in our notation as follows:

Proposition 20 (Hickerson). Let f (q)(n) be the number of partitions
of [n]q of the form

[n]q = b0 + b1 + · · ·+ bs, where bi ≥ q bi+1 for 0 ≤ i ≤ s− 1.

Then
P (q)(n) = f (q)(n).

3. Concluding Remarks and Open Problems

If Conjecture 15 were true, then we would have some handle on the
existence of Gaussian partitions of [n]q: by using known values of p(n),
or congruences involving p(n), we might be able to derive new necessary
conditions for the existence of certain types of subspace partitions of
V (n, q).
But whether Conjecture 15 is true or false, determining the Gaussian

partition functions gp(n, q) is an interesting open problem (for n ≥
6) by virtue of the rich combinatorial objects (subspace partitions of
V (n, q)) associated with them. To our knowledge, there is no other q-
analogue of the partition function p(n) in the literature which is based
on counting combinatorial objects. Moreover, the computation of the
polynomials gp(q, n), as well as attaching other meanings to them, are
interesting problems.
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